PHYSICAL REVIEW A 73, 062705 (2006)

Siegert-state expansion for nonstationary systems: Coupled equations in the one-channel case
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Expansion of the solution to the time-dependent Schrodinger equation for a one-channel nonstationary

system in terms of Siegert states is discussed. A discrete set of coupled pseudodifferential equations defining
time evolution of the coefficients in the expansion is derived, and physical observables (probabilities of
transitions to discrete states and the spectrum of ejected particles) are expressed in terms of these coefficients.
In contrast to other time-dependent close-coupling methods in atomic and molecular physics, the present
approach treats the continuum with no approximation. A price for that is a more involved mathematical

structure of the resulting coupled equations. The approach is implemented in terms of Siegert pseudostates and
illustrated by calculations for a model time-dependent rectangular potential.
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I. INTRODUCTION

The quantum-mechanical scattering theory is traditionally
formulated in terms of physical states (PS)—the eigenfunc-
tions of the Hamiltonian satisfying physical asymptotic
boundary conditions. The set of PS consists of discrete and
continuous parts corresponding to bound and scattering
states, respectively. Bound state eigenfunctions decay in the
asymptotic region, while scattering states are given there by
a superposition of incoming and outgoing waves. It is well-
known that the discrete spectrum is much easier to deal with
than the continuum, both in formal theory and calculations.
Meanwhile, the approach based on PS is not the only one
possible. In 1939 Siegert introduced [1] another set of states
that now bare his name. Siegert states (SS) are also eigen-
functions of the Hamiltonian, but satisfy different asymptotic
boundary conditions, namely, they have only incoming or
outgoing waves in the asymptotic region. The corresponding
eigenvalues give positions of the poles of the scattering ma-
trix. The set of SS is purely discrete, which is an important
advantage over the PS. At the same time, the two sets can be
uniquely expressed in terms of each other. Therefore one
could wish to reformulate scattering theory in terms of SS,
and hence to get rid of the continuum. A noble goal indeed,
but not easy to reach.

The difficulties originate from rather unusual orthogonal-
ity and completeness properties of the SS. The clarification
of these basic issues, that for PS are covered even in elemen-
tary textbooks on quantum mechanics, for SS took much
efforts of many researchers. Discussions of SS can be found
in some advanced treatises [2-5] (where they are sometimes
called by different names), but this is normally considered as
an “exotic” of no practical use. The situation has changed
after a new approach based on Siegert pseudostates (SPS)
was proposed and demonstrated in [6]. This approach has
opened a way to implement the power of SS in practical
calculations. So far, the theory of SPS has been thoroughly
developed only for s-wave scattering in one-channel [7] and
two-channel [8] cases; further developments are in progress.
In the time-independent framework, the efficiency of this
approach was demonstrated by calculations of scattering and
resonances in realistic three-body Coulomb systems [6,9,10]
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and some model problems [7,8,11-13], molecular dissocia-
tive photoionization and recombination [14,15], and electro-
magnetic resonances in inhomogeneous plasma [16]. In the
time-dependent framework, the applications of SPS were
pioneered in [17,18] and continued in [19] by studies of
wave packet propagation in stationary (i.e., when the Hamil-
tonian does not depend on time) systems.

In this paper we make a further step in promoting SS and
SPS for time-dependent problems, the former as a powerful
tool in formal theory, and the latter as a means to implement
this power in calculations. We discuss an expansion of the
solution to the time-dependent Schrédinger equation (TDSE)
for nonstationary (i.e., when the Hamiltonian does generally
depend on time) systems in terms of SS. This problem
should be viewed in the context of the results available in the
time-dependent framework from earlier studies. Individual
SS, corresponding to sharp resonances in scattering, have
been long used in the analysis of the decay of unstable sys-
tems, see [2-5] and references therein, e.g., [20]. One of the
first attempts to expand the solution to the TDSE in terms of
SS was undertaken in [21]. However, apart from a discrete
sum over SS the result contained an integral term because
the completeness properties of the SS were not properly
taken into account. The problem was resolved in [22] where
an expansion for the time-dependent retarded Green’s func-
tion in terms of SS was obtained by the Fourier transforma-
tion of the SS expansion for the stationary outgoing wave
Green’s function derived in [23]. A similar expansion in
terms of SPS was obtained and illustrated by calculations in
[19]. These results enable one to find the solution to the
TDSE in the inner region, i.e., within the range of action of
the potential. The SS expansion of the wave function in the
outer region was obtained in [24,25]. Importantly, all these
studies dealt with stationary systems.

We consider s-wave scattering in the one-channel case, as
in [19,22,25], but with a time-dependent potential. Also as in
[19,22,25], the potential is assumed to vanish beyond a finite
radius r=a; for realistic potentials, this means that one has to
reach convergence of the results as a— o, see [7]. We ana-
lyze two initial value problems that are of main interest for
physical applications: perturbation of a bound state prepared
at t=—o (problem I), and evolution of a wave packet pre-
pared at t=0 (problem II). The corresponding solutions to the
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TDSE can be expanded in terms of an appropriate set of SS.
For each of the two problems, we derive coupled equations
defining time evolution of the coefficients. These equations
are the central result of the work. In contrast to various time-
dependent close-coupling methods widely used in atomic
physics, that are designed to deal with nonstationary Hamil-
tonians having purely discrete spectrum, but are often ap-
plied in situations where this is not the case, simply by ne-
glecting the continuum or mimicking it by some
pseudostates, our approach treats the continuum with no ap-
proximation. A price for that is a more involved mathemati-
cal structure of the coupled equations, which in the present
case are pseudodifferential. The solutions to these equations,
i.e., the coefficients in the SS expansion, completely define
the wave function, both in the inner and outer regions. How-
ever, they do not have that simple physical meaning as the
coefficients in the expansion in terms of PS. If the potential
becomes independent of time for r— o0, we express the ob-
servables (probabilities of transitions to discrete states and
the spectrum of ejected particles) in terms of these coeffi-
cients. We show how to implement this approach in terms of
SPS. The results are illustrated by calculations for a time-
dependent rectangular potential.

II. BASIC EQUATIONS

In this section we formulate two problems to be treated in
the following discussion, simultaneously introducing our no-
tation.

A. Hamiltonians

We consider a nonstationary system described by the
TDSE (a system of units in which all the quantities involved
in the analysis are dimensionless and A=m=1 is used
throughout the paper)

9 _
{lat—H(t)]w(r,t)—O, (1)
where

H(t):—%§+V(r,t), (2)

and it is assumed that the potential has a finite range, i.e.,
V(r,0)|,=,=0. (3)

Equation (1) will be considered in the interval 0 < r<co with
the boundary condition

Y10,1)=0. 4)
We also introduce an auxiliary stationary Hamiltonian
1 &
H=———+V(r), 5
52 V) (5)
again assuming that
V(r)|r>a = O (6)

It will be convenient to present H(z) in the form
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H(t)=H+U(r,t), U(r,t)=V(r,t)-V(r), (7)

where U(r,t) also vanishes at r=a. The time-dependent po-
tential V(r,f) is a given function, while V(r) may be chosen
to some extent arbitrarily and will be defined for each prob-
lem separately.

