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A numerical investigation of the doubly excited states of H2 converging to the H�n=2�+H�n�=2� limit was
performed. Special emphasis was put on the accurate description of the range of intermediate internuclear
distances in order to correctly connect the short range with the asymptotic van der Waals regime where
perturbation theory is applicable. The present nonperturbative calculation extends to internuclear separations
R=200a0 and is sufficiently accurate to achieve a connection between the two extreme regimes without any
need for an interpolation procedure. The high precision of the ab initio results revealed a long range dipole-
quadrupole interaction that had been omitted in two earlier calculations. In addition to revised first-order
perturbation theory results the leading second-order term varying as R−6 was obtained. The impact of the
present findings for cold H�n=2� collisions is briefly discussed.
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I. INTRODUCTION

Doubly excited resonance states of H2 contribute to the
dissociative recombination of H2

+ �1,2� and are responsible
for structures in the kinetic energy distribution of protons
produced in its dissociative ionization �3�. The so-called
Q�2� states separate at large internuclear distances R into a
product of two hydrogen atoms each in a state with principal
quantum number n=2. The mutual destruction of the 2s at-
oms in collisions limits the density of metastable atoms that
can be achieved. This process may also be important in the
interpretation of precision measurements of the two-photon
transition frequency �4�. The excitation transfer reaction

H�2s� + H�2s� → H�2p� + H�2p�

is followed by the emission of Lyman alpha photons and
may be relevant to the production of a Lyman-� laser. The-
oretical �5� and experimental �6� studies of the collision of
two H�2s� atoms have been carried out. There are small but
significant discrepancies that may be related to the potential
energy curves adopted.

In calculating the interaction potentials, three regions of R
may be distinguished. The molecular region corresponds to
small values of R where overlap and exchange forces play
the major role. Variational methods may be used but here
they must be modified to take into account that the states are
resonance states that may undergo autoionization and decay
�7�. Thus the interaction potentials are complex functions of

R with imaginary parts. Previous calculations have used the
R-matrix method �8�, the complex scaling method �9� or the
Feshbach projection technique, with Gaussian functions cen-
tered at the two nuclei �10� or with single center B-spline
basis sets �11�. At large distances, electron exchange and
overlap may be neglected, the interaction is weak and per-
turbation theory may be adopted. It leads to the representa-
tion of the interaction potential as a multipole expansion in
powers of R−1. The numerical demands on calculations at
short and intermediate nuclear separations are severe, if a
smooth matching of the potentials at short, intermediate, and
long range is to be achieved.

For this purpose, a recently developed new molecular ab
initio code �12� based on B splines and using the prolate
spheroidal coordinate system �together with Feshbach pro-
jection� is used to evaluate the potential curves of the Q�2�
states for the whole R range from the molecular to the van
der Waals regime. Our calculations provide a set of complete
potential energy curves over the entire range of R. They also
revealed that a dipole-quadrupole term, not included in ear-
lier calculations �5,13�, is significant at large distances and
leads to a long range coupling of H�2s�+H�2s� and H�2s�
+H�2p� scattering channels.

This paper is organized as follows. First, a brief descrip-
tion of the numerical approach for the nonperturbative cal-
culation is given. This is followed by a discussion of pertur-
bation theory. Then a diabatic basis for H�n=2�+H�n�=2�
collisions is presented. Finally, the results are given and dis-
cussed.
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II. NONPERTURBATIVE APPROACH

A B-spline based configuration interaction �CI� method
for diatomic two-electron molecules was recently imple-
mented �see �12� for details� and is used to perform the non-
perturbative calculations. In this approach the CI configura-
tions are built with the aid of products of orbitals that are
solutions of the corresponding one-electron Schrödinger
equation in which the electron-electron interaction is com-
pletely neglected. The resulting one-electron problem is
solved in a B-spline basis set in prolate spheroidal coordi-
nates. For both the one-electron and the two-electron prob-
lem the molecular symmetry is fully taken into account. The
Feshbach projection-operator approach is especially conve-
nient for dealing with autoionizing states. In the Feshbach
theory the Hilbert space is divided into two orthogonal Q and
P subspaces. Their mutual interaction results in the autoion-
ization width and an energy shift. According to �10� the en-
ergy shift is expected to be minimal, if the P subspace is
constructed using the n lowest-lying solutions of the one-
electron Schrödinger equation. The corresponding orthogo-
nal Q subspace can directly be obtained by simply excluding
these orbitals from the configuration space of the CI calcu-
lation. The Q�2� states are obtained by omitting the two low-
est lying orbitals �1�g and 1�u� from the configuration list.
�This is actually the motivation for calling these states Q�2�
states.� Clearly, the accuracy of this procedure depends cru-
cially on the precision of the calculated P-subspace wave
functions. The present approach allows the very highly accu-
rate evaluation of these orbitals for arbitrary internuclear dis-
tances due to the use of B splines and prolate spheroidal
coordinates. While the one-center calculations �using B
splines� of Martín and co-workers �11� run into numerical
problems �due to slow convergence� for internuclear dis-
tances larger than 4 to 5a0, the traditional approaches with
global atom-centered basis functions �like Gaussians� or ex-
plicitly correlated basis functions �geminals� are typically
hampered by numerically caused linear dependencies that of-
ten prevent systematic basis-set-convergence investigations.

The Q�2� states converge in the separated-atom limit to
two hydrogen atoms with principal quantum number n=2, if
they are adiabatically continued from small to infinite inter-
nuclear distances R. All possible combinations of H�n=2�
�with spin up and down� result in 32 singlet and triplet states.
In the absence of external fields and ignoring relativistic ef-
fects there occur 22 different molecular Q�2� states out of
which 10 are doubly degenerate � and � states. All these 22
states �converging for R→� to E=−0.25 a.u.� have been re-
evaluated in the present work, the calculations extending
from R=1.0a0 �where accurate potential curves existed be-
fore� to at least R=100a0 and thus far beyond previously
existing ab initio data. For this purpose, a careful basis-set
optimization has been performed. As is discussed in �12�, the
efficient calculation of the potential curves requires a judi-
cious choice of the basis-set parameters depending on the
internuclear distance in order to keep the number of configu-
rations in the CI calculation reasonably small. �Much larger
CI expansions could be handled using iterative eigenvector
solvers like the Davidson routine, but this is not yet imple-
mented.�

The one-electron basis set is specified by the number n�

�n�� and the order k� �k�� of the B splines used along the
prolate spheroidal coordinates � ��� and the knot sequences
used for the splines along those two coordinates. Each knot
sequence used can be specified by a parameter g which gives
the ratio between the lengths of i+1th and ith nonzero knot
intervals. A simple uniform �linear� knot sequence corre-
sponds to g=1. The maximum value of �, the so-called box
radius �max, is an important basis-set parameter, since it de-
termines the number �and density� of Rydberg �as well as
pseudo-Rydberg� and �discretized� continuum orbitals avail-
able with a given basis. This is due to the fact that the cal-
culation selects only those wave functions that vanish at the
box boundary. Therefore, only those orbitals that decay be-
fore �bound states� or have a node �Rydberg and continuum
states� at the box boundary are obtained by the calculation.
The variational procedure involves ñ�=n�−1 coefficients
specifying the � dependence of the orbitals �first coefficient
is set to 0� as well as ñ�=n� /2 coefficients specifying the �
dependence, the factor of 1/2 arising from the explicit re-
quirement of the inversion symmetry. The subsequent CI cal-
culations are performed with all or a selected number of the
symmetry-adapted configurations that can be built with the

Ñ= ñ�ñ� orbitals that are obtained for a given orbital symme-
try ��g ,�u ,	g , . . . � in the one-electron calculation.

