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Variational reduced-density-matrix theory is applied to calculating the ground-state energy and two-electron
reduced density matrices �2-RDMs� of the one-dimensional Hubbard model for a range of interaction strengths.
The 2-RDM is constrained to represent an N-particle wave function by two sets of N-representability condi-
tions, known as the 2- and partial 3-positivity conditions. Variational optimization of the energy with the
2-RDM constrained by N-representability conditions is performed using a first-order semidefinite-
programming algorithm that was developed for treating atoms and molecules �D. A. Mazziotti, Phys. Rev. Lett.
93, 213001 �2004��. Accurate energies for a broad range of interaction strengths indicate that the variational
2-RDM method is a valuable tool for studying strongly correlated electrons.
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I. INTRODUCTION

When N particles in a quantum system interact pairwise,
the N-particle wave function in the expectation value for the
energy can be replaced with a two-particle reduced density
matrix �2-RDM� �1�. While this two-particle parametrization
of the energy suggests the possibility of a two-particle varia-
tional principle �1�, variational minimization of ground-state
energy of a many-particle quantum system with the 2-RDM
yields an unrealistically low result �2�. The 2-RDM must be
constrained to represent an N-electron density matrix where
these constraints are known as N-representability conditions
�3�. Significant progress on the N-representability problem
for the 2-RDM has been made in two areas: �i� development
of a systematic set of N-representability constraints for the
2-RDM �4–13�, and �ii� formulation of the 2-RDM minimi-
zation as a special type of optimization known as semidefi-
nite programming �8–11,14,15�, and development of a first-
order algorithm �13,16,17� that improves computational
efficiency of the optimization by orders of magnitude. Appli-
cations have been made recently to molecular electronic en-
ergies and properties �9–11,13,18–20� including organic
molecules �18� and potential energy surfaces �19� as well as
quasispin models �6,8,12,21,22� and a study of the quantum
phase transition in the Lipkin model �23�. The accuracy of
the 2-RDM ground-state energies and properties at nonequi-
librium molecular geometries �13,16–19� and near quantum
phase transitions �23� demonstrates the suitability of the
2-RDM method with nonperturbative N-representability con-
ditions �10,17� for the treatment of strong quantum correla-
tion effects. In this paper, we explore the application of the
variational 2-RDM to Hubbard-like Hamiltonians with a
study of the one-dimensional Hubbard model.

The Hubbard model �24–26� is an approximation to a
many-electron Hamiltonian in which all electron-electron in-
teractions except same-site �or on-site� Coulomb repulsions
are neglected. Although simple, the Hubbard model has
been used to describe a wide variety of physics, including
superconductivity in copper oxide systems �27� and

magnetism in narrow-band systems �28�. In one dimension, a
modification of the Hubbard model, known as the Pariser-
Parr-Pople �PPP� model �29–31�, has been applied exten-
sively to approximate conjugated organic molecules while,
more recently, the one-dimensional Hubbard model has been
applied to study conducting polymers �32�. Both the Hub-
bard and the PPP models may be interpreted as extended
Huckel models.

The one-dimensional Hubbard model has been studied
two ways: �1� by analytic techniques, such as the Bethe an-
satz �33�, and �2� by numerical techniques. Lieb and Wu �34�
first solved the one-dimensional Hubbard model exactly with
the Bethe ansatz �25�. Exact numerical solution for a finite
lattice, including the explicit wave function, may be obtained
by large-scale diagonalization. From the wave function, vari-
ous properties, such as the momentum distribution and cor-
relation functions, can be studied. Because the analytic solu-
tion to the Hubbard model is only available in one
dimension, numerical methods are important for understand-
ing extensions of the Hubbard model to two or three dimen-
sions or more general interactions.

Other than diagonalization, quantum Monte Carlo �QMC�
and density matrix renormalization group �DMRG� methods
have been applied extensively to the Hubbard model. With
sufficient computational work both methods can converge �at
least theoretically� to the exact solution. In practice, for the
two-dimensional Hubbard model the computational cost as-
sociated with both methods has limited the applications of
QMC and DMRG to 16�16 and 12�12 sites respectively
�35,36�. At low temperatures, QMC suffers from the fermi-
onic sign problem although it has the attractive feature of
scaling as ����d, where ��� indicates system size and d is the
dimension of the lattice. The numerical behavior of DMRG
depends on the orbital ordering and thus has varied behavior
for Wannier and Bloch representations, because unlike the
Wannier basis, the Bloch representation does not have an
obvious optimal ordering �37�.

In this paper, we perform a finite lattice calