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Doubly excited coherent elliptic states �DECESs� of an atom could be produced by exciting an atomic
electron to a Rydberg state, applying the adiabatic field-switching technique to obtain a coherent elliptic state
�CES� and by subsequent excitation of an atomic core electron into a low-lying excited state. The DECESs
decay by autoionization and radiative transitions. As an example, the autoionization widths are calculated for
DECESs in He. The dependence of the widths on the eccentricity of the CES, principal quantum number of the
Rydberg electron, orientation of the inner electron orbital and electron exchange is studied and interpreted.
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I. INTRODUCTION

The phenomenon of autoionization from multiply excited
states in atomic and molecular physics has been considered
in an immense number of publications since the pioneering
experimental �1� and theoretical works �2�. Recently, for ex-
ample, the generic cases of doubly excited states in helium
�3� and triply excited states in lithium �4� were reviewed. For
both doubly and triply excited states, the correlated motion
of the electrons may be analyzed and characterized to some
degree by collective modes of motion and associated ap-
proximate quantum numbers.

Normally the spectrum of autoionization widths presents
a discrete set. Theoretically, this follows immediately from
the fact that the resonance states correspond to the complex-
valued poles of the S-matrix or the Green function describing
the system. The spectrum has been analyzed in detail and
regularities in the behavior of the widths as, e.g., one of the
electrons is excited through a Rydberg series are well under-
stood by participator and/or spectator models �5,6�.

One of the current trends in atomic and molecular physics
is to engineer and manipulate small quantum systems in or-
der to obtain control of the dynamics. We therefore think it is
timely also to raise such questions with respect to the auto-
ionization dynamics. In this work we point out the possibility
to vary the autoionization widths smoothly and to control
them. This particular situation appears in the case of autoion-
izing Rydberg states where the highly excited �outer� elec-
tron, to an accurate approximation, moves in a pure Coulomb
field of the residual atomic core. Then the well-known de-
generacy of energy levels in the orbital quantum number � of
the Rydberg electron allows a smooth variation of the eigen-
state of the outer electron. The degeneracy is n2-fold �with-
out account for the electron spin� in the pure Coulomb po-
tential where n is the principal quantum number of the outer
electron. The eigenstates may be constructed as linear com-
binations of basis states �the latter could be, for instance, the

conventional spherical states with quantum numbers n�m��.
Hence the number of complex-valued parameters defining an
eigenstate is �n2−1�. While the eigenstates are degenerate in
energy, they can have drastically different autoionization
widths. The reason is related to the fact that for the spherical
states n�m� of the Rydberg electron the autoionization
widths are known to decrease exponentially with the orbital
quantum number � �7�. Therefore the weight of different �
states in the linear combination plays a crucial role. In this
work we address this role in detail. We introduce a new set of
states, namely the doubly excited coherent elliptic states
�DECESs� and study the dependence of the autoionization
dynamics on the controlled motion of the coherent elliptic
Rydberg state and the relative orientation between the orbit
of the outer electron and the inner one. We note that more
than 15 years ago circular �maximum �� doubly excited
states of barium were produced experimentally and found to
have a very long lifetime against autoionization �8� in agree-
ment with theoretical predictions.

The paper is organized as follows. In Sec. II, we recall the
special eigenstates of the Coulomb problem known as coher-
ent elliptic states �CESs� and we discuss their particular
physical interest and importance. In particular, they have an
appealing physical meaning being quantum analogues of
classical electron elliptic orbits. In Sec. II, we also briefly
describe how these states can be prepared experimentally. It
is possible to address the entire range of the eccentricity
parameter � and hence to control the � composition of the
CES. In Sec. III, we introduce the two-electron doubly ex-
cited CESs and mention their possible extension to triply and
multiply excited CESs. In that section, we also develop a
scheme to calculate the autoionization widths of the DECES.
The numerical results obtained in Sec. IV allow an appealing
qualitative interpretation. In Sec. V, we address the question
of the effects of coherence and electron-electron interactions
and finally, in Sec. VI we conclude. We use atomic units
��=me=a0=e=1� throughout.

II. COHERENT ELLIPTIC STATES OF RYDBERG ATOMS

It is well known that many properties of highly excited
Rydberg states can be interpreted in classical terms. It is in
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this sense that the Rydberg atom forms a bridge between
classical physics and quantum mechanics. In classical me-
chanics an elliptic electron orbit is fixed by the following

parameters: �i� a unit vector n�̂� defines the orbit plane; this
vector is directed along the electron orbital momentum vec-

tor ��; �ii� fixing orientation of the orbit perihelium requires

another unit vector n�̂a; this vector is directed along the
Runge-Lenz vector a� of the electron,

�� = r� � p� ,

a� = n�p� � l� − r�/r�, n = 1/�Z�2�E�� ,

�� · a� = 0; �1�

�iii� the orbit shape is governed by the absolute value of the
orbital momentum �, related to the eccentricity of the orbit

� = �1 − 2�E��2/Z2. �2�

Here Z is the charge of the atomic nucleus. Since the eccen-
tricity is confined to the interval 0���1, it can be conve-
niently parametrized in terms of the effective angle �,