B. Green’s functions

The stationary outgoing wave Green’s function for the
time-independent Hamiltonian H is defined by

(E-H)G(r,r";k)=68(r—r"), (8a)

G(0,r";k) =0, (8b)

=0. (8¢)

r—o

J
(5 - ik) G(r,r';k)

In this paper, E and k always denote energy and momentum
related to each other by

k=\2E, (9)

where the branch of the square root function for which
Imk>0 on the physical sheet of E is meant. Taking
into account Eq. (6), condition (8c) actually applies at r=a
(r>r') for r'<a (r'=a). The corresponding time-
dependent retarded Green’s function is defined by

[iﬁ%—H}G(r,r';t):5(t)6(r—r’), (10a)
G(0,r';1) =0, (10b)
G(r,r';0)|,<0=0. (10c)

These functions are related by the Fourier transformation,

G(r,r';t) =

—o0

. dE
G(r,r' ;k)e"E’ZT, (11)

where, as usual in the scattering theory [2], it is understood
that the integration path lies on the physical sheet infinitesi-
mally above the real axis. One can similarly define the re-
tarded Green’s function for the full time-dependent Hamil-
tonian H(z),

[ig _H(t)}G(r,r’;t,t') =8(t-1)dr-r"), (12a)

G(0,r";t,t') =0, (12b)

G(r,r';t,t")],<p = 0. (12¢)

Alternatively, this function can be defined by the integral
equation

G(r,r';t,t")=G(r,r' ;t—1t") + f dt”f dr'G(r,r";t—1")
—0 0

XU )G r 1), (13)

062705-2



SIEGERT-STATE EXPANSION FOR NONSTATIONARY...

C. Initial conditions

To complete mathematical formulation of the problem, in
addition to Eq. (1) and the boundary condition (4) we have to
specify the initial conditions. We shall consider two types of
initial conditions corresponding to two different physical
problems.

1. Problem I: Perturbation of a bound state

Suppose that V(r,7) becomes independent of time for
t——o0, In this case we define V(r) by

V(V)= V(r’t)|r~>—oc’ (14)

hence U(r,1)|,_._.=0. In other words, the system was sta-
tionary in the infinite past, having the Hamiltonian H, and
then a time-dependent potential U(r,t) is switched on, con-
tinuously, starting from t=-o, or abruptly, at some finite
moment. We assume that U(r,7) vanishes sufficiently rapidly
as t— —0, so that the solution discussed below exists. Let H
have a bound state with the energy E,<<0 and wave function
¢o(r) satisfying

(H = Eo) p(r) =0, (15a)
#0(0) = () = 0. (15b)

Taking into account Eq. (6) we have
bo(N)]1=a = po(@)e™,  kg=iN=2E,.  (15¢)

Note that E{, and k are also related by Egs. (9). Consider Egq.
(1) in the time interval —co << oo with the initial condition

(r, 1) o= e E y(r). (16)

This problem describes perturbation (one should not be con-
fused by this term, it does not imply the use of perturbation
theory) of a bound state of the initial stationary system
caused by the time-dependent potential U(r,t). Its solution
will be denoted by ¢;(r,t). Using Egs. (10) and (15), this
function can be alternatively defined by the integral equation

Yi(r,t) = e B o (r) + f dt’f dr'G(r,r' ;t—1t")
_% 0

XU, t" ) (r',1"). (17)

2. Problem II: Evolution of a wave packet

Consider Eq. (1) in the time interval 0<¢<co with the
initial condition

i(r,0) = x(r), (18)

where x(r) satisfies

X(0)= X(r)|r>a=o’ (19)

and we assume that
f X(NP=1. (20)
0

This problem describes evolution of a wave packet, initially
confined in the interval 0<r=a, governed by the time-
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dependent Hamiltonian H(z). In this case we define V(r) by
V(r) = V(r,0), (1)

hence U(r,0)=0. Using standard approach [2], we extend the
interval of time under consideration in the initial value prob-
lem (1) and (18) to —oo << o0, assuming that (r, ) vanishes
for +<<0. Thus defined function satisfies

[ig - H(t)} (1) =i8@)x(r), (22a)

r.0)]i<o=0. (22b)

The solution to this problem will be denoted by i, (r,1).
Using Egs. (12) and (22) we obtain

Yy(r,t) = ifa G(r,r";1,0)x(r")dr'. (23)
0

Substituting here Eq. (13), this function can be alternatively
defined by the integral equation

Yy(r,t) = if G(r,r"st)x(r")dr' +J dt’J dr'G(r,r';t—1t")
0 - Jo
XU(r' ,t") gy (r',1"). (24)

III. OUTGOING WAVE SOLUTIONS

It turns out that for a certain class of the solutions to Eq.
(1) that have only outgoing waves in the outer region r=a
and hence will be called outgoing wave solutions, the deriva-
tive dy(r,t)/ dr at r=a can be expressed in terms of fa,t’)
for ' <t. Using this relation, in this section we transform Eq.
(1) to a form suitable for expansion in terms of SS.

A. Outgoing wave boundary condition in the time domain

Let us introduce the function and derivative value opera-
tors at r=a,

d
F=dlr-a). D=dr-a) . (25)

The D is proportional to the Bloch operator [26]. Following
Bloch, we also introduce hermitized Hamiltonians,

H(t)=H() + %D, H=H+ %D. (26)

Finally, we introduce a pseudodifferential [27] operator ):,
whose action on a function

” - d
f0) = f fEe s 27)
is defined by
N = f i ikf(E)e-fE'd—E. (28)
e 2T

Taking into account Egs. (9), Xt is related to the time deriva-
tive by
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N A

lﬂt == i\, = 21{%. (29)
The operator ):t plays the key role in the following consider-
ation. More detailed discussion of this operator and some of
its properties is given in Appendix A.

We now turn to the derivation of the desired relation. First
we consider a stationary system with the Hamiltonian H. In
this case, the relation of interest in the energy domain fol-
lows immediately from Egs. (6) and (8c),

DG(r,r" k) =ik FG(r,r' ;k), r' <a. (30)

Using this and Eq. (11), we obtain the same relation in the
time domain,

DG(r,r';t) = }’):,G(r,r' ), r'<a. (31)

Using this and Eq. (13), we obtain a similar relation for the
nonstationary system with the Hamiltonian H(z),

DG(r,r';t,t') = f):,G(r,r' '), ' <a. (32)

As is clear from the derivation, Egs. (31) and (32) express
the outgoing wave boundary condition (30) in the time do-
main. Remarkably that in the time domain this condition
holds for stationary as well as nonstationary cases, provided
that the potential vanishes at r=a.