Since the optimal choice of basis-set parameters is R de-
pendent, the basis-set discussion is split into three parts.
First, a discussion of the basis-set optimization for short in-
ternuclear distances �R
10a0� is given, followed by the
consideration of very large internuclear distances �R
�70a0� and a brief discussion of the intermediate regime
�10a0
R
70a0�. For all internuclear distances convergence
of the energies was monitored by a variation of all relevant
basis-set parameters �like ñ�, ñ�, number of configurations,
etc.� by at least 10%–20% of their value.

The basis-set optimization for short internuclear distances
�R
10a0� where electron-electron interaction �including ex-
change and correlation� is important follows basically the
rules discussed in detail in �12�. In this regime the complete-
ness of the selected configurations with respect to the under-
lying orbital basis is most important. Therefore, all possible
symmetry-adapted configurations that can be formed with
the aid of the obtained orbitals for a given B-spline basis are
used, with the only restriction that the orbitals fulfill the con-
dition N�+� lmax with lmax=5 to 6. A series of tests has
shown that this choice for lmax leads to a convergence of the
energy within at least 4 to 5 significant digits. In fact, con-
vergence with respect to lmax is better for the Q�2� states than
for the low-lying states for which convergence was explicitly
monitored in �12�. The orbital quantum numbers � and N�

specify, respectively, the absolute value of the component of
the angular momentum along the internuclear axis, �
=0��� ,1�	� ,2��� , . . ., and the number of nodes of the �
component of the orbital wave function, N�=0, . . . ,n�. In the
united-atom-limit case, the atomic angular momentum l is
equal to N�+� and the condition above corresponds simply
to a restriction on l. Convergence with respect to the B-spline
parameters was obtained choosing ñ�=10 �with a uniform
knot sequence, g=1.0� and ñ� in between 10 and 15 �with a
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geometrically progressive distribution, g=1.3–1.6�. In most
cases the box size �max=80/R was chosen. However, in the
range R=1.0–3.0 the structure and extension of the wave
functions varied strongly for the different molecular states.
Thus the calculations were performed for different box sizes,
and the optimal box size was determined for each state sepa-
rately.

The electronic density of two noninteracting H�n=2� at-
oms is almost exclusively located within two spheres of ra-
dius rn=2=35a0 centered at the two nuclei. At very large in-
ternuclear separations �R�70a0� the electron densities of the
Q�2� states of H2 are thus very similar to the ones of two
noninteracting H�n=2� atoms and are only slightly distorted
by the interatomic interaction. Translating this geometry into
the prolate spheroidal coordinate system, the box size �max
=1+2rn=2 /R is chosen �see Fig. 1�. Convergence with re-
spect to � was achieved using ñ�=25 and a geometrically
progressive distribution characterized by g�=1.1. For R
=70a0 convergence with respect to � was obtained with a
uniform knot sequence and ñ�=40. For a uniform knot se-
quence an increase of R leads to an increase of the length of
nonzero knot intervals and, therefore, to a decrease of the
number of such intervals inside 1−2rn=2 /R
 �� � 
1 �see
Fig. 1�. Such a decrease can be compensated by an increase
of ñ�. Since the calculation of the orbitals with large ñ� is
time-consuming, for R�140a0 the value of ñ� was fixed at
80 and a geometrically progressive distribution was used that
assures that the ratio of knot points inside the interval �� �

1−2rn=2 /R does not exceed 50%. With these basis-set pa-

rameters all possible orbitals �Ñ= ñ�ñ�� for �g,u ,	g,u, �g,u

�additionally �g,u for R=70–100a0� were calculated. As for
all other R values, the 1�g,u orbitals are then removed from
the orbital list, if the Q�2� states should be calculated. The
remaining orbitals are classified according to two properties.
First, they are sorted with respect to the energy value to
which they converge asymptotically for R→�. In this way
the label n is introduced using the relation E�R→ � �=− 1

2n2 .
Due to the discretization �implied by the finite box size� this
sorting has a physical meaning only for small n. This is,
however, adequate in the present calculation of the states
converging to n=2. The second important criterion for the

configuration selection is the number of nodes N�. Limiting
N� leads to a removal of strongly oscillating orbitals.

The configurations for the CI calculation are now con-
structed in the following way. One electron occupies one of
the n orbitals and the other one all orbitals from the list that
fulfill the symmetry requirements �correct m and inversion
quantum numbers� and the condition N�2�n−1 where ��n�
is an R-dependent set of natural numbers. The choice of ��n�
at some R is directly related to the choice of the configura-
tion set used for the CI calculations at this R. In the case of
the Q�2� states the configurations containing two n=2 orbit-
als may be called basic configurations. For very large R these
configurations give the main contribution to the energy but
require a rather large value of �2 �around 20–25� to achieve
convergence. Since the configurations belonging to n=3 add
only a small correction, �3 is chosen around 5–10, while all
�n�3 are set to 0 for R�100a0. With decreasing internuclear
distance R the importance of the configurations that do not
belong to the basic ones grows. Therefore, �2 was decreased
in order to allow larger �n for n�2 while retaining a reason-
able size of the total number of configurations �typically,
5000–10 000 configuration for each symmetry�. For R

100a0 �4�0 has to be used. Because of the different struc-
tures of the different Q�2� states it is difficult to provide a
general recipe for the change of ��n� with R. Moreover, for
R=70–80a0 the configurations with one electron occupying
an orbital with n�4 and the other one occupying a
symmetry-allowed low-energy orbital are more important
than is reflected by the selection rule based on ��n�.

As is discussed above, the intermediate regime �10a0


R
70a0� is the most difficult one, since it appears that
there does not exist any simple physical picture that can
serve as a guideline for optimizing the basis set. Different
basis-set selection schemes were tried in this regime, but no
universal one was found. The main idea for each individual
state was to find a kind of an interpolation scheme between
the short- and the long-range basis sets discussed above. The
best results �judged on the basis of the variational principle�
that were obtained with the different schemes were then used
for obtaining the final potential curves.