� = sin � . �3�

Then the simple and useful relations are

� = n cos �, a = n sin �, �2 + a2 = n2. �4�

�the quantum counterpart of the latter formula, �2+a2=n2

−1, is valid also for small n �n�1��.
Physically, fixing n�̂� and n�̂a is achieved by imposing mag-

netic B� and electric F� fields on a Rydberg atom �it is pre-
sumed that the fields are so weak that orbit distortions cor-
responding to the nonperturbative regime are avoided�. Thus
the road to the construction of quantum states similar to clas-
sical orbits goes via the consideration of the so-called linear
Stark-Zeeman effect, i.e., via the study of the behavior of the
hydrogen atom under the combined action of external elec-
tric and magnetic fields. This fundamental problem was
treated in the old quantum mechanics, before the wave me-
chanics of Schrödinger, by Born �9�, and in modern quantum
theory by Demkov et al. �10�. The eigenvalues and eigen-
states of the Hamiltonian were obtained for an arbitrary prin-
cipal quantum number n. The semiclassical properties of
these states in case of n�1 were subsequently analyzed �11�
and the relation to classical mechanics was revealed. The
formula for the linear Stark-Zeeman eigenenergies

Enm1m2
= −

Z2

2n2 + �1m1 + �2m2, �5�

contains quantum numbers m1 and m2 that run independently
with units steps from −j to j, j= 1

2 �n−1�,

�� 1 = �� S + �� S, �� 2 = �� L − �� S, �6�

�� S = − 3
2nF� , �� L = 1

2nB� . �7�

Below we specialize to the case of perpendicular fields

F� �B� �see Fig. 1�, since this configuration corresponds to the

classical condition �� ·a� =0. In this setup, we obtain �1=�2
�� and

E = −
Z2

2n2 + ��m1 + m2� . �8�

The solution of the Stark-Zeeman problem proceeds via
the construction of two pseudospin operators,

j�1 = 1
2 ��� + a��, j�2 = 1

2 ��� − a�� . �9�

These vector operators have algebraic properties identical to
the quantum angular momentum operators. They are inde-
pendent, i.e., commute, �j�1 , j�2�=0, and have equal lengths:

j�1
2= j�2

2= j�j+1�. Therefore each of them could be quantized
along an independent quantization axis. The eigenstates

�nm1m2 ;u�̂1 ,u�̂2	 for the Stark-Zeeman problem correspond to

quantization of j�1 along the u�̂1 axis and j�2 along the u�̂2 axis,

where u�̂1=�� 1 /�1 and u�̂1=�� 2 /�2 are unit vectors. This is
described by the relations

j�1 · u�̂1�nm1m2;u�̂1,u�̂2	 = m1�nm1m2;u�̂1,u�̂2	 ,

j�2 · u�̂2�nm1m2;u�̂1,u�̂2	 = m2�nm1m2;u�̂1,u�̂2	 , �10�

where the dependence on the unit vectors u�̂1, u�̂2 is paramet-

ric. The explicit formulas for the states �nm1m2 ;u�̂1 ,u�̂2	 in
terms of spherical basis �n�m�	 are constructed by applying
finite rotation operators to the conventional parabolic, or, al-
ternatively, spherical electron states. These expansions are
well known �10,11� and will not be reiterated here. We only
mention the deep group-theoretical background of the
scheme. The parametric dependence on the relative fields
strength is implicit in Eq. �10�.

The angular momentum states with maximum modulus of
projection along the quantization axis �m= ± j� are distin-
guished by the fact that they are minimum uncertainty states
in the sense that the Heisenberg uncertainty relation is satis-
fied as an equality. Such states are called coherent states
�12�. For our two-pseudospin basis of Eq. �10� we are inter-
ested mostly in the states where both projections attain maxi-

FIG. 1. Quantization directions of the external fields used in the
construction of CESs.
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mum values of the quantum numbers m1 and m2: m1=m2
= j. We denote this state by �n�	,

�n�	 � �njj ;u�̂1,u�̂2	 . �11�

Since these eigenstates satisfy the minimum quantum fluc-
tuation condition, they are quantum �semiclassical� ana-
logues of classical elliptic orbits. This justifies the name co-
herent elliptic states �CESs� for the states �n�	 �11�.

For the quantitative analysis it is convenient to consider
the expansion of �n�	 in the spherical basis

�n�	 = 

�m�

cn�m�

� �n � m�	 . �12�

The explicit expression for the expansion coefficients is well
known �11�

cn�m�

� = �− 1�
�−m�

2
2n−�−1�n − 1�!

��− m�

2
� ! �� + m�

2
�!

���� + m�� ! ��− m�� ! �2 � + 1�
�n − � − 1� ! �n + � �!

��sin
�

2
�n−m�−1�cos

�

2
�n+m�−1

. �13�

Here �+m� is even; the spherical states �n�m�	 are quantized

along the direction of the magnetic field B� . The effective
angle is simply expressed via electric and magnetic field
strengths,

tan � = �S/�L. �14�

Limiting cases of CESs are the circular states ��=0, �=m�

=n−1� and the uppermost Stark states ��= 1
2	�.

We now turn to a brief discussion of the formation of
coherent elliptic states by the adiabatic field-switching
method suggested by Delande and Gay �11,13,14�: First a
Rydberg atom is placed into an electric field and the outer-
most Stark state is selectively populated by a laser excitation.
Second, after this transfer of population, the magnetic field is
switched on. In the case of a slow �adiabatic� switching no
state-to-state transitions occur between the adiabatic states;
the outermost state is correlated to the elliptic state with the
effective angle � defined by Eq. �14�. Thus all the initial
population is transferred to the �n�	 state. The adiabaticity
condition reads

d�

dt
� ��L

2 + �S
2�1/2 or

d�S

dt
�

��L
2 + �S

2�3/2

�L
. �15�

The experimental implementation of this procedure was
carried out by Hare et al. �15� to produce circular states and
by Day et al. �16� and Mogensen et al. �17� for an arbitrary
value of �. The radiative lifetimes of CESs were studied both
experimentally and theoretically �16,17�.