B. Matrix form of the time-dependent Schrodinger equation
for outgoing wave solutions

Equations (31) and (32) lead to similar relations for the
solutions ¢;(r,t) and iy(r,t). From Egs. (15¢), (17), (31),
and (A10) we obtain

Dify(r,1) = FAy(r,1). (33)
Then Eq. (1) for ¢,(r,f) can be presented in the form

[X ( 0 1)]<¢'(m)) 0 (34)
C\2dl F) \gurn)

Indeed, eliminating from this equation Jl[(r,l)Z):,lfl](V,[) one
restores Eq. (1). Similarly, from Egs. (23) and (32) we have

Dify(r,t) = f):,:/;,,(r,t). (35)
Then Eq. (22a) for (r,t) becomes

L l-sel )
" =200 F) |\gyrny) N )

(36)

where tzu(r,t)=>§,¢u(r7t).
We shall consider Egs. (34) and (36) as matrix equations

for two unknown functions, ¢ and {ﬁ Rewriting the TDSE in
such a matrix form is a rather dramatic step whose conse-
quences must be recognized. First, the introduction of a two-
component wave function is associated with doubling the
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dimension of the original Hilbert space. By convention, we
use the same notation for both components indicating the
second (lower) one by a tilde. Second, the pseudodifferential

operator ):, is nonlocal in time, although the dynamics de-

scribed by Egs. (34) and (36) remains causal since ):If(t)
depends only on f(z') for t'<t, see Eq. (A5). In spite of
these apparent complications the matrix form of the TDSE
has an important advantage: it opens a way to expand the
solution in terms of SS.

C. Discussion

The key element in arriving at Egs. (34) and (36) is pro-
vided by Egs. (33) and (35). These equations amount to the
boundary condition

AY(r,1)

Py =\, Ma.1). (37)

Here and in the following, we omit the subscript in equations
that apply to both solutions i(r,t) and iy(r,7), when this
may not lead to confusion. Condition (37) expresses the de-
rivatives of i,(r,t) and i, (r,1) at r=a in terms of their val-
ues at the same point at preceding moments, see Eq. (A5). It
is clear that this condition holds for a more general class of
the solutions to Eq. (1). For example, any linear combination
of the bound states of H can be substituted into the initial
condition (16) for ;(r,t) without changing Eq. (33). The
class of the solutions to Eq. (1) satisfying Eq. (37) could be
identified by appropriate initial conditions. We shall not dis-
cuss the most general form of such initial conditions, restrict-
ing our consideration to two particular cases defined by Eqs.
(16) and (18). However, it is worthwhile to clarify the physi-
cal meaning of Eq. (37). From Egs. (3) and (29) we have

X H(t)—l<£ X)(ini) = (38)
Lor AV AT ) A

Thus a general solution to Eq. (1) can be represented by a
sum of two terms,

GUETAGHERAGH (39)
where functions . (r,7) satisfy
Wulr,1) ==+ ):lwt(r,t), r=a. (40)
or

The validity of this representation can be confirmed also in a
different way. Substituting into Eq. (1) the Fourier transfor-
mation of (r,7) in time and requiring the equation to hold
for r=a, one finds that a general solution in the outer region
must have the form

“ . . . dE
r,r) = J [C.(E)e™* + C_(E)e_’k’]e_‘E’z—, r=a,
o T

(41)

where C.(E) are arbitrary functions. The two terms here, that
obviously correspond to the two terms in Eq. (39), represent
outgoing (we recall that this term in the scattering theory
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commonly denotes truly outgoing and exponentially decay-
ing) and incoming (which similarly includes truly incoming
and exponentially growing) waves, respectively. Condition
(37) means that only the first terms in Egs. (39) and (41) are
present. Thus the solutions to Eq. (1) satisfying Eq. (37) have
only outgoing waves in the outer region.

IV. EXPANSION IN TERMS OF SIEGERT STATES

The outgoing wave solutions to Eq. (1) can be expanded
in terms of SS defined by the stationary Hamiltonian H. The
coefficients in the expansion are functions of time only, the
dependence on the coordinate r is represented by the SS
eigenfunctions. In this section we derive equations defining
these coefficients for the solutions i,(r,f) and i(r,z). Thus
a partial differential equation (1) will be reduced to a discrete
set of coupled equations in one (time) variable. At first sight,
such an approach follows a scheme common to other time-
dependent close-coupling methods. However, there is an es-
sential difference: the continuum will be treated with no ap-
proximation for the expense of pseudodifferential character
of the resulting coupled equations.

A. Siegert states
SS for the stationary Hamiltonian (5) are defined by [1]

(H-E)é(r) =0, (42a)

$(0)=0, (42b)

(i - ik) o] =0, (42¢)
dr r=a

where E and k are related by Egs. (9). The solutions to Eq.
(42a) satisfying simultaneously both boundary conditions
(42b) and (42c) exist only for a discrete set of generally
complex energies £ and momenta k, so this is an eigenvalue
problem. The eigenvalues and eigenfunctions will be denoted
by k,, E,=k/2, and ¢,(r). Let us summarize basic results of
the theory of SS needed for the following discussion; many
more subtle relations, details of the derivation, and extensive
bibliography can be found in [7]. In fact, we give here a
concise introduction to the theory from a new standpoint.
The eigenvalue k enters into Egs. (42) nonlinearly. How-
ever, this nonlinearity can be removed by introducing a two-
component wave function. This important idea was antici-
pated in [28]; it was turned into a fruitful approach in [7].
Using operators (25), the boundary condition (42c) reads

Dé,(r) = ik, F by (r). (43)

Thus we can rewrite Eq. (42a) in a matrix form similar to
Egs. (34) and (36),

[( ! 1) 'k](¢"(r)>—o 44
—oit F) TN\ G ) T 4

Multiplying this equation from the left by a weight matrix
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(—.7-"1) 45
1 0/ “3)

we transform it to a symmetric form,

[(‘21;1 O)—ik,,<_]: 1)](?"“)):0. (46)
0 1 10/ [\g,(r)

The solutions to this eigenvalue problem are orthogonal with
respect to the inner product

Ja(qs (r)&(r))(_f 1)<¢m(r))dr—2ik5 (47)
o VL 0 G,/

where the first factor in the integrand is a two-component
row. This amounts to the following orthonormalization con-
dition for the eigenfunctions ¢,(r) [29-31]

plada) o
k,+k

m

f &u(r) e (r)dr +
0

n

Let H be the space of functions square integrable in the
interval 0<r<a, and H>="H ® H. The solutions to Eqs. (42)
and (46) belong to H and H?, respectively. Introducing some
primitive basis in H and reformulating the problem in an
algebraic form (see [7] and Sec. VII), it can be shown that
the solutions to Eq. (46) form a complete set in H?, i.e.,

s L (sbn(r)

) AN ! _5 ’ (O l)
2 2k \ 3 (1) (b.(r") ,(r"))=Sr—1r") ;

1 F
(49)

where the matrix on the right-hand side is the inverse of the
weight matrix (45). This amounts to the following complete-
ness relations for the eigenfunctions ¢,(r) [7,32]:

S 4,1, =0, (50)
> b () =28r-1"), (50b)
> ik (1) b (r) = 28r—a)8(r' —a),  (50¢)

n

where both r and ' lie within the interval [0,a]. Thus while
the two-component solutions to Eq. (46) form a “normal”
complete set in the space of doubled dimension H2, with
standard orthogonality (47) and completeness (49) properties
dictated by the weight matrix (45), the solutions to Egs. (42)
form an overcomplete set in the original Hilbert space H,
satisfying rather unusual relations (48) and (50).

An important question is: Given a function (r) € H, how
to expand it in terms of SS eigenfunctions ¢,(r)? As follows
from the above discussion, this question does not have a
unique answer. To define the expansion coefficients uniquely,

one has to introduce another function zZ(r) and consider a

two-component vector (¢(r) @(r))T. This vector belongs to
2, and hence can be uniquely expanded in terms of the
solutions to Eq. (46),
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FIG. 1. SS momentum eigenvalues k,, for a rectangular potential
(103) with Vy=-=5 and a=10.