III. PERTURBATION THEORY

For sufficiently large internuclear distances electron-
electron exchange becomes negligible and the remaining
electrostatic atom-atom interaction may be treated by pertur-
bation theory. The application of perturbation theory to
H�n=2�+H�n�=2� collisions has been discussed previously
�5,9,13�. The comparison of the present CI results with the
earlier perturbative results revealed an unjustified neglect of
dipole-quadrupole terms due to wrong symmetry arguments
�13�. Therefore, a careful analysis of the symmetries is pre-
sented together with corrected results.

Consider a system consisting of two protons pA, pB with
coordinates rA, rB and two electrons e1, e2 with coordinates
r1, r2. The internuclear coordinate is R=rB−rA and the inter-
electron distance r12= �r2−r1�. The standard approach for
solving the electrostatic problem starts with the introduction
of atom-centered electronic coordinates. Since electrons

FIG. 1. Visualization of the used prolate spheroidal coordinates
�� ,�� and their relations to the distance r from the focal points.
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�protons� are indistinguishable particles, the choice of such
coordinates as well as the choice of the unperturbed Hamil-
tonian and the perturbation is not unique. It depends on the
particular arrangement channel defined by the scattering
problem. For the arrangement variant �pAe1�+ �pBe2� the
atom-centered electron coordinates are given by �1�r1−rA
and �2�r2−rB. The electronic Born-Oppenheimer �BO�
Hamiltonian Ĥ is thus divided into the unperturbed Hamil-
tonian

Ĥ0�r1,r2� = −
1

2
��1

2 −
1

�1
−

1

2
��2

2 −
1

�2
�1�

and the small perturbation

V̂�r1,r2� = −
1

�R − �1�
−

1

�R + �2�
+

1

R
+

1

r12

= 	
l1=1

�

	
l2=1

� Vl1l2
��1,�2�

R1+l1+l2
. �2�

In Eq. �2� the quantity

Vl1l2
��1,�2� = 	

�=−min�l1,l2�

min�l1,l2�

Al1l2
� �1

l1�2
l2Yl1���̂1�Yl2−���̂2� �3�

with

Al1l2
� = �− 1�l24	�l1 + l2� ! ��2l1 + 1��2l2 + 1��−1/2

� ��l1 − �� ! �l1 + �� ! �l2 − �� ! �l2 + �� ! �−1/2 �4�

has been introduced.
Since the fully molecular-symmetry adapted solutions of

the perturbation problem are desired, the symmetry proper-

ties of the operators Ĥ, Ĥ0, and V̂ have to be considered.

The electronic BO Hamiltonian Ĥ is invariant under in-
version I of all electronic coordinates with respect to the
center of mass, Rcm= �rA+rB� /2, to electron exchange P12,
and to a reflection R by a plane containing the protons.

The transformation R does not change r12 and the length
of vectors �i and R±�i, where i=1,2. It follows from Eqs.

�1� and �2� that both Ĥ0 and V̂ are invariant with respect to
R.

The action of the transformations I and P12 on the coor-
dinates is given by

I: r1 → 2Rcm − r1 Û �1 → R − �1

r2 → 2Rcm − r2 Û �2 → − R − �2

P12: r1 → r2 Û �1 → �2 + R

r2 → r1 Û �2 → �1 − R

�5�

Neither Ĥ0 nor V̂ is invariant with respect to the transforma-
tions I and P12. This means that the full set of molecular
quantum numbers cannot be used to specify the unperturbed
solutions. A maximal use of symmetry is possible by the

construction of the symmetry transformation both for Ĥ0 and

V̂ as well as Ĥ. The easiest choice is the transformation B
defined as

B = P12I = IP12. �6�

Indeed, the action of B on the coordinates is given by

B: r1 → 2Rcm − r2 Û �1 → − �2

r1 → 2Rcm − r1 Û �2 → − �1

�7�

and it follows from Eqs. �1� and �2� that both Ĥ0 and V̂ are
invariant with respect to B.

The full set of H2 quantum numbers is given by �
��M , pi , ps , �pr��, where M is the orbital angular-momentum
projection quantum number and pi, ps, and pr are the parities
with respect to I, P12, and R, respectively. The reduced set

of quantum numbers used to describe eigenvectors of Ĥ0 and

Ĥ is then ���M , p� , �pr��, where the parity p� is connected
with pi, ps by the relation

p� = pips. �8�

It is equal to 1 �−1� for 1Xg , 3Xu �1Xu , 3Xg� states where X
stands for �+ ,�− ,� ,� , . . .. The new state symbol X± is used
in the following to specify �, where the subscript of X± de-
notes the parity p�= ±1. Using Eq. �8� the set � can be also
specified as �= �ps ,��.

The orthonormal set ���i��
� of symmetry-adapted eigen-

vectors of the unperturbed Hamiltonian Ĥ0 �with the eigen-
value E�0�=−0.25 a.u.� is given by

��1��+
+
 = �2s 2s
 , �9�

��2��+
+
 = �2p0 2p0
 , �10�

��3��+
+
 =

1
�2

��2s 2p0
 − �2p0 2s
� , �11�

��4��+
+
 =

1
�2

��2p−2p+
 + �2p+2p−
� , �12�

��1��−
+
 =

1
�2

��2s 2p0
 + �2p0 2s
� , �13�

��1��−
−
 =

1
�2

��2p−2p+
 − �2p+2p−
� , �14�

��1��+
 =
1
�2

��2s 2p+
 − �2p+2s
� , �15�

��2��+
 =
1
�2

��2p0 2p+
 + �2p+2p0
� , �16�

��1��−
 =
1
�2

��2p0 2p+
 − �2p+2p0
� , �17�

��2��−
 =
1
�2

��2s 2p+
 + �2p+2s
� , �18�
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��1��+
 = �2p+2p+
 , �19�

where the index i=1, . . . ,g� enumerates a basis state with
symmetry � and g� specifies the dimension of the degenerate
subspace with symmetry �. Due to symmetry only states with