III. DOUBLY EXCITED COHERENT ELLIPTIC STATES

A. Formation of doubly excited coherent elliptic states

We now consider a multielectron Rydberg atom with the
outer �excited� electron in a CES. Then by exciting an inner
atomic electron to some higher-lying state one obtains what
we label a doubly excited CES �DECES�, by exciting two
inner electrons one obtains a triply excited CES �TECES�
and so on and so forth. In this work we shall focus on the
DECESs and consider the preparation of these states in more
detail. Although most of the subsequent discussion refers to
the general case, we shall take the helium atom as a simple
example.

In the first step, a CES is prepared by the adiabatic field
switching method and absorption of an appropriate laser
photon 
1,

He�1s2� →
F� ,B� ,
1

�n1�	 � �1s	 . �16�

In the preparation of the CES, the inner electron is a specta-
tor and remains in its 1s ground state orbital while the outer
electron is promoted to the high-lying Rydberg state with
principal quantum number n1. Hence in Eq. �16� it is a good
approximation to present the final state of the two electrons
as a product of two one-electron orbitals. We discuss the
effect of electron-electron correlation and the special Cou-
lomb peculiarities pertaining also to the inner electron in the
helium case in Sec. VI.

After the preparation of the outer electron in the CES, the
inner electron is excited to the n2p state with principal quan-
tum number n2 by the absorption of a single energetic photon

2 of polarization �,

�n1�	 � �1s	 →

2

�n1�	 � �n2p	�. �17�

Such a technique, known as isolated core excitation �ICE�,
was used extensively in experiments with multielectron
Rydberg atoms, where less energetic 
2 photons are required
than in the case of the He atom, see, for instance, Ref. �18�.

Depending on the polarization of the photon 
2, different
magnetic substates �n2pm�2

	 of the inner electron are popu-
lated. Assuming linear polarization of the 
2 photon, but
variable direction of propagation, the final state can be pre-
sented as a coherent superposition

�n2p	� = −
1
�2

e−i�� sin ��n2p1	 + cos ��n2p0	

+
1
�2

ei�� sin ��n2p − 1	 , �18�

with parameters �� and � characterizing the polarization.
Important special cases are �=0 �photon linearly polarized
along z axis� and �= 1

2	 �linear polarization along the x axis
for ��=0 and along the y axis for ��= 1

2	�.
The DECES formed in this way is unstable against decay

by autoionization,
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�n1�	 � �n2p	� → He+�1s� + e−� � � , �19�

where  is the kinetic energy of the ejected electron. In a
crude approximation this latter energy is estimated by

 =
Z2

2
−

Z2

2n2
2 −

�Z − 1�2

2n1
2 . �20�

In addition to the decay by autoionization, the DECES can
also decay by a radiative transition of the inner electron into
the ground state. Since the outer Rydberg electron remains a
spectator in this process, the radiative transition width �rad
may be approximately identified with that of the He+�2p�
ion. The latter is �rad=2.42�10−7 a.u., which corresponds to
the lifetime �=1.6 ns �19�. Note that the radiative transitions
of the Rydberg electron have much �several orders of mag-
nitude� smaller widths �i.e., larger lifetimes� and thus can be
safely neglected. The physical reason is that radiation ap-
pears due to electron acceleration, and characteristic accel-
erations are much lower for the Rydberg electron than for the
inner one. In this study we are interested in the regime when
the autoionization decay prevails over the radiative one; the
preconditions are discussed below �see Fig. 2.�

B. Autoionization widths

With some modifications, we follow the theory of auto-
ionization widths as formulated by Nikitin and Ostrovsky
�7�. In that paper the widths were evaluated for the states of
a two-electron atom with a definite value of the total angular
momentum L and projection M,

He*�n1�1n2�2LM� → He+�n0�0� + e−� � � . �21�

Note that L and M, as well as the total spin S, are conserved
in the course of the autoionizing decay �here we neglect rela-
tivistic effects�.

The states with different values of L in principle have
somewhat different energies. However, in practice this split-
ting is very small, especially for large �1, and often not re-
solved in experiments. The available experimental data refer
to the widths of Rydberg states with definite orbital momen-
tum of the outer electron �1, but are not resolved over L �see,
for instance, Ref. �18��. In the DECES, the outer electron
does not have a definite value of quantum number �1 since
the state by construction is a coherent superposition of dif-
ferent �1 states. The presence of many �1’s implies that the
quantum number L also is absent.

The widths for autoionization of initially prepared
DECESs,

He*�n1�n2�2� → He+�n0�0� + e−� � � , �22�

may be calculated working in an uncoupled representation of
one-electron quantum numbers, or, alternatively, via a
coupled LM representation. The final results are in principle
equivalent, but technically each mode of derivation might
have its advantages, so for completeness we consider both
approaches below.

The starting point is the same in both cases. The two-
electron atomic Hamiltonian is written as

H = H0 + � , �23�

where H0 is the unperturbed Hamilton operator

H0 =
p1

2

2
+

p2
2

2
−

Z1
eff

r1
−

Z2
eff

r2
, �24�

and � is the perturbation that leads to autoionization

� =
Z1

eff − Z

r1
+

Z2
eff − Z

r2
+

1

r12
, �25�

Z is atomic nucleus charge. We introduced here the two ef-
fective charges, Z1

eff and Z2
eff, which are different for outer

and inner electrons, to take into account the effect of screen-
ing.

The initial and final states are constructed as eigenfunc-
tions of H0,

�i�r�1,r�2� =
1
�2

��n1�n2�2�	 + �− 1�S�n2�2�n1�	� ,

�f�r�1,r�2� =
1
�2

�� � m�n0�0m0	 + �− 1�S�n0�0m0 � m�	� .