W)) («sn(r))
=Yl ) 51
(wm 2l g Gy

Multiplying this expansion from the left by

- -F 1
(¢.(r) %(V))( : 0) (52)

and integrating over r €[0,a] using Eq. (47), we find the
coefficients

a,= %k,,(ik"f: () (r)dr — ¢, (a)fa)
+ f qS,,(r)tZ(r)dr). (53)
0

These coefficients depend on both functions ¢(r) and 1,~b(r),

which again shows that the second component #(r) is needed
to define them uniquely. Substituting Eq. (53) back into Eq.
(51) and using Egs. (50) one obtains the expected identity.

SS can be divided into four groups, according to the po-
sition of the momentum eigenvalue k,, in the complex plane:
bound (Re k,=0, Im k,>0), antibound (Re k,=0, Im k, <0),
incoming (Re k,>0, Imk,<0), and outgoing (Re k,<0,
Im k,<0), see Fig. 1. The eigenfunctions ¢,(r) for bound
and antibound states are real; the incoming and outgoing
states appear in pairs: k,, E,, ¢,(r) and —k,, E,, ¢, (r). The
set of SS is in one-to-one correspondence with the set of PS
for the same Hamiltonian H. The bound states of H are given
by the bound SS. Taking into account Eq. (6), in this case Eq.
(48) reduces to the ordinary orthonormalization condition for
bound states. Let {b} denote the set of subscripts n corre-
sponding to bound SS. We shall assume that the bound state
in the initial condition (16) for problem I is given by the SS
with n=0 e {b}. All the other SS serve to represent the con-
tinuum. Namely, the scattering states of H can be expanded
in terms of SS [7,29],
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o(r,k) = ike_"k“; %, 0<r=<ua, (54a)
=e M _Sk)e*, r=a, (54b)
where the scattering matrix S(k) is given by [7]
; [¢u(a)]?
S(k) = ekl 1 — ik >, ——|. 55
( ) ¢ [ l % kn(k - kn) ( )

To derive Eq. (54a), one has to take ikg(r,k) as the second
component in Eq. (51), a fact which has not been recognized
previously. The stationary outgoing wave Green’s function
defined by Egs. (8) also can be expanded in terms of SS [23],

LAGLAG)

Grr'sk) =2 = )

n

osrr'<a.  (56)

Note a difference in sign here as compared to [7], which
comes from a difference in the defining equation. Substitut-
ing Eq. (56) into Eq. (11) and using Eq. (A13), we obtain the
SS expansion for the time-dependent retarded Green’s func-
tion defined by Egs. (10),

Gl =2 (k) (NGr), 0=rr <a

(57)

where g(#;k) is the retarded Green’s function for the operator

A

\,—ik, see Appendix A. Using Egs. (50a) and (A14), one can
rewrite Eq. (57) in the equivalent form [19,22]

Gl == 00D (= ™k 12) 6,1, ().

0o=rr <a, (58)
where w(z) is the Faddeeva function, see Appendix B.

B. Expansion in the inner region:
Coupled equations for the coefficients

SS form a complete set in H?2, therefore the solutions to
Egs. (34) and (36) in the inner region can be sought in the

form
Y(r.1) ) ) («/),,(r) )
<¢7(r,r> =2 e\ 0 )

Let ai(t) and afll(t) be the coefficients in this expansion for
the solutions #;(r,) and ¢(r,t), respectively. Introduce no-
tation

0<r=a. (59)

Uy(1) = f ¢,(r)U(r.1) ¢, (r)dr, (60)
0

Xn = f &u(r)x(r)dr. (61)
0

Substituting Eq. (59) into Eq. (34), multiplying from the left
by expression (52), integrating over r € [0,a] using Eq. (47),
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and taking into account the initial condition (16), we obtain a
set of coupled equations defining afq(t),

ik, (\, = ik,)al(t) + 2 U, (Dal () =0, (62a)

al (0], o = Sype 70", (62b)
Similarly, from Egs. (36) and (22b) we obtain equations de-
fining afl[(t),

ik, (N, = ik, )a"(0) + 2, U(Dal (1) = = i8(0)x,, (63a)
I

a, (t)],<0=0. (63b)

The evolution in time in these equations is driven by the

operator ):,, so these are pseudodifferential equations. Solv-
ing them, one finds ¢;(r,7) and ¢y (r,t) in the inner region.

C. Wave function in the outer region

We now find solutions #;(r,f) and (r,t) in the outer
region. The derivation below applies to any outgoing wave
solution to Eq. (1), so we omit the subscript. As follows from
Eq. (59), in the inner region such a solution is given by

Yrn=2 a,¢,r), 0<r<a. (64)
In the outer region we have from Eq. (41)
“ oo dE
(r,1) =f CAE)e" " —, r=a. (65)
o 2m
Requiring continuity of ¢(r,r) at r=a, we obtain
C.(E)= e_ik“f Wa,t)etdr. (66)

Thus

o3 1
Wr,t) = —==(\,,dldr)
N2

exp{ . (r_a)2 :| ('ﬁ(a,f,) dt'

l 9
2(1‘—1‘,) l—l')l/z

-0

r=a, (67)

where notation ():,, d/ dr) stands for any of the two operators.
This equation expresses (r,) for r=a in terms of Aa,t)
which, in turn, is given in terms of a,(¢) by Eq. (64). Thus
coefficients a,(¢) completely define the solution ¢(r,7) for all
values of r € [0,). Note that function (67) manifestly satis-
fies the outgoing wave boundary condition (37). Equation
(67) generalizes a result obtained in [25] to the nonstationary
case, see also Sec. VI A.

D. Integral form of the coupled equations
Using the retarded Green’s function g(z;k) for the opera-

tor \,—ik, see Appendix A, we can rewrite Eqs. (62) and (63)
in an integral form,
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. t
a (1) = 8¢+~ | glt—1" k) Up(t)d (¢')dt',

n - m -

(68)

and

. t
a(r) = - ;{ﬁg(t;k,’) + kLE j g(t=1"3k,) U, (1) (t")dr' .
n n m 0
(69)

These are inhomogeneous Volterra equations of the second
kind; they incorporate the initial conditions. These equations
are more convenient for deriving some general properties of
the solutions (see the next section) as well as for numerical
calculations. Some other forms of the coupled equations are
given in Appendix C.

One might think that Egs. (68) and (69) could be easily
obtained from Egs. (17) and (24) by substituting there expan-
sions (57) and (64) and omitting the summation over n, as if
¢,(r) were linearly independent. Even though such an ap-
proach indeed leads to Egs. (68) and (69), it cannot be jus-
tified because ¢, (r) are linearly dependent. On the contrary,
the derivation given above is rigorous and free from ambi-
guities. It operates with a two-component wave function, see
Eq. (59), which is required for the expansion in terms of SS
to be uniquely defined, see a discussion around Egs.
(51)—(53).