the same value of � are coupled by the perturbation V̂. The

calculation of the matrices Vji������j�� � V̂ � �i��
 yields

V��+
+� =

0 −
18

R3 0 −
9�2

R3

−
18

R3

864

R5 −
108�2

R4

432�2

R5

0 −
108�2

R4

18

R3 −
108

R4

−
9�2

R3

432�2

R5
−

108

R4

432

R5

� ,

V��−
+� = �−

18

R3� ; V��−
−� = �0�; V��+� = �216

R5 � ,

V��+� =−
9

R3

108

R4

108

R4 −
864

R5
� ; V��−� = 0 0

0
9

R3 � . �20�

In the previous implementation of perturbation theory in
�13�, the dipole-quadrupole interaction �being proportional to
R−4� was postulated to vanish for symmetry reasons. In �13�
an “inner parity” P0 is introduced that corresponds in the
present notations to the transformation �i→−�i, i=1,2.
Since the dipole-dipole term is invariant with respect to this
transformation, the parity P0 was used to classify the differ-
ent states. It was correctly concluded that “the dipole-
quadrupole interaction anticommutes with the operator P0 as
a result of which all its diagonal matrix elements computed
with functions of definite P0 parity vanish” �13�. However, it
was overlooked that the anticommutation property allows for
a coupling of states with opposite P0 parity �but same ��.
Also in �9� the terms in Eq. �20� that are proportional to R−4

were neglected and, therefore, transitions between H�2s�
+H�2p� and H�2p�+H�2p� were forbidden. The new pertur-
bative results show, however, that the H�2s�+H�2p� colli-
sional channel should be taken into account in scattering
calculations involving channels that couple either directly or
indirectly to the H�2s�+H�2p� channel, as is, e.g., the case
for H�2s�+H�2s� collisions.

In the nondegenerate case �g�=1� the first-order energy
correction is given by E1

�1��R ;��=V11���. For g��1 the
zeroth-order wavefunctions ���
�0� are given by

���
�0� = 	
i=1

g�

Ui�
�0��R;����i��
 for � = 1, . . . ,g� �21�

where Ui�
�0��R ;�� together with the first-order energy correc-

tions E�
�1��R ;�� are obtained from a diagonalization of V���.

Note, the energies E�
�1��R ;�� obtained this way are odd

functions of R despite the occurrence of the R−4 terms in the
interaction matrices V in Eq. �20�. An example is

E1
�1��R;�+� = −

432

R5 −
9

2R3�1 +�1 +
384

R2 +
9216

R4 � .

�22�

Therefore, it is possible to make an expansion of E�
�1��R ;��

containing only odd powers of R,

E�
�1��R;�� =

C�;3
�1� ���
R3 +

C�;5
�1� ���
R5 +

C�;7
�1� ���
R7 + ¯ �23�

with the van der Waals coefficients C�;n
�1� ��� that are listed in

Table I.
The degeneracy is now completely removed for every �

and no higher-order matrix elements have to be considered
for a proper construction of zeroth-order wave functions.

The functions Ui�
�0��R ;�� can be analyzed by expanding

them in a power series of R−1

Ui�
�0��R;�� = Ui�;0

�0� ��� + Ui�;1
�0� ���R−1 + Ui�;2

�0� ���R−2 + ¯ .

�24�

The expansion coefficients Ui�;j
�0� ��� for j=0,1 ,2 are pre-

sented in Table II.
Table I shows that some of the states have vanishing first-

order corrections, i.e., all first-order van der Waals coeffi-
cients are zero. In order to reveal the first nonvanishing con-
tribution the second-order correction has to be calculated.
Because of the metastable character of resonant states the
application of second-order perturbation theory requires the
use of a partitioning technique. The formalism and numerical

TABLE I. Perturbation theory: Calculated van der Waals coef-
ficients C�;n

�k� ��� of the Q�2� states for all symmetries �. Here �, k,
and n specify the state index, the order of the perturbation theory,
and the inverse power of R with which C�;n

�k� ��� is multiplied,
respectively.

�a � C3=C�,3
�1� C5=C�,5

�1� C�,7
�1� C6=C�,6

�2�

�+
+ 1 −9�6 324�8−3�6� 1944�−1224 −6737

+499�6�
2 0 0 0 −6718

3 18 −3888 4758912 −8783

4 9�6 324�8+3�6� 1944�−1224 −6737

−499�6�
�−

+ 1 −18 0 0 −8783

�−
− 1 0 0 0 −1824

�+ 1 −9 −1296 62208 −6165

2 0 432 −62208 −3062

�− 1 0 0 0 −7501

2 9 0 0 −6165

�+ 1 0 216 0 −4042

aThe reduced set of quantum numbers � is related to the full set of
H2 quantum numbers as: �+

+→ 1�g
+ , 3�u

+, �−
+→ 1�u

+ , 3�g
+, etc.
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analysis of such a problem will be discussed in detail else-
where. In this work only the leading second-order van der
Waals coefficients C�;6

�2� ��� are reported �Table I� to allow a
comparison of the nonperturbative and perturbative results.
Note, for the �1�+

+
 state the R−6 term dominates over the R−5

term for R
32a0. Therefore, even in the case of nonvanish-
ing first-order corrections the second-order correction can be
important.

IV. DIABATIC BASIS

If atomic collisions are considered in the framework of
coupled-channel theory, some R-dependent electronic basis
set is required. The adiabatic basis set has been discussed in
Sec. II. However, standard formulations of coupled-channel
theory are based on diabatic basis sets. The aim of this sec-
tion is to discuss a possible diabatic basis and its relation to
the adiabatic one. This is important, if the nonperturbative
potential curves are to be used for scattering calculations.

For H�n=2�+H�n�=2� collisions a tempting choice for a
diabatic basis is given by Eqs. �9�–�19�. Such a basis is im-
plicitly R dependent, since it consists of atomic orbitals cen-
tered at the moving nuclei. However, this basis is not suffi-
cient to describe the electron exchange reactions. A basis that

does so can be obtained by adding the set �P̂12 � �i��
� of

symmetry-adapted eigenvectors of the Hamiltonian

P̂12Ĥ0P̂12 which is the free Hamiltonian describing the ar-
rangement �pAe2�+ �pBe1�. From this the orthonormal set
���i��
� of functions adapted to the molecular symmetry,

��i��
 =
1
�2

�1̂ + psP̂12�	
j=1

g�

Aij�R;����j��
 , �25�

can be constructed as the diabatic basis. The coefficients
Aij�R ;�� are functions of the exchange matrix elements

��i�� � P̂12 � �j��
 and for large R satisfy the condition
Aij�R ;��→�ij �see Appendix for details�.

The diabatic basis is still incomplete, since it contains
only atomic states with n=2. This introduces a further com-
plication, if the results obtained with the diabatic basis are
compared to the ones yielded in a fully converged adiabatic
calculation as presented in Sec. II. In turn, the adiabatic wave
functions ���
 can be used to estimate the degree of com-
pleteness of the diabatic basis ���i��
�. For this purpose one
can introduce a measure of completeness

���R;�� = 1 − 	
i=1

g�

�Ui��R;���2 �26�

with the projection coefficients Ui��R ;��= ��i�� ���
.
It can be shown that for large R the projection coefficients

satisfy

Ui��R;�� → Ui�
�0��R;�� , �27�

if an appropriate phase convention is used for ���
. Equation
�27� allows a direct comparison of the perturbatively and
nonperturbatively calculated wave functions.