�26�

Here we neglect the overlap of the inner and outer electron
orbitals and present the inner electron orbital in a general
form as a superposition

FIG. 2. Illustration of the proposed scheme for the creation of a
doubly excited coherent elliptic state �DECES� in helium. First, a
CES is produced by absorption of a photon 
1 and by the adiabatic

field-switching method of external F� and B� fields �see Sec. II�.
Second, the inner electron is excited by the absorption of a high-
energy photon 
2 of polarization �. The state obtained in this way,
�n1�	 � �n2p	�, is unstable to autoionization. In the figure, the inner
electron is excited into the 2p state and hence only the autoioniza-
tion decay channel to the He+�1s� is open.
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�n2p	� = 

m2

bm�,2

� �n2�2m2	 . �27�

The coefficients bm2

� are straightforwardly expressed via the
parameters �� and � by comparing Eqs. �18� and �27�. The
general expression covers also the possibility for circular or
elliptic polarization of the 
2 photon.

1. Uncoupled one-electron angular momentum representation

The autoionization widths are given by Fermi’s golden
rule,

�n1�n2�2�→lmn0�0m0
= 2	�Ad

� + �− 1�SAe
��2, �28�

with the matrix elements describing, respectively, direct
�outer electron ejected� and exchange �inner electron ejected�
autoionization �cf. Ref. �7��

Ad
� = n1�n2�2����lmn0�0m0	

= 

�1m1m2

c�1m1

� bm2

� n1�1m1n2�2m2���n0�0m0 � m	 ,

Ae
� = n1�n2�2����n0�0m0 � m	

= 

�1m1m2

c�1m1

� bm2

� n2�2m2n1�1m1���lmn0�0m0	 .

�29�

The basic matrix elements on the right-hand side describe
autoionization of atomic states with definite one-electron
quantum numbers,

He*�n1�1m1n2�2m2� → He+�n0�0m0� + e−�� � m� . �30�

To summarize the notations, n1�1m1, n2�2m2 denote princi-
pal, orbital and magnetic quantum numbers, respectively, for
the outer and inner electron in the initial doubly excited state
prior to autoionization; n0�0m0 denote quantum numbers of
the bound electron after autoionization; ��m are kinetic en-
ergy, orbital and magnetic quantum numbers of the electron
which is ejected into the continuum. The matrix elements
�29� are evaluated as

Ad�n1�1m1n2�2m2� � mn0�0m0� � n1�1m1n2�2m2��� � mn0�0m0	

= �− 1��1+m1+�2+m2��2�1 + 1��2�2 + 1��2 � + 1��2�0 + 1�

kmk

�− 1�k+mk��1 � k

0 0 0
���2 �0 k

0 0 0
�

�� �1 � k

− m1 m mk
�� �2 �0 k

− m2 m0 − mk
�Ad

�k��n1�1n2�2� � n0�0� , �31�

Ae�n1�1m1n2�2m2�n0�0m0 � m� � n1�1m1n2�2m2���n0�0m0 � m	

= �− 1��1+m1+�2+m2��2�1 + 1��2�2 + 1��2 � + 1��2�0 + 1�

sms

�− 1�s+ms��1 �0 s

0 0 0
���2 � s

0 0 0
�

�� �1 �0 s

− m1 m0 ms
�� �2 � s

− m2 m − ms
�Ae

�s��n1�1n2�2�n0�0 � � , �32�

where the conventional notation for Wigner 3j symbols is employed, the summation indices k and s describe the multipole
order in the expansion of electron-electron interaction 1/r12 that induces transition, and finally the respective partial transition
amplitudes Ad

�k� and Ae
�s� are expressed via two-electron radial integrals

Ad
�k��n1�1n2�2� � n0�0� = �n1�1n2�2� r�

k

r�
k+1 − �k0

1

r1
� � n0�0�

= �
0

�

dr1r1
2�

0

�

dr2r2
2Rn1�1

�1� �r1�Rn2�2

�2� �r2�� r�
k

r�
k+1 − �k0�R�

�1��r1�Rn0�0

�2� �r2� , �33�

Ae
�s��n1�1n2�2�n0�0l� = �n1�1n2�2� r�

s

r�
s+1 − �s0

1

r1
�n0�0 � �

= �
0

�

dr1r1
2�

0

�

dr2r2
2Rn1�1

�1� �r1�Rn2�2

�2� �r2�� r�
s

r�
s+1 − �s0�Rn0�0

�2� �r1�R�
�1��r2� . �34�
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The notations for radial wave functions Rn1�1

��1� �r1�, Rn2�2

��2� �r2�,
R�

��1��r1�, Rn0�0

��2� �r2� are self-explanatory. The superscripts �i

indicate effective charges Zi
eff. We set Z1

eff=1 , Z2
eff=2 �see

�25�� assuming that the screening is complete. In our present
treatment, the integrals �33� and �34� were evaluated numeri-
cally �for more discussion see the Appendix �. For an alter-
native asymptotic treatment of the large angular momenta
case see Ref. �7�.

Although the final state magnetic quantum numbers m
and m0 are observable in principle, they are far beyond the

reach of actual experiments. Therefore we consider total
widths,

�n1�n2�2�→�n0�0
= 


mm0

�n1�n2�2�→�mn0�0m0
. �35�

After some angular momentum algebra �20� we arrive at the
following general expression:

�n1�n2�2�→�n0�0
= 


�1m1�1�m1�m2m2�

c�1m1

� c�1�m1�
� bm2

� bm2�
� �− 1��1+�1�


kk�


jmj

�− 1� j−mj�2j + 1�� �1 j �1�

m1 − mj − m1�
�� �2 j �2

m2 − mj − m2
�

���1 j �1�

k� � k
���2 j �2

k� �0 k
��Ad

�k��n1�1n2�2� � n0�0� + �− 1�SAe
�k��n1�1n2�2�n0�0 � ��

� �Ad
�k���n1�1�n2�2� � n0�0� + �− 1�SAe

�k���n1�1�n2�2�n0�0 � �� . �36�

While �0 can be observed experimentally since the kinetic
energy  depends on this quantum number, the orbital mo-
mentum � of the ejected electron is not fixed in realistic
experiment. Therefore the realistically observed widths of
the DECESs are obtained by the expression

�n1�n2�2�→n0�0
= 


�

�n1�n2�2�→�n0�0
. �37�

In our particular case �1=1, �0=m0=0 which substantially
simplifies Eq. �36�. The final formula looks particularly
simple in the total angular momentum representation.