V. OBSERVABLES

In physical applications, the situation when the potential
V(r,t) becomes independent of time for r— o is of main
interest. For simplicity, we assume that V(r,)=V(r,—o)
=V(r), in problem I, and V(r,)=V(r,0)=V(r), in problem
II, hence in both cases

U(r,1)), =0, (70)

see Egs. (7), (14), and (21). A more general situation when
the limit of U(r,1) for r— o exists, but is not equal to zero,
can be treated similarly, but requires first to discuss an ex-
pansion of one set of SS in terms of the other defined by a
different Hamiltonian; we leave this for the future. The prob-
lem is to calculate the observables, i.e., the probabilities to
find the system in discrete states and the spectrum of ejected
particles as r— . In this section we express these quantities
in terms of the coefficients a,(f) in the SS expansion (59).

A. Reexpansion of the solution in terms
of the physical states

The PS defined by the stationary Hamiltonian H form a
complete set in the space of functions square integrable in
the semiaxis r € [0, ), a fact which is expressed by
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> N+ f qo*(r,k)cp(r',k>j—k:5<r—r').
0 T

ne{b}
(71)

Let ¢Ar,1) be an outgoing wave solution to Eq. (1) given by
Egs. (64) and (67). This function can be expanded in terms
of the PS,

” dk
Wrn= 2 C(0e,r) + J Clk.Ne(rh)5—. (72)
0 7T

ne{b}
Using Egs. (48), (54), and (64)—(66), we obtain
C,(1) = f BNrdr=3 a (t{ Bun = ‘ﬁ",ﬁa)"’;(“)}
= ¢u(a) ) glt—1t";=k,)la,t)drt’, (73)

—00

and

Clk,1) = Jx @ (r k) lr,D)dr = ike™ @Y, ———"= (@), (1
0

n,m k (k” +k)
x{énm— l%] B fi [e*g(t—1";k)
- S (ke g(t -t ;k)|la,t' )t (74)

These formulas express the coefficients in the PS expansion
(72) in terms of the coefficients in the SS expansion (59) [we
recall that ¢/(a,t) is given in terms of a,(t) by Eq. (64)].

B. Large time asymptotics of the SS coefficients
From Egs. (68), (69), and (A15) we find

( )| ane_iE»zf, ne {b}, (75)
e =
G 06, n e o),
where the constants a, for problems I and II are given by
al = 8,— i f ey, (t)al (1)dt, (76)
and
a=x,-i>, f ey, (a (r)dr. (77)
m Y0

It is assumed that U,,(r) vanishes sufficiently rapidly as ¢
— oo, see Egs. (60) and (70), so that the integrals in these
formulas exist.

C. Large time asymptotics of the PS coefficients
Using Eqgs. (50a), (55), (75), (A15), and (A16), we obtain

Cp(D)];oe = C e B, (78a)

=C(k)e ™, (78b)

where

PHYSICAL REVIEW A 73, 062705 (2006)

C,=a,, (79)

and
C(k) = — kS (k)e e f Wa,n)e'dr

=—kS"(k)e ™) a,(E) ¢, (a). (80)

Here a, are defined by Egs. (75)—(77), and a,(E) is the Fou-
rier transform of a,(z),

a,(E) = J‘” a,(Heldt. (81)

Using Egs. (68) and (69), we obtain for problem I
ay(E) =218, 0(E - Ey)
1 “
+— By L (Dd (Dde, (82
PRTRTRD f w0, (0, (82)
and for problem II
H(E

zxn+2 f E’Unm(t)a”(t)dt}

(83)

1
k,(k—k,)

These expressions have an advantage over Eq. (81) for com-
puting a,(E) since the integrals in them contain a rapidly
decaying factor U,,,(r). Note that E=0 in Eq. (80), so one
can omit the first term in Eq. (82) when substituting into Eq.
(80).

D. Final formulas

Let us summarize final formulas for the observables in
terms of the coefficients a,(f) to be used in the calculations.
The probability to find the system in a discrete state n € {b}
at r— oo is

=|C,l =180 - problem I (84a)
=[xy~ iAL(E,)]>, problem I,  (84b)

and the spectrum of ejected particles is

A,(E)
=|C(k)|]>=k* 2 K (k—k )¢,,(a) problem I
(85a)
iX +A,(E) :
=22 mqﬁn(zz) problem 1I,
(85b)
where

AfB)=2 f U0, (1)dt. (86)

Both solutions ;(r, ) and ¢;(r,t) are normalized to unity, so
we have
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Jw|z/f(r,t)|2dr: > Pﬁrp(k)ﬁ:l. (87)
0 0 2m

ne{b}

VI. SOME LIMITING SITUATIONS ALLOWING
ANALYTICAL TREATMENT

To test consistency of the formulation, let us discuss
briefly some limiting situations allowing analytical treat-
ment, when the present approach must yield well-known re-
sults.

A. Stationary case

In the stationary case the potential does not depend on
time, V(r,1)=V(r), hence U(r,t)=0. For problem I, we have
from Eq. (68)

al (1) = 8,0e ", (88)

Substituting this into Eqs. (64) and (67), we obtain the ex-
pected trivial result

Py(r,1) = do(r)e*o,
For problem II, we have from Eq. (69)

O0=sr<oo. (89)

Xn
a,/(1) == "8(t:k,). (90)
Substituting this into Egs. (64) and (67), we find

dnr == %g(r;kn)dyl(r), 0<r<a 91a)

= 2 Xau(@)e = TES 4 Dy b (@M(r - ak,.1),
ne{b} n

(91b)

r=a,

where M(x,k,1) is the Moshinsky function, see Appendix B.
Using Eqgs. (50a) and (A14), one can rewrite Eq. (91a) in the
form

1 ) —
lﬁ[l(nt) = EH(I)E an(_ elW/4k11V’t/2)¢n(r)’ Osr= a,

(92)

which coincides with a result obtained in [19]. On the other
hand, Eq. (91b) agrees with a result obtained in [25].

B. Sudden approximation

Let the time dependent potential U(r,z) be localized in
time in an interval of duration 7. Consider the limit 7—0
without making any assumption regarding the strength of
U(r,t). For simplicity, we discuss only problem I, problem II
can be dealt with similarly. In this case Green’s function
g(t;k) in Eq. (68) can be replaced by the first term in Eq.
(A14). Thus one obtains

2

P,= , (93a)

J w bu(r)e™ gy (r)dr
0
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o0 2
P(k) =~ f " (r,k)e SV po(r)dr| | (93b)
0
where
S(r)= f“’ U(r,t)dt. (94)

This agrees with the results of sudden approximation [33].

C. Perturbation theory

Let the strength of U(r,f) be characterized by U,. Con-
sider the limit U,— 0, again restricting our discussion to
problem I. In the leading order, substituting the first term in
Eq. (68) into Egs. (84a) and (85a), using Eq. (54a) and the
fact that @"(r,k)==S"(k)@(r,k), one obtains

Poxl, (95&)
0 ' 2

P, o= f BRIy (ndr| (95b)
o ‘ 2

P(k) = f Sy (k0 dt| (95¢)

where

Ug(k,t) = J @ (r,k)U(r,0) ¢o(r)dr, (96)

0

and we recall that U(r,?)|,=,=0. This agrees with standard
results of the time-dependent perturbation theory [34].