V. RESULTS

For small R �especially R4a0� a number of previous
calculations of the Q�2� states exist �5,8–11�. Table III com-
pares the present results with those data at some selected
values of R in between 3 and 6a0.

In Fig. 2 all 22 Q�2� potential curves of H2 with M �0 are
also shown graphically for 3a0R16a0. In contrast to the
electronic ground state of H2 and H2

+ the potential minima,
where they exist, are located in this range of R values. There-
fore, in the case of the Q�2� states it is this range of R values
that deserves the name molecular regime. Transitions from
the electronic ground state of H2 usually end up in the domi-
nantly repulsive short-range part of the Q�2� states due to the
Franck-Condon factors, but there exist reports on the experi-
mental detection �and population� of long-range states of H2
�14�. On the other hand, scattering processes like collisions
of two excited hydrogen atoms are also sensitive to this mo-
lecular regime in which the potential curves can be either
repulsive or attractive. For this reason the potential curves of
the Q�2� states had been calculated for R�4a0 before �9�.
For the states with 1�g

+ symmetry Fig. 2�a� shows a compari-
son of the present data to the results obtained with the
complex-scaling method using geminals �9� and with a
Feshbach projection technique using a Gaussian CI calcula-

TABLE II. Perturbation theory: Coefficients of the expansion
�24� for the quantum numbers � with g��1.

� � i Ui�;0
�0� Ui�;1

�0� Ui�;2
�0�

�+
+ 1 1 �1/2 0 −�162�2−132�3�

2 �1/3 0 −�2�36�6−84�
3 0 18−6�6 0

4 �1/6 0 −�36�6−84�
2 1 0 0 0

2 −�1/3 0 0

3 0 0 0

4 �2/3 0 0

3 1 0 −18�2 0

2 0 12�2 0

3 1 0 −540

4 0 12 0

4 1 �1/2 0 −�162�2+132�3�
2 −�1/3 0 �2�36�6+84�
3 0 18+6�6 0

4 −�1/6 0 36�6+84

�+ 1 1 1 0 −72

2 0 −12 0

2 1 0 12 0

2 1 0 −72

�− 1 1 1 0 0

2 0 0 0

2 1 0 0 0

2 1 0 0
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TABLE III. Energies of the Q�2� states for short internuclear distances R.

State R=3.0a0 R=4.0a0 R=5.0a0 R=6.0a0 State R=3.0a0 R=4.0a0 R=5.0a0 R=6.0a0

1 1�g
+ −0.211 67a −0.249 69a −0.266 79a −0.279 29a 1 3�u

+ −0.134 04a −0.189 40a −0.218 96a −0.243 71a

−0.206 94b −0.245 95b −0.263 50b −0.274 91b −0.132 01b −0.187 17b −0.215 84b −0.236 00b

−0.209 36c −0.248 06c −0.266 28c −0.279 92c −0.126 53e −0.181 32e −0.218 21c −0.242 03c

−0.199 19d −0.249 33d −0.265 73d −0.278 51d −0.121 76f −0.178 18f −0.231 30e

−0.188 56f −0.236 38e −0.265 76e

−0.226 98f

2 1�g
+ −0.138 88a −0.186 86a −0.215 08a −0.243 38a 2 3�u

+ −0.110 86a −0.171 10a −0.207 02a −0.228 60a

−0.136 18b −0.184 69b −0.212 50b −0.235 79b −0.107 88b −0.167 62b −0.201 93b −0.225 02b

−0.138 28c −0.186 49c −0.214 96c −0.241 50c −0.089 71f −0.139 23f −0.205 45c −0.227 90c

−0.105 16f −0.186 15d −0.214 39d −0.242 22d

−0.151 58f

3 1�g
+ −0.109 58a −0.157 15a −0.206 79a −0.235 36a 3 3�u

+ −0.090 39a −0.140 35a −0.189 71a −0.213 29a

−0.10816b −0.154 65b −0.200 82b −0.231 50b −0.089 71b −0.139 60b −0.183 43b −0.207 70b

−0.108 88c −0.155 77c −0.205 80c −0.235 17c −0.189 23c −0.213 23c

−0.155 73d −0.205 82d −0.234 15d

4 1�g
+ −0.087 74a −0.153 86a −0.195 87a −0.216 54a 4 3�u

+ −0.076 03a −0.133 66a −0.162 58a −0.189 27a

−0.087 07b −0.151 63b −0.190 47b −0.211 13b −0.075 74b −0.127 80b −0.161 72b −0.183 31b

−0.085 71c −0.155 40c −0.195 75c −0.216 27c −0.161 20c −0.188 71c

−0.155 36d −0.194 76d −0.215 79d

1 1�u
+ −0.117 16a −0.168 95a −0.205 09a −0.238 85a 1 3�g

+ −0.121 11a −0.170 96a −0.220 94a −0.251 35a

−0.115 70b −0.166 74b −0.199 97b −0.231 22b −0.120 57b −0.168 19b −0.214 67b −0.243 77b

−0.106 07e −0.156 20e −0.210 34e −0.110 24e −0.150 89e −0.198 86e

−0.105 01f −0.151 53f −0.116 71f −0.161 18f

1 1�g
+ −0.155 15a −0.205 85a −0.228 63a −0.239 83a 1 3�u

+ −0.205 40a −0.240 84a −0.258 85a −0.276 63a

−0.153 47b −0.203 85b −0.226 12b −0.236 45b −0.202 25b −0.237 39b −0.253 23b −0.269 58b

−0.145 40e −0.204 85d −0.227 73d −0.239 07d −0.194 85e −0.229 38e −0.260 24e

−0.149 21f −0.193 80e −0.230 95e −0.198 71f −0.232 88f

−0.197 23f

2 1�g
+ −0.100 30a −0.148 75a −0.181 84a −0.220 21a 2 3�u

+ −0.133 97a −0.202 39a −0.239 94a −0.249 44a

−0.099 69b −0.147 97b −0.176 02b −0.213 78b −0.131 71b −0.199 04b −0.237 66b −0.247 72b

−0.098 01f −0.148 14d −0.181 00d −0.219 50d −0.126 76f −0.194 08f

−0.145 08f

1 1�u
+ −0.180 51a −0.220 99a −0.238 96a −0.253 27a 1 3�g

+ −0.152 99a −0.203 64a −0.226 83a −0.239 36a

−0.178 17b −0.218 84b −0.236 29b −0.249 04b −0.150 07b −0.200 52b −0.223 44b −0.235 26b

−0.157 45e −0.220 19d −0.237 96d −0.251 82d −0.142 36e −0.202 47d −0.225 62d −0.238 21d