2. Coupled total angular momentum representation

At first we consider the autoionization process of Eq. �21�
for atomic states with definite quantum numbers L and M. In
this case the results of Ref. �7� apply directly. The initial and
final states are constructed as

�i
�LM��r�1,r�2� =

1
�2

��n1�1n2�2LM	 + �− 1�S�n2�2n1�1LM	� ,

� f
�LM��r�1,r�2� =

1
�2

�� � n0�0LM	 + �− 1�S�n0�0 � LM	� ,

�38�

with

�n1�1n2�2LM	 = Rn1�1

Z1
eff

�r1�Rn2�2

Z2
eff

�r2�Y�1�2

LM �r�̂1,r�̂2� ,

� � n0�0LM	 = R�
Z1

eff
�r1�Rn0�0

Z2
eff

�r2�Yl�0

LM�r�̂1,r�̂2� ,

Y�i�j

LM �r�̂1,r�̂2� = 

mimj

C�imi�jmj

LM Y�imi
�r̂1�Y�jmj

�r̂2� . �39�

The autoionization widths are again given by Fermi’s
golden rule,

�n1�1 n2�2→ln0�0

LS = 2	�Ad
L + �− 1�SAe

L�2, �40�

and they do not depend on the quantum number M. The
quantum numbers L and S are conserved in the autoioniza-
tion process in the nonrelativistic approximation. The ampli-
tudes of direct and exchange autoionization are, respectively,

Ad
L�n1�1n2�2� � n0�0� � n1�1n2�2LM��� � n0�0LM	

= �− 1�L��2�1 + 1��2�2 + 1��2 � + 1��2�0 + 1�

k

�− 1�k��1 � k

0 0 0
���2 �0 k

0 0 0
���2 �1 L

� �0 k
�

�Ad
�k��n1�1n2�2� � n0�0� , �41�
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Ae
L�n1�1n2�2�n0�0l� � n1�1n2�2LM���n0�0 � LM	

= �− 1��+�0��2�1 + 1��2�2 + 1��2 � + 1��2�0 + 1�

s

�− 1�s��1 �0 s

0 0 0
���2 � s

0 0 0
���2 �1 L

�0 � s
�

�Ae
�s��n1�1n2�2�n0�0 � � , �42�

where the conventional notation for 3j and 6j Wigner symbols is employed. The partial transition amplitudes are expressed via
the same two-electron radial integrals as before, see Eqs. �33� and �34�.

Now we turn to the widths of DECESs which have definite effective angle �, but do not possess definite total angular
momentum quantum numbers L and M. In this case Fermi’s golden rule gives

�n1�n2�2→�n0�0
= 2	 


lmm0

�Ad
� + �− 1�SAe

��2. �43�

We consider here realistically observable total widths summed over final state quantum numbers �, m, m0. The matrix elements
of Eq. �29� are rewritten in the total angular momentum representation via the amplitudes of Eqs. �41� and �42�,

Ad
� = n1�n2�2���� � mn0�0m0	 = 


�1m1m2

c�1m1

� bm2

� n1�1m1n2�2m2��� � mn0�0m0	

= 

�1m1m2

c�1m1

� bm2

� 

LM

�− 1�MC�m�0m0

LM C�1m1�2m2

LM n1�1n2�2LM��� � n0�0LM	

= 

�1m1m2

c�1m1

� bm2

� 

LM

�− 1�MC�m�0m0

LM C�1m1�2m2

LM Ad
L�n1�1n2�2� � n0�0� ,

Ae
� = n1�n2�2����n0�0m0 � m	 = 


�1m1m2

c�1m1

� bm2

� 

LM

�− 1�MC�m�0m0

LM C�1m1�2m2

LM Ae
L�n1�1n2�2�n0�0 � � . �44�

Further our consideration is restricted to the simple case of
interest where �0=0 so that L=�, M =m. The width �43�
reduces to

�n1�n2�2→�n0�0
= 2	


LM
� 


�1m1m2

c�1m1

� bm2

� C�1m1�2m2

LM

� �Ad
L�n1�1n2�2�Ln00�

+ �− 1�SAd
L�n1�1n2�2�n00L���2

. �45�

IV. RESULTS AND DISCUSSION

A. Qualitative analysis

1. Orbits approach and overlap

The objective of our study is to analyze how the autoion-
ization widths depend on the DECES parameters, first of all
the effective angle �, or the eccentricity � that characterizes
the shape of the CES of the outer electron. Another important
ingredient is the state of the inner excited electron, and its
orientation relative to the outer one. As mentioned in Sec. II,
classical reasoning is relevant for the discussion of the outer
highly excited electron.

For the classical elliptic orbit, the outer turning point rt2
of the radial motion always lies far from the atomic nucleus,
rt2�n1

2�1. The position of the inner turning point, however,
depends on the shape of the ellipse through

rt1 =
�1

2

1 + �
= �1 − ��n1

2. �46�

As �→1, the classical outer electron penetrates the inner
electron orbit �r1�r2� at some instants of time. This effec-
tively enhances the average electron-electron interaction and
thus induces an increase of the autoionization rate, which is
the main trend in the behavior of the �-dependent autoioniz-
ation rate ����. On the other hand, the penetration of the
inner electron orbit by the outer electron lifts the degeneracy
of Rydberg states with respect to orbital momentum, as de-
scribed by �-dependent quantum defects ��. The removal of
degeneracy undermines the entire concept of the CES �see
also the discussion in Ref. �17��. In quantum terms the pen-
etration is characterized by an overlap of orbitals for the
outer and inner electrons. The overlap depends on the rela-
tive weight of low-� terms in the expansion of Eq. �12�.