VII. SIEGERT PSEUDOSTATES

The formal theory developed above can be implemented
in terms of SPS. Let us recall the definition [7]. We employ
some finite primitive basis,

m(r), i=12,...N, (97)

which is assumed to be orthonormal in the interval O<r
=a,

f Wi(r)Wj(”)d"= (sija (98)

0

and becomes complete in H as N—, i.e.,

[

2 m(r)mlr') = dr—r'). (99)

i=1

In order to satisfy the boundary condition (42b) we assume
that 7;(0)=0, but no restriction on the behaviour of ,(r)
near r=a is imposed, except that dictated by the condition of
square integrability. Such basis can be constructed, e.g., from
the Legendre polynomials, see Appendix C in [7]; finite ele-
ments have been used in [12,19]. The solutions to Egs. (42)
can be sought in the form
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N
Gu(r) = 2 (). (100)
i=1

Substituting this expansion into Eq. (42a), multiplying from
the left by m;(r), integrating over r € [0,a], and using the
boundary condition (42¢), one obtains [7]

0 1 c
~ - lkn _ = 09
-2H F ¢

where 0 and I are zero and unit matrices, the elements of H
and F are given by

Hy= fa m(r)H(r)dr = lf“ AN dm0) ;,

(101)

0 2J)y dr dr
+fa m(r)V(r)m(r)dr, (102a)
0
Fij:f w(r) Fa(r)dr = m(a)mi(a), (102b)
0

and ¢ is the vector of coefficients in Eq. (100). Equation
(101) is an algebraic eigenvalue problem. By definition [7],
SPS are the solutions to this equation. In other words, SPS
are a finite basis representation of the SS discussed in Sec.
IV A.

For a given dimension N of the basis (97) there are 2N
SPS, this number being the dimension of the matrix in Eq.
(101). The most important property of SPS, which makes
them more than a mere computational tool, is that for any
finite NV they exactly satisfy finite basis representations of the
orthogonality (48) and completeness (50) relations for SS
[7]. These fundamental relations have been essentially used
in the derivation of the basic results of the theory of SS, Eqs.
(54)—(57), as well as present expressions for the observables,
Eqs. (84) and (85). The fact that they remain valid for SPS
means that SPS formulation gives a finite N extension of the
theory of SS, as was emphasized in [7,8]. Therefore all the
equations given above in terms of SS remain valid in terms
of SPS, with the understanding that summations in them
must run over n=1,...,2N. To obtain physically meaningful
results one has to reach convergence as N — .

VIII. ILLUSTRATIVE EXAMPLES

The coupled equations derived above are not what one is
well familiar with in atomic and molecular theory. Unfortu-
nately, nice theoretical constructions often turn out to be use-
less in practice because of difficulties in their implementa-
tion, the devil is in the details. The purpose of this section is
to demonstrate the principle feasibility of the present ap-
proach and provide numerical illustrations of its internal con-
sistency. To this end, we consider only a simplest model:
problem I for a time-dependent rectangular potential. The
time-independent part of the potential is defined by
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V(r) = {V"’

0, r=a,

r<a
(103)

where Vy=-5 and a=10, as in [19]. For the time-dependent
part we take

1) Uy sin’(mt/T), r<aand0<t<T
,t = .
" 0, otherwise,
(104)

which can be viewed as a pulse of strength U, and duration
T. Potential (103) supports 10 bound states, see Fig. 1. We
take the ground state as the state O in the initial condition
(16), with Ey=~—4.954. The results reported below were ob-
tained by solving Eq. (68). The observables were calculated
using Egs. (84a), (85a), and (86). Our numerical procedure is
discussed in Appendix D. The results are converged within
the scale of the figures with respect to all parameters of the
numerical scheme.

Of primary interest is the spectrum of ejected particles
P(k)—a characteristic that naturally follows from the present
approach, but is not easily obtainable by other methods. We
start with sudden and perturbative regimes. As follows from
Egs. (93b) and (95¢), in these cases P(k) is given by

Pg,(k) = 4 sin*(UyT/4)f(k) (105)

and

1
Ppr(k) = (UoT)’g(x)f (k). (106)
respectively, where the common factor f(k) has a meaning of
an effective matrix element squared for the present interac-
tion,
2

flk)= , (107)

f @ (r,k) o(r)dr

0

and g(x) comes from the integration in f,

. [ 872 sin(x/2)
g(x) = x(x* = 477)

Note that g(0)=1, so Eq. (105) for Uy— 0 coincides with Eq.
(106) for T—0, as one would expect. A departure of the
exact results from sudden approximation (105) as T grows is
illustrated in Fig. 2. For the validity of sudden approximation
the parameter x defined in Eq. (108) must be small, which
agrees with the numerical results. For higher energies of
ejected particles the departure occurs at smaller 7. For the
present model, function f(k) defining the spectrum P(k) in
the sudden regime has pronounced oscillating structure with
maxima at the positions of the outgoing SS momentum ei-
genvalues k,, in accord with Eq. (54a). For potentials having
infinite range, the distribution of the outgoing SPS eigenval-
ues becomes denser as the cutoff radius a grows [7], so the
oscillations will be smoothed out, but true physical features,
such as shape resonances, if any, will remain. A departure of
the exact results from perturbation theory (106) for a fixed T
and growing Uj, is illustrated in Fig. 3. The value of U, for
which a considerable departure occurs is about five times

2
}, x=(E-E)T. (108)
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FIG. 2. (Color online) Spectra of ejected particles for Uy=10
and several values of T in the sudden regime. The solid line shows
the results of sudden approximation, Eq. (105). Arrows indicate
positions of the outgoing SS momentum eigenvalues k,,, see Fig. 1.

smaller than the depth of the unperturbed potential (103).
The spectrum P(k) in the perturbative regime is determined
by a product of two oscillating functions, g(x) and f(k),
which results in a rather complicated structure with non-
monotonic behavior of heights of the maxima.

We now consider a strong long pulse, i.e., a situation far
beyond the above approximate treatments. The spectra for
Uy=-2Vy=10 and two values of T are shown in Fig. 4.
These spectra look quite different from those shown in Figs.
2 and 3. A further increase of T leads to an increase of the
frequency of the oscillations with a little effect on the enve-
lope (after devision by 7). These results can be interpreted
using adiabatic approximation [35]. The total potential V(r, 1)
in the present model with Uy=-2V|, has a rectangular shape
with height V(1)=V, cos(27t/T), 0<t<T. In the adiabatic
regime, the initial state adiabatically follows the variation of
Vo(7), hence the corresponding SS momentum and energy
eigenvalues become functions of time, ky(7) and E(z). Let us
trace the evolution of ky(¢) in the momentum plane. It starts
from the position of the ground state in Fig. 1 at t=0. As
time grows, this eigenvalue moves down along the imaginary
axis. At some moment close to 7/4, when V,()=0, it
crosses the real axis, which corresponds to promoting the
adiabatic state to the continuum. At some further moment it

g(x)f(k) (U~ 0)

FIG. 3. (Color online) Spectra of ejected particles for 7=3 and
several values of U, in the perturbative regime. The solid line
shows the results of perturbation theory, Eq. (106).
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FIG. 4. (Color online) Spectra of ejected particles for two strong
long pulses with Uy=10. The dash-dotted line shows the envelope
in the adiabatic approximation, Eq. (109).