−0.166 41f −0.195 08e −0.223 08e −0.147 21f −0.189 72e −0.222 21e

−0.207 58f −0.196 08f

2 1�u
+ −0.127 39a −0.187 40a −0.222 78a −0.237 82a 2 3�g

+ −0.099 21a −0.147 76a −0.177 18a −0.214 06a

−0.124 97b −0.184 56b −0.219 22b −0.234 42b −0.098 39b −0.146 88b −0.169 84b −0.204 30b

−0.115 61f −0.185 69d −0.220 99d −0.236 44d −0.097 26f −0.147 16d −0.176 39d −0.213 65d

−0.167 88f −0.144 63f

1 1�g
+ −0.214 53a −0.251 06a −0.263 06a −0.265 53a 1 3�u

+ −0.129 66a −0.185 95a −0.214 68a −0.230 54a

−0.210 60b −0.247 68b −0.260 44b −0.263 32b −0.128 51b −0.184 70b −0.213 49b −0.229 36b

−0.197 86f −0.235 58f −0.114 51f −0.160 53f

aPresent calculation.
bFeshbach theory using one-center B-spline basis functions �11�.
cComplex-scaling method with explicitly correlated basis functions �geminals� �9�.
dFeshbach theory using an in comparison to �10� extended two-centered Gaussian basis set �5�.
eFeshbach theory using two-centered Gaussian basis functions �10�.
fR-matrix theory �8�.
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tion. �This calculation was used for obtaining the non-�
states and in the scattering calculation in �5�.� The overall
agreement of the present results with the ones obtained using
the complex-scaling method visible from Table III and Fig.
2�a� for larger internuclear distances �R�4.0a0� is a clear
indication of the decreasing size of the energy shift �arising
from the interaction between Q and P subspaces�, since this
shift is automatically present in the complex-scaling calcula-
tion. From the numerical values given in Table III it is also
apparent that the present results are for larger internuclear
distances in better overall agreement with the geminal
complex-scaling calculation in �9� than with the one-center
Feshbach approach used in �11�. This is in accordance with
the expectation of slow convergence of one-center ap-

proaches for large internulear distances. According to Fig.
2�a� the present results also agree very well with the previous
Gaussian CI calculation �5�. However, a careful analysis re-
veals problems in the latter calculation, especially for large
internuclear distances. This is demonstrated in Fig. 3 where
�on a much more enlarged scale� the present results for some
states of 1�u symmetry are compared to the previous Gauss-
ian results �5�. �No geminal data exist for states with non-�
symmetry.� While the present results asymptotically con-
verge to their correct limit �−0.25 a.u.�, this is not the case
for the Gaussian ones. Although the shape of the potential
curves obtained with the Gaussians is very similar to the
present ones, they have different energy off-sets, as is clearly
visible from the different asymptotes. More seriously, this

FIG. 2. The 22 Q�2� potential curves �with M �0� of H2: �a� Potential energy curves of the Q�2� states of H2 with 1�g
+ symmetry. Shown

is a comparison of three different calculations: Present B-spline calculation using Feshbach theory �solid�, a calculation using Cartesian
Gaussians and Feshbach theory �5� �crosses�, and a complex-scaling calculation �9� using explicitly correlated basis functions �circles�. �b�
Energy of 1�u

+ states. �c� Energy of states for different symmetries �solid thick: 1�u
+, dash thick: 3�g

+, solid thin: 1�u
−, dash thick: 3�g

−�. �d�
Energy of 1�g �solid� and 3�u �dash� states. �e� Energy of 1�u �solid� and 3�g �dash� states. �f� Energy of 1�g �solid� and 3�u �dash� states.
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energy off-set differs for different states of the same symme-
try �and obtained with the same basis set�. As a result, the
Gaussian results show an unphysical avoided crossing. The
fatal consequences of such an unphysical behavior for low-
energy scattering calculations should be evident. Although in
the calculations in �5� the existence of this off-set and the
absence of the avoided crossing were recognized and al-
lowed for, the more accurate calculations provided by the
present results are needed for reliable predictions of the scat-
tering process.

The potential curves of the Q�2� states for large internu-
clear distances are presented in Fig. 4. In order to emphasize
the asymptotic long-range behavior the potential curves are
plotted as a function of �E+0.25�R3 versus the inverse inter-
nuclear distance R−1. Plotted this way the energy curves
should converge for R−1→0 to the value of the correspond-
ing C3 van der Waals coefficient. As can be seen from Fig. 4,

FIG. 3. Energy of 1�u states when calculated with different
numerical approaches: Present B-spline calculation �solid�, and a
previous Gaussian calculation �5� �points: Raw data, dashed: The
same but energy shifted�.

FIG. 4. Energies of the Q�2� states of H2 obtained with the nonperturbative CI calculation. In order to connect the results with the
long-range behavior predicted by the perturbation theory the energies are plotted vs the inverse internuclear distance R, shifted by 0.25 a.u.,
and multiplied by R3. Plotted this way, the curves converge to the van der Waals C3 coefficients for R−1→0 �see Table I�. �a� 1�g

+ �solid� and
3�u

+ �dash� symmetry. �b� 1�u
+ �thick solid curve�, 3�g

+ �thick dashes�, 1�u
− �thin solid�, and 3�g

− �thin dashes�. �c� 1�u �thick solid curve�, 3�g
+

�thick dashes�, 1�g �thin solid�, and 3�u �thin dashes�. �d� 1�g �solid� and 3�u �dash�.
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the CI results are in very good agreement with the C3 coef-
ficients obtained from perturbation theory. Note that singlet
and triplet curves merge together before R=30a0 and, there-
fore, for larger R values exchange interaction is negligible.
This means that a perturbative approach as the one discussed
in Sec. III that ignores exchange is in principle applicable
beyond this internuclear distance. A quantitative comparison
of the present nonperturbative results with the prediction of
the perturbation theory is given in Table IV. An agreement
within 8 to 9 significant digits is found. Note, the energies
obtained with the present approach are mostly lower than the
ones predicted by the perturbation theory. Extensive tests
were performed to check the numerical stability of the non-
perturbative calculations and their convergence with respect
to the expansion length of the basis set. Since these tests
indicate a numerical stability of 13 digits and a basis-set
convergence within at least 9 significant digits for R=80a0
and 11 digits for 200a0, the observed small remaining dis-
crepancies are very likely to be caused by the higher-order
terms omitted in the present perturbative expansion.

The correctness of the CI wave function itself can be
checked by comparing the projection coefficients Ui��R ,��
with their asymptotes Ui�

�0��R ,�� obtained by means of the
perturbative theory. An example is shown in Fig. 5 where the
projection coefficients of the resonant wave functions ��3�u

+

onto ��1�3�u

+
 �asymptotically corresponding to the H�2s�
+H�2s� collisional channel� are compared with their pertur-

batively calculated asymptotes U1�
�0��R ,�+

+�. Excellent agree-
ment is found for R�30a0. The complicated behavior of
U1��R ,�u

+� for �=3,4 at small R is evidence for the exis-
tence of avoided crossings.