The condition of nonpenetration of the outer electron
through the core can be written as rt1� r2	. The average
distance of the inner 2p electron �with nucleus charge Z=2�
is estimated as r2	=2.5 a .u. With the help of Eq. �46�, the
nonpenetration condition is then expressed as

� � 1 −
r2	
n1

2 = 1 −
2.5

n1
2 . �47�

This means that for n1=25 the maximum allowed value of
the eccentricity is
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�25
max = 0.996, �48�

while for n1=10 the limiting value is lower, but still quite
high

�10
max = 0.975. �49�

2. Orientation of inner electron orbital

We now consider the influence of the magnetic substate of
the inner electron. We remind the reader that Eq. �13� is
presuming that the electron angular momentum is quantized

along the axis determined by B� and perpendicular to the
orbital plane of the outer electron. The same quantization
axis is retained for the inner electron and we denote this axis
as the z axis. We consider the excitation of the inner electron
from the ground s state by a linearly polarized photon with
variable direction of propagation. This allows one to popu-
late selectively px, py or pz substates, see Fig. 3. Looking at
this figure one might expect that population of the px substate
gives the largest autoionization width �x. The relation be-
tween the widths �y and �z is not so obvious.

3. Electron exchange

In our treatment relativistic effects are neglected and the
Hamiltonian in Eq. �23� does not depend on electron spins.
The value of the total two-electron spin S is nevertheless
important since it determines the symmetry of the two-

electron wave function under electron permutation. This in-
duces spin-dependent electron exchange effects which are
purely quantum in their origin. It is well known that for
triplet states �S=1� the coordinate wave function is vanishing
if the coordinates of the electrons coincide, r�1=r�2. Effec-
tively, this suppression of electronic density amounts to an
extra repulsion between the electrons. As a result, one might
expect suppression of autoionization of triplet states as com-
pared to singlet �S=0� states. The trend should become stron-
ger as the effective angle approaches the value �= 1

2	, i.e.,
�=1, and the overlap of the inner and outer electron orbitals
is enhanced. A convenient measure of these exchange effects
is given by the ratio

���� =
�S=0

�S=1
= �Ad

� + Ae
�

Ad
� − Ae

��2

, �50�

which is expected to be an increasing function of eccentricity
�. If the preparation of the DECES is started from the singlet
ground state of an atom �as for helium or alkali-earth atoms�,
then, neglecting optical intercombination transitions, one ob-
tains DECES states with S=0.

B. Numerical results

The objective of our numerical calculations is to quantify
the dependence of the autoionization widths of the DECES
on the �i� eccentricity �, �ii� orientation of the inner electron
p orbit, and �iii� total electron spin S.

1. Eccentricity dependence

Figure 4 shows the dependence of the autoionization
width �x on the eccentricity for n1=25. The inner electron is
in the 2px state, where the x axis is directed along that major
axis of the elliptic orbit of the Rydberg electron. The total
spin is S=0. For eccentricities smaller than �0.9, the auto-

FIG. 3. Illustration of DECESs for different inner orbitals and
relative orientations with respect to the CES of the outer electron. In
panel �a�, the 2p orbital is oriented along the major axis for the CES
state. At perihelion there is a small distance between the two elec-
tron orbits. In panel �b�, the 2p state is oriented along the minor axis
of the ellipse. In panel �c�, the ellipse is seen from the side and the
2p orbital is perpendicular to the plane of the ellipse.

FIG. 4. Overall pattern of variation of the autoionization rate
���� as function of eccentricity � for n1=25 and total spin S=0. The
inner orbital is in the 2px state. The autoionization width exceeds
the radiation decay width �rad=2.42�10−7 a .u. for ��0.92; this
regime is of primary interest in the present study.
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ionization width is small reflecting that the two electron or-
bitals do not have much overlap. For larger eccentricities, the
autoionization width increases rapidly with �; it exceeds the
radiation width for the inner electron, �x�����rad for �
�0.92. Under these conditions the depopulation of the
DECES is governed mostly by autoionization. Since the
autoionization process is of main concern in the present
work, we mostly concentrate on large � in the following. The
widths in this domain are shown in more detail in Fig. 5.

The range of � is limited from above by the applicability
condition �48�, ���25

max=0.996. For n1=25 the autoioniza-
tion decay condition ��0.9 implies that the average value of
the orbital momentum of the outer electron in the CES is
�z	�10.5, that could be compared with the range of � varia-
tion for n1=25: 0� � �24. The minimum distance of a clas-
sical electron from the nucleus for n1=25, rt1=62.5 a .u. for
�=0.9, is much larger than the extension of the inner electron
orbit r2	. The inset in Fig. 5 shows in detail this � regime for
different orientations between the plane of the ellipse and the
inner 2p orbital. In the inset the highest, middle and lowest
curves show �x, �z, and �y, respectively, where the sub-
scripts x ,y ,z refer to the inner orbital 2pi, i=x ,y ,z.

It is instructive to consider how the situation is changed
for lower excitation of the Rydberg electron, n2=10. The
pattern of ���� looks very similar �see Fig. 6�, but the abso-
lute scale of the widths is different: the maximum value
���=1.0�=4.15�10−4 a .u. is about 40 times higher than for
n1=25 ����=1.0�=1.15�10−5 a .u . �. Due to this the condi-
tion �x�����rad is satisfied already for ��0.63. This pro-
vides a broad window for application of the present theory,
although the upper-side applicability condition �49� is some-
what more restrictive than for n1=25.