leaves the imaginary axis and then moves to the right and
down in the forth quadrant. The motion stops at r=T7/2,
when function V,(7) reaches its maximum, and then is re-
peated in inverse direction as time varies from 7/2 to T.
During the time when the state is embedded into the con-
tinuum, its energy is complex and can be presented in the
form Ey(r)=E(t)—il'(r)/2. The dependence of the parameters
& and I" on the height V|, of the potential (103) for positive
values of V) is shown in Fig. 5; this implicitly defines their
dependence on ¢. As follows from the figure, except for very
small values of V,, we have ['(r) <&(z), so decay of the adia-
batic state on its route through the continuum occurs slowly.
Moreover, to a very good approximation £(f) = V(). Under
these conditions the spectrum of ejected particles in the adia-
batic approximation is given by [35]

5| T T T T T
|
H _8
4ff === Tx100 |
v Vo
M\
\
3k, -
\
\
2t .
N
N
~
1L R i -
0 1 1 1 1
0 1 2 3 4 5
VO

FIG. 5. (Color online) The adiabatic SS eigenvalue Ey=&
—il'/2 for the potential (103) as a function of V|, for a=10. For
Vy=-5, this eigenvalue corresponds to the ground state shown in
Fig. 1, i.e., to the initial state for the present model.
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FIG. 6. (Color online) Probabilities of excitation by a strong
pulse with Uy=10 for several values of 7. The integer n enumerates
bound states, with n=1 corresponding to the initial (ground) state.
The connecting lines are to guide the eye only.

AUTET
Pyy(k) =2 % 27TkF(E)% A U5FS \a
0, E> |V,
(109)

where function #(E) is implicitly defined by equation
E=V,(t) and I'(E)=I"[#(E)]. In the present model equation
E=V,(t) has two solutions, in the raising and lowering parts
of the pulse, so there are two moments contributing coher-
ently to the spectrum at the given energy. This fact is taken
into account by the first factor 2 in Eq. (109), hence this
equation gives only an envelope of P(k). For brevity, we do
not discuss here the interference effects that account for
rapid oscillations of the spectra shown in Fig. 4. The results
obtained from Eq. (109) are shown by the dash-dotted line in
Fig. 4. The adiabatic approximation explains the proportion-
ality of P(k) to the duration of the pulse T and the cutoff of
the spectrum at E=max[V,(¢)]=|V|=5 (this corresponds to
k=3.16). It also correctly reproduces the shape of the enve-
lope of P(k), although there is a difference by a factor of 1.5
in the magnitude. More rigorous development of the adia-
batic approximation within the present approach will be the
subject of a subsequent paper.

The present approach also yields the probabilities of ex-
citation to discrete states, P,. Some illustrative results are
shown in Fig. 6. For short (long) pulses P, monotonically
grows (decays) with the degree of excitation. For intermedi-
ate values of T the probability P, has a maximum at inter-
mediate values of n.

Figure 7 shows results for total survival (P;), excitation
(E,llgan), and ionization [the integral term in Eq. (87)] prob-
abilities as functions of 7. Inelastic transitions are dominated
by ionization whose probability in the interval of T consid-
ered is approximately proportional to 7, in accord with Eq.
(109). Slight bending of the ionization curve at larger values
of T indicates the onset of saturation of this linear growth.
Small hardly visible irregularities in the excitation curve are
true oscillations, not a numerical error. These results confirm
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FIG. 7. (Color online) Total survival, excitation, and ionization
probabilities for a strong pulse with Uy=10 as functions of 7. The
lines simply connect the calculated points.

that the unitarity condition, Eq. (87), is preserved by our
numerical scheme within the specified accuracy.

IX. CONCLUSIONS

The main result of this work is a set of coupled equations
describing time evolution of the coefficients in the expansion
of the solution to the TDSE in terms of SS. These equations
are given in pseudodifferential, Egs. (62) and (63), and inte-
gral, Egs. (68) and (69), forms for two initial value problems
of main interest for physical applications. Another result is
expressions for the observables, probabilities of transitions to
discrete states (84) and the spectrum of ejected particles (85),
in terms of the solutions to the coupled equations. These
results provide a foundation for a consistent theory of tran-
sitions to the continuum in the time-dependent framework.
They are implemented in terms of SPS and illustrated by
calculations for a model time-dependent rectangular poten-
tial.

Despite the great simplicity of the problem considered
(s-wave scattering in a time-dependent potential) the ap-
proach developed under certain approximations can be ex-
tended to realistic three-dimensional problems, as it was the
case with the stationary theory given in [7,8], see its appli-
cations in Refs. [6,9,10,14,15]. Applications of the present
approach to more realistic physical situations are in progress
and will be reported elsewhere.

The expansion considered above can be called diabatic
representation, because the SS basis does not depend on
time. Of great interest for applications, as well as from a
purely theoretical viewpoint, is to switch to the adiabatic
representation and develop an adiabatic approximation. This
should yield a theory of nonadiabatic transitions to the con-
tinuum generalizing the well-known results by Landau, Stu-
eckelberg, and Dykhne for nonadiabatic transitions between
discrete states, see [34]. The coupled equations derived in
this paper provide a solid mathematical ground for such a
development.

Finally, the following comment is in order here. When
this paper was almost completed, I became aware of a math-
ematical literature that has close relation to the present sub-
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ject, but which is not widely known in the physical commu-
nity. This concerns two key technical elements used in
arriving at Egs. (62) and (63). The first is the pseudodiffer-

ential operator Xt. A relation between this operator and the
fractional derivative of order 1/2 is discussed in Appendix
A, see Eq. (A19). There are books [36-38] and even a spe-
cial journal, see Ref. [39], dedicated to fractional calculus. I
hope that further development of the present approach will
benefit from the results available in this branch of mathemat-
ics. The second is the outgoing wave boundary condition
(37). This condition was first derived in underwater acoustics
[40], and then independently rederived by several authors in
the field of quantum mechanics [41-43] and optics [44]. Its
accurate numerical implementation has posed a separate
problem that has been addressed in [45-49]. The results of
these studies provide a mathematically consistent and nu-
merically efficient alternative to the method of absorbing po-
tentials [50] and deserve wider recognition among AMO
physicists. The present derivation of Eq. (37) only slightly
differs from, e.g., that given in [42]; however, for consis-
tency of presentation I retained it in the text. But the present
way of implementing Eq. (37) by means of SPS opens a new
perspective for the use of this boundary condition in practical
calculations.
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APPENDIX A: THE OPERATOR ):,

The operator ):t is defined by Eq. (28). Let us calculate
[recall Egs. (9)]

R “ . dE
NSt = | ike™E—. (A1)
e 2
Using the integrals
o +im/4
+ik212 T_¢
dk = \/j— A2
fo ¢ 2 (r+i0)? (A2)
we obtain
. 2634 g [ 0(;)}
N\, O(t) = —| =5 |- A3
(3U1) 2 di| 12 (A3)
Using this result and identity
f(t)=f ot —1")f(t)dt’, (Ad)
we find
. 2 3im/4 d t l‘,
R =L L (A3)

2m dt) . (1=1)"2

which may serve as an alternative definition of ):t. Solving
this Abelian equation [51] (that is, multiplying both sides by
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(#"=1)7"2 and integrating over the interval —o <t<1{"), one
can express f(f) in terms of ):Lf(t),

e 3 (1 X A1)

f) = dt'.
0 V2 J (t=1")'2

(A6)