The significance and reliability of the new results can be
demonstrated with the aid of a quantitative analysis of the
2 1�g and the 2 3�u states given in Fig. 6. Here the results of
the CI calculations are compared with the old and the new
perturbation-theory results. The inclusion of higher-order
terms in the new asymptotic formula leads to significantly
better agreement with the CI data. The new results differ
very clearly from the earlier prediction of perturbation theory
�5,13�. In fact, the character of the interaction changes from
an attractive to a repulsive one.

A comparison of the energies of the 4 1�g
+ and 4 3�u

+ states
with the asymptotic behavior predicted by perturbation
theory is given in Fig. 7. The energies of the Q�2� states are
plotted as �E+0.25�R5+C3R2 versus the inverse internuclear
distance R−1 and thus should converge to the corresponding
C5 coefficient. This picture shows that not only the leading
term of the van der Waals expansion can be extracted from
the results of the CI calculations but it is also possible to
make a good estimation of the second term. This can be seen
as an additional proof of the reliability of the present results.
The fact that it is possible to extract such information from
CI calculations is especially impressive taking into account
the very small quantitative contribution of the C5 term to the

TABLE IV. Energies of the Q�2� states for large internuclear distances R.

R �units of a0� 1 1�g
+ 2 1�g

+ 3 1�g
+ 4 1�g

+ 1 1�u
+

80.0 −0.250 043 043 908a −0.250 000 050 608a −0.249 965 917 821a −0.249 955 663 782a −0.250 035 225 919a

−0.250 043 018 873b −0.250 000 025 627b −0.249 965 891 914b −0.249 955 622 359b −0.250 035 189 754b

90.0 −0.250 030 233 004a −0.250 000 028 049a −0.249 975 922 156a −0.249 969 031 692a −0.250 024 730 725a

−0.250 030 217 611b −0.250 000 012 641b −0.249 975 904 390b −0.249 969 009 043b −0.250 024 707 885b

100.0 −0.250 022 041 050a −0.250 000 016 746a −0.249 982 370 561a −0.249 977 516 867a −0.250 018 021 780a

−0.250 022 031 068b −0.250 000 006 718b −0.249 982 358 228b −0.249 977 503 361b −0.250 018 008 783b

150.0 −0.250 006 531 530a −0.250 000 002 472a −0.249 994 718 647a −0.249 993 407 618a −0.250 005 336 800a

−0.250 006 529 786b −0.250 000 000 590b −0.249 994 716 095b −0.249 993 405 673b −0.250 005 334 104b

200.0 −0.250 002 755 502a −0.250 000 000 615a −0.249 997 762 598a −0.249 997 229 626a −0.250 002 250 814a

−0.250 002 755 122b −0.250 000 000 105b −0.249 997 761 935b −0.249 997 229 241b −0.250 002 250 137b

R �units of a0� 1 1�g
+ 2 1�g

+ 1 1�u
+ 2 1�u

+ 1 1�g
+

88.0 −0.250 013 463 614a −0.249 999 949 925a −0.250 000 040 912a −0.249 986 806 031a −0.249 999 967 668a

−0.250 013 464 074b −0.249 999 926 219b −0.250 000 016 152b −0.249 986 806 570b −0.249 999 967 774b

96.0 −0.250 010 337 535a −0.249 999 968 227a −0.250 000 026 572a −0.249 989 834 374a −0.249 999 978 493a

−0.250 010 338 537b −0.249 999 951 741b −0.250 000 009 583b −0.249 989 835 350b −0.249 999 978 673b

100.0 −0.250 009 133 834a −0.249 999 974 242a −0.250 000 021 583a −0.249 991 004 931a −0.249 999 982 224a

−0.250 009 135 155b −0.249 999 960 472b −0.250 000 007 501b −0.249 991 006 165b −0.249 999 982 442b

aPresent calculation.
bPrediction of the perturbation theory �first-order term plus the leading second-order term that varies as R−6�.
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energy �4�10−7 a.u. for R=100a0 with a contribution of the
C3 term of about 2.2�10−5 a.u.�

For the use of the diabatic basis in subsequent scattering
calculations it is important to analyze the measure of com-
pleteness ���R ,��. An example of such analysis is presented
in Fig. 8 where functions ���R , 3�+

u� are given for the full
range of internuclear distances R. The �� converge for large
R to 0 as �approximately� 105R−6 which can be explained as
a contribution of all other diabatic states introduced via
higher-order perturbations. Although the diabatic basis �25�
with ��j��
 given by Eqs. �9�–�19� is complete within 1% for
R�20a0, it becomes clearly incomplete for small R �espe-
cially for the higher-lying resonances�. Therefore, the diaba-

tic basis should be used with caution in cases where the
atoms come close to each other.

An important point should be mentioned about the expan-
sions �23� and �24� of E�

�1��R ;�� and Ui�
�0��R ,�� obtained

within the first-order perturbation theory. Note, the diagonal-
ization of the coupling matrices in Eq. �20� for �=�+

+,
�+ provides rather complicated analytical formulas for
E�

�1��R ;�� and Ui�
�0��R ,��. Therefore, the expansions �23� and

�24� appear to simplify the analysis. It is then tempting in
pure first-order calculations to ignore, e.g., terms of order
R−7 ,R−9 , . . . in the expansion of the energy E�

�1��R ;�� in Eq.
�23�, since the second-order perturbation theory provides
terms of order R−6. However, for some states convergence of
the expansion �23� is extremely slow. In this case the neglect

FIG. 5. �Color online� The projection coefficients U1��R,3�u
+�

obtained with the nonperturbative CI calculation �circles� are com-
pared with asymptotes given by the first-order perturbation theory.
Dashed lines depict corresponding U1�

�0��R ,�+
+� functions whereas

point lines depict the expansion �24� of U1�
�0��R ,�+

+� including only
the first three terms.

FIG. 6. Energy of 2 1�g state �squares� and 2 3�u�circles� com-
pared with their asymptotic behavior predicted by perturbation
theory. The dashed line depicts the result of the first-order pertur-

bation theory E2
�1��R ;�+�, solid line depicts E2

�1��R ;�+�+
C2;6

�2� ��+�

R6 .

The chain line depicts
C5

R5 with the previously erroneously calculated
C5 coefficient �5,13�. The dotted line depicts the leading terms of

the expansion �23�, i.e.,
C2;5

�1� ��+�

R5 +
C2;7

�1� ��+�

R7 .