2. Orientation of 2p orbitals

Figure 5 displays ���� curves for different orientations of
the p-orbital of the inner electron �see Fig. 3�. The overall

patterns of �x, �y, and �z are the same for all the curves.
Some difference in absolute values appears as � tends to
unity, i.e., when the orbits of the Rydberg electron and the
inner electron approach each other at some intervals of time.
The ordering obtained from the calculations reads

�x � �z � �y . �51�

As indicated above, the fact that the width �x is the largest
one is expected from qualitative reasoning while the relative
ordering of �x and �y is less obvious. The situation for n1
=10 is very similar, see Fig. 6.

3. Role of exchange

In Fig. 7 we investigate the influence of the total spin of
the two electrons on the autoionization process. The figure
illustrates, as expected from qualitative reasoning, that sin-

FIG. 5. Autoionization rates � as function of eccentricity � in
the interval 0.9���1 for n1=25, S=0 and for different orienta-
tions of the inner electron orbital: �x �upper curve�, �z �middle
curve�, �y �lower curve�; the subscripts x ,y ,z refer to the inner
orbital 2pi, i=x ,y ,z. The inset shows a close-up for a limited range
of ��1.

FIG. 6. As Fig. 5, but for n1=10 and for different orientations of
the inner electron orbital: �x �upper curve�, �z �middle curve�, �y

�lower curve�. The inset shows a close-up for large values of �.

FIG. 7. Autoionization width ���� for the singlet �upper curve�
and triplet �lower curve� states; n1=25. The inner electron is in the
2px orbital.
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glet states have larger autoionization widths than triplet
states, �S=0��S=1. This means that direct terms dominate
over exchange terms. The relative contribution to autoioniz-
ation via the exchange process is characterized by the � pa-
rameter of Eq. �50�. It is maximal for the largest �=1. For
�=1 the parameter � takes the value

��� = 1� = 1.15, �52�

obtained numerically for n1=25. Interestingly, the calcula-
tions for n1=10 give practically the same result. The value
���=0� is very close to 1.

Although the increase of the function ���� with � is well
expected, its actual stepwise behavior comes as a surprise,
see Fig. 8. For the n1=25 case �full curve�, the steep raise
starts at �=0.5 whereafter the value of the ���� function is
close to its maximum value, 1.15. Therefore ���=1� is a
convenient characteristic parameter, although the theory be-
comes inapplicable in the limit �→1, as discussed above.
The details of the ���� behavior depend on the value of n1,
thus for n1=10 �dashed curve� the steep rise starts at �
�0.1. In addition, a shallow minimum appears around �
=0.45; this feature is difficult to interpret qualitatively.

V. REMARKS ON COHERENCE AND
ELECTRON-ELECTRON CORRELATION

A. Coherence

We start with a one-electron system. Equation �12� pre-
sents the CES �n�	 as a superposition of spherical �n�m�	
states with different orbital � and magnetic m� quantum
numbers. This is a coherent superposition which is directly
manifested by the fact that if the superposition coefficients
cn�m

� are multiplied by different phase factors exp�i�n�m�,
then the resulting wave function will change, and for in-
stance, the electron density will become different. However,
this does not exclude that some physical observables could
prove to be insensitive to the introduction of such a state-
specific phase change. This was, e.g., shown to be the case
for the total radiative decay from CESs �17,21�: For any
CES, the radiative decay width is expressed via widths for
the spherical states, i.e., via modulus squared transition ma-
trix elements; the relative phases of the matrix elements do
not play a role. This property may be called stability against
dephasing.

Dephasing transformations occur naturally as a conse-
quence of propagation in time. Indeed, the CES presents a
coherent superposition of spherical �n�m�	 states. If the ex-
ternal fields are switched off and the Rydberg atom has some
non-Coulomb core, then each �n�m�	 state has somewhat
different energy characterized by the �-dependent quantum
defects ��. Due to these differences in energy, different
�n�m�	 components in the superposition gain different phase
factors exp�i��� /n3�t� and as time t passes this results in
dephasing. The stability against dephasing is a favorable cir-
cumstance in the sense that it simplifies the experimental
observation of a CES. On the other hand, dephasing could be
considered as a physically interesting effect for study.

It follows from Eq. �45� that the autoionization width of
DECESs depends on phases of the coefficients cn�m

� , i.e., it is

unstable against dephasing. As in the case of CESs, the time-
propagation-induced dephasing depends on the energy level
structure. A description of the details of this structure re-
quires account for electron-electron correlation.

B. Electron-electron correlations

The present calculations do not take into account electron-
electron correlations as seen from the factorized representa-
tion of the two-electron wave function in Eq. �17�. Generally,
electron-electron correlations are known to be essential in the
description of autoionizing doubly excited states. The corre-
lation becomes especially strong when the inner electron
moves in a pure Coulomb field, as is the case for the He
atom. Specifics of He are briefly discussed below. Although
this atom is very important from the fundamental point of
view one should bear in mind that all other atoms have a
non-Coulombic core. The present study is in fact oriented on
this more generic case, although in the calculations we used
wave functions and orbital energies for the simplest case, the
He atom. Thus we investigated the principal properties of
DECESs in case of weak correlations; the assessment of cor-
relation effects remains a subject for future studies.