Thus Egs. (A5) and (A6) define an invertable integral trans-
formation. In the following, we assume that

fON"|, =0,

which is the case for both solutions ;(r,¢) and ¢ (r,t) dis-
cussed in the paper. Then, integrating by parts, Eq. (A5) can
be presented in the form

263i17/4 t df([’) dr'

(A7)

)\J(t): \/ZT dr (t_t/)l/Z' (AS)
In this case
Jarw]_d
x,{ - }- 0], (A9)

i.e., A, commutes with the derivative in time.
Consider some elementary equations involving the opera-

tor \,. From Eq. (A5) we obtain

(\,—ik)e =0, ImE=0, (A10)
and
=3iml4
~ ot
x,{e,—_()} = 8(1). (A11)
N2t

Let us introduce the retarded Green’s function for the opera-
tor \,—ik,

(N —ik)g(r:k) = 8(0),  g(t:k)|<o=0.  (A12)

Solving this equation by the Fourier transformation one finds

(t;q9) = 'fw e_iEtd_E
s ==1 wk—qZﬂ"

(A13)

Using Egs. (A11) and (B9), the solution can be expressed in
terms of the Faddeeva function (see Appendix B),

P L A i
g(t:k) = 6(r) ?—Ew(— EMNR2) [ (A14)

N2t
The asymptotic behavior of this function for large real 7 is
given by [52,53]
—iml4
+ O(I_S/Z),
K2t

O<argk=<m/2

g(t:k)| oo = — ke T 4

(Al15a)

e—iﬂ'/4
- -5/2
Ny +0(™"),

2 <argk <2m. (A15b)

We also have a useful relation [52,53]
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g(t;—k) = g(t;k) + ke E'6(z). (A16)

Using this function and Eq. (A10), a general solution to

(N, = ik)a(t) = (1), (A17)
where the right-hand side r(7) is a known function, is given
by

a(t) = Ce ' 4 f ’ g(t—1t":k)r(t)dr’, (A18)

where C is an arbitrary constant.
If £(¢) is a casual function, i.e., f(1)|,<o=0, as is the case
for the solution i, (r,t), then we have from Eq. (A5)
N, = V2634 D12 (A19)

where ,D)’? is the Riemann-Liouville fractional derivative of
order 1/2 defined by [54]

12
N

Equation (A19) agrees with Eqs. (29), if by Vd/dt one un-
derstands ,D)’%. This equation establishes a link between the

S

iy ———Ldr'. (A20)

operator \, and fractional calculus [36-38].

APPENDIX B: THE FADDEEVA FUNCTION w(z)

This function is implicitly defined by the differential
equation

dw(z 2i
( )=—21w(z)+—r, w(0)=1. (B1)
dz N
Solving this equation, one explicitly obtains [55]
w(z) = e erfe(— iz). (B2)

As follows from Eq. (B1), w(z) is an entire function, i.e., its
expansion [53]

[

w(z)= 2 ———— )’

S T(m2+1) (B3)

converges everywhere in the complex plane. The Mittag-
Leffler function E(z) is defined by [52]

E B4
o) = n}%} Tan+1) (B4)
Thus we obtain a relation
w(z) = Eypiz). (B5)
The Moshinsky function M(x,k,7) is defined by [56]
w igx—igt/2 d
M(xk)=i f 4 (B6a)
wq—k+ie2m
1., . ) — kt
:_elkx—lEt erfc<e—m'/4x — ) (B6b)
2 V21

and can be expressed in terms of w(z),
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1 2 kt
M(x,k,t) = > exp(i%) ( impal — 2 )

(B7)
\r2l‘

Among these three functions, the Faddeeva function has an
advantage in practical calculations since a very accurate and
fast algorithm to generate w(z) for an arbitrary complex z has
been developed recently [57].

From Eq. (B1) for an arbitrary constant @ we obtain

f 7 aw)tl/)z = —[1 - w(a\t)] (B8)

Using this relation we find

[G(t)w(avt)]— VZe”TMH(t)[ — aw(aw)} (B9)
T

APPENDIX C: SOME OTHER FORMS
OF THE COUPLED EQUATIONS

It is not clear at the moment which form of the coupled
equations discussed in Secs. IV B and IV D will eventually
turn out to be most convenient for calculations; an efficient
numerical algorithm most suitable for this kind of equations
is still to be found. So we believe that it is useful to give here
some other forms of these equations. For brevity, we con-
sider only problem I, problem II can be dealt with similarly.

Acting on Eq. (62a) from the left by )(,+ik,, we obtain a
mixed differential/pseudodifferential representation,

(z‘% - En)af,(n =— i(& + ik»% Um0l (1). (C1)

The left-hand side here looks typical for close-coupling
methods, but the right-hand side contains a nonlocal operator

X,. Using Eqgs. (62) and (A6), we obtain another integral
representation,

—iml4 ¢

( )1/2
(C2)

al(t)= t {k al(t) + —2 U,m(t')a (1)

-0

This is a homogeneous Volterra equation of the second kind.
It may have an advantage over Eq. (68) since it does not
require one to generate a nontrivial function g(z;k). The ini-
tial conditions for these equations are given by Eq. (62b).

APPENDIX D: NUMERICAL PROCEDURE

The primitive basis (97) was constructed from the Leg-
endre polynomials and SPS were obtained by solving Eq.
(101), as described in [7]. The integral form (68) of the
coupled equations was chosen for the numerical solution.
For a given dimension N of the basis (97) there are 2N SPS,
and hence 2N coupled equations (68). To solve such a system
of Volterra equations, in the present calculations we used
the simplest method described in [58]. The time interval
0=<t<T was divided into M equidistant steps: t;=ih,
i=0,1,...,M, h=T/M. Green’s function g(z;k) in the inte-
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gral term in Eq. (68) diverges as t— 0, see Eq. (A14), so the
method of [58] requires slight modification. We used the fol-
lowing quadrature for integration in time

@)

f (1~ (L—1)" dr’ ~\h2a) 1)), (D1)
where f(r) is a smooth function, i=1,2,...,M, and the
weights w;') are given by

o) =\i-i-1, (D2a)
o) =Ni-j+1-\i-j—1, j=1,....i-1, (D2b)
o=1. (D2c)

This quadrature is obtained from the trapezoidal rule for in-
tegration in 7=(t,—t')""?. The calculation time for solving Eq.
(68) scales as NM?. This procedure yields the values of
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al(t;), which are then substituted into Eq. (86) to calculate
the observables (84a) and (85a). The parameters N and M
differently effect the accuracy of the results. For a given N,
there is some boundary value of the momentum, let us de-

note it by ky, that separates converged SPS eigenvalues &,
from the basis dependent ones, see [7]. Then the spectrum
P(k) calculated using Eq. (85a) is converged only for

k<ky. In the present calculations we used N=>50, which was
sufficient to obtain a converged spectrum up to k=10. The
value of M controls the accuracy of solving Eq. (68). We
found that in calculations with a fixed time step / the error
almost linearly grows with the length of time interval 7. The
present calculations were done with 2#=0.001; in this case the
error is beyond the scale of the figures even for the largest
T=200 considered. The overall accuracy of the numerical
scheme was tested by how well the unitarity condition (87) is
fulfilled; the error never exceeded 1%.
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