FIG. 7. Energies of the 4 1�g
+ �squares� and the 4 3�u

+ state
�circles� compared with the asymptotic behavior predicted by per-
turbation theory. The dashed line is the result of first-order pertur-

bation theory E4
�1��R ;�+

+�, the solid line is E4
�1��R ;�+

+�+
C4;6

�2� ��+
+�

R6 . The
chain line shows the prediction obtained with the previous errone-
ous C5 coefficient. The dotted line depicts the leading terms of the

expansion �23�, i.e.,
C4;3

�1� ��+
+�

R3 +
C4;5

�1� ��+
+�

R5 +
C4;7

�1� ��+
+�

R7 .

FIG. 8. �Color online� Measure of completeness ���R,3�u
+� �de-

fined in Eq. �26� for full range of internuclear distances�. The inset
shows the long-range behavior on a logarithmic scale. The function
5�105R−6 �dashed line� is given to guide the eye.
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of higher-order terms in the expansion �23� leads for R=30
−60a0 to a much more severe error than the one due to the
neglect of the contribution from higher-order perturbation
theory, E�

��1��R ;��=E��R ;��−E�
�1��R ;��. Figure 7 shows the

slow convergence of expansion �23� for the �4�+
+
 state. Al-

though the omitted terms are proportional to larger powers of
R−1 �namely, R−9, R−11, etc.� than the leading term of the
second-order perturbation theory, R−6, their contribution to
the final result is much larger in the interval R=30–60a0 and
cannot be simply ignored. As shown in Fig. 5 the expansions
�24� of U1�

�0��R ,�+
+� with only the first three terms being in-

cluded leads for �=3,4 to a significant deviation from the
correct result already for R
100a0, although the analytical
formulas provide a satisfactory agreement down to R=30a0.
Therefore, the use of the expansions �23� and �24� should be
done with some care, if internuclear distances R
100a0 are
of importance.

VI. SUMMARY

In this work all doubly excited Q�2� states of H2 converg-
ing asymptotically to the H�n=2�+H�n�=2� limit have been
calculated by means of a recently developed B-spline based
CI method. A careful basis-set optimization was performed
in order to yield converged results for internuclear separa-
tions in between 1 and 200a0. The present CI calculation is
sufficiently accurate to achieve a connection between the
short range and the asymptotic van der Waals regime. This
removes the previous need for an interpolation that bridges
these two extreme regimes and is very important for scatter-
ing calculations, especially in the case of low collision ener-
gies. For a large number of states the CI results agreed, for
very large internuclear distances, very well with earlier pre-
dictions of first-order perturbation theory. However, in some
cases the agreement was very unsatisfactory. This motivated
a careful reanalysis of first-order perturbation theory includ-
ing an extension to evaluate also the leading term �C6� of
second-order perturbation theory. It turned out that an erro-
neously invoked symmetry argument had led in the previous
work �13� to the neglect of certain coupling terms. The
newly derived van der Waals coefficients result is now in a
very satisfactory agreement between the CI and the pertur-
bative results for very large internuclear separations. It
should, however, be noted that at the level of accuracy
achieved in this work also relativistic and retardation effects
start to become important.

Since scattering calculations describing atomic collision
processes are usually performed in a diabatic representation,
it is important to connect the results of a fully converged
adiabatic molecular calculation to such diabatic states. A suit-
able diabatic basis is proposed for the description of H�n
=2�+H�n�=2� collisions. The matrix describing the projec-
tion of relevant Q�2� states onto the diabatic basis was cal-
culated and its asymptote was analyzed. This included a
demonstration of its relation to a power-series expansion of
the corresponding transformation matrix connecting the
atomic states �used in deriving the van der Waals coeffi-
cients� and the adiabatic ones. A measure of completeness of

the diabatic basis was also introduced and evaluated. This
measure is based on a projection onto the fully converged
adiabatic CI wave functions. In this way the calculated CI
wave functions can also serve as a valuable tool for validat-
ing the use of some diabatic basis for scattering calculations
describing H�n=2�+H�n�=2� collisions, since the measure
of completeness provides information about the range of in-
ternuclear separations for which a particular diabatic basis is
sufficiently complete.
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APPENDIX: COEFFICIENTS Aij„�…

The exchange integrals Sij�R ;�����i�� � P̂12 � �j��
 can be
calculated using two-center integrals over Slater orbitals

I1 � A�2s�2s
B = �1 +
R

2
+

R2

12
+

R4

240
�e−R/2; �A1�

I2 � A�2s�2p0
B = R3� 1

120
+

R

240
�e−R/2; �A2�

I3 � A�2p0�2p0
B = = �1 +
R

2
+

R2

20
−

R3

60
−

R4

240
�e−R/2;

�A3�

I4 � A�2p±�2p±
B = �1 +
R

2
+

R2

10
+

R3

120
�e−R/2; �A4�

where the label A �B� specifies the proton to which the
atomic orbital is attached.

Nonzero integrals Sij�R ;��=Sji�R ;�� are

S11�R;�+
+� = I1

2; S11�R;�−
+� = I2

2 + I1I3;

S12�R;�+
+� = − I2

2; S11�R;�−
−� = − I4

2;

S13�R;�+
+� = �2I1I2; S11�R;�+� = − I1I4;

S22�R;�+
+� = I3

2; S22�R;�+� = I3I4;

S23�R;�+
+� = �2I2I3; S11�R;�−� = − I3I4;

S33�R;�+
+� = I2

2 − I1I3; S22�R;�−� = I1I4;

S44�R;�+
+� = I4

2; S11�R;�+� = I4
2.

�A5�
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Only the states ��i��+
+
 , i=1,2 ,3 are coupled with each

other via the operator P̂12. The functions Aij�R ;�� for �
= �ps ,�+

+� and i , j=1,2 ,3 can be obtained using an orthonor-
malization procedure for the 3�3 coupling matrix

W =  1 + psI1
2 − psI2

2 �2psI1I2

− psI2
2 1 + psI3

2 �2psI2I3

�2psI1I2
�2psI2I3 1 + ps�I2

2 − I1I3�
� �A6�

leading to the following nonzero coefficients

Aij�R ; �ps ,�+
+��� Ãij for i , j=1,2 ,3

Ã11 = W11
−1/2; �A7�

Ã22 = �W22 − W12
2 /W11�−1/2; �A8�

Ã21 = − Ã22W12/W11; �A9�

Ã33 = �W11�W22W33 − W23
2 � − W13

2 W22

W11W22 − W12
2 �

+�2W12W13W23 − W12
2 W33

W11W22 − W12
2 �−1/2

; �A10�

Ã32 = − Ã33
W11W23 − W12W13

W11W22 − W12
2 ; �A11�

Ã31 = − Ã33
W13

W11
− Ã32

W12

W11
. �A12�

The remaining coefficients Aij�R ;�� are given by

Aij�R;�� = �ij�1 + psSii�R;���−1/2. �A13�
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