The specifics of He stem from the fact that the inner elec-
tron states are, in a good approximation, degenerate in the
orbital number �2. This means that Stark states which pos-
sess an electric dipole moment may be formed in the course
of the interaction and the outer electron would then move in
a superposition of Coulomb and dipole potentials. Moreover,
the dipole moment of the inner electron depends on the state
of the outer electron. This situation is quantum mechanically
described by correlated �i.e., nonfactorized entangled� two-
electron wave functions known as dynamic dipole states or
planetary atom states. The problem of planetary states has
been discussed extensively in the literature. The theory for
two-electron atoms was developed in Refs. �22,23� and re-
viewed in Ref. �3�. Up to now experiments were carried out
for multielectron �alkaline earth� atoms �24,25�. More recent

FIG. 8. Exchange parameter ����, see discussion in text. The
inner electron is in the 2px orbital. The full curve shows the result
for n1=25, the dashed curve shows the result for n1=10.
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experiments with pulsed laser excitation �e.g., half-cycle
pulses� required development of theory in the time domain
�26�.

The second step in the formation of DECES is accompa-
nied by a shake-up of the outer electron due to a sudden
change of its interaction with the core. This change in the
interaction, as well as the correlation-induced structure of the
energy levels, introduce dephasing transitions and require de-
tailed analysis with account for the bandwidth of the 
2 pho-
tons. Such analysis is beyond the scope of the present paper
that aimed to introduce DECES as a subject of future studies.

VI. CONCLUSION AND OUTLOOK

The main objectives of the present work were to introduce
doubly excited coherent elliptic states �DECESs� as an inter-
esting object to study and to explore the major trends in the
autoionization of DECESs. The DECESs present part of a
vast Rydberg state realm where quantum and classical fea-
tures meet and interplay. The CES ingredient of the DECES
is of interest since it allows a continuous transition between
the limiting cases of circular and Stark states. And due to the
adiabatic field-switching technique the CESs are relatively
easy to produce experimentally. In this work, we quantita-
tively demonstrated the dependence of the autoionization
widths on �i� CES eccentricity, �ii� degree of the Rydberg
state excitation, �iii� orientation of the inner electron p or-
bital, and �iv� electron exchange effects. The competition
between radiative and autoionization decay of DECES was
assessed. The existence of a rather broad parameter range
where the DECES decay is governed by autoionization was
demonstrated.

As a generic case we referred to the helium atom with
inner electron excitation to the lowest p orbital. This latter
step requires a UV source of photons. We also note that the
He+ ion has the smallest possible size, which is favorable for
the creation of DECES. As the size of the core increases, the
upper bound of the value of the eccentricity � becomes more
restrictive. An obvious extension of the present study is to
consider excitation of the inner electron to higher p states.
Apart from an increase in the size of the core, a new phe-
nomenon emerges: the possibility of autoionizing decay with
population of excited states of the residual ion. The autoion-
ization process would then be characterized by partial auto-
ionization widths to the different ionic target states. These
widths could also be evaluated within the present approach.
With more open decay channels available, the propensity
rule reads that autoionization with ejection of a low energy
electron is preferable.

The transition to multielectron atoms implies further in-
crease of the core size. The core energy levels have richer
structure, so that excitations of different terms within the
same multiplet might be considered. This would require
lower photon energies than in the helium case. Furthermore,
the larger core size imposes more stringent restrictions on the
existence of CES with respect to the eccentricity. The core
polarization effects and Rydberg series interaction are to be
taken into account in a quantitative analysis �the large angu-
lar momenta case was considered by Poirier �27,28��.

Finally, we note that the concept of DECESs could be
extended to multiply excited coherent elliptic states. For in-
stance, the coherent control of the outer Rydberg electron
could be expected to shed new light on the autoionization
mechanisms in triply excited states �4�.
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APPENDIX: INTEGRALS

The radial integrals �33� and �34� containing r�, r� sym-
bols are presented in more detail as

Ad
�k� = �n1�1n2�2� r�

k

r�
k+1 − �k0

1

r1
� � n0�0�

= �
0

�

dr1r1
1−kRn1�1

�1� �r1�Rl
�1��r1��

0

r1

dr2r2
k+2Rn2�2

�2� �r2�Rn0�0

�2� �r2�

+ �
0

�

dr2r2
1−kRn2�2

�2� �r2�Rn0�0

�2� �r2��
0

r2

dr1r1
k+2Rn1�1

�1� �r1�

�R�
�1��r1� − �k0��

0

�

dr1r1Rn1�1

�1� �r1�R�
�1��r1��

0

r1

dr2r2
2

�Rn2�2

�2� �r2�Rn0�0

�2� �r2� + �
0
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dr2r2
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�2� �r2�Rn0�0

�2� �r2�

��
0

r2

dr1r1Rn1�1

�1� �r1�R�
�1��r1�� , �A1�

Ae
�s� = �n1�1n2�2� r�

s

r�
s+1 − �s0

1

r1
�n0�0l�

= �
0

�

dr1r1
1−sRn1�1

�1� �r1�Rn0�0

�2� �r1��
0
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dr2r2
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0

�
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�2� �r2�R�
�1��r2��

0
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dr1r1
s+2Rn1�1

�1� �r1�

�Rn0�0
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dr1r1Rn1�1
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For the doubly excited states with n1�n0 the exchange
integral �A2� is governed by the overlap of radial wave unc-
tions Rn1�1

�1� �r� and Rn0�0

�2� �r�, which is small.

For maximal �1=n1−1 the function Rn1�n1−1�
�1� �r� is local-

ized mostly in the interval n1
2−n1�r�n1

2+n1 while the func-

tion Rn0�0

�2� �r� is localized at small r�n2�1. Therefore the

overlap is small. As � decreases, the localization domain
extends to smaller � and the overlap with Rn0�0

�2� �r� orbital is
enhanced. The weight of large orbital momenta in the CES
increases as � tends to zero.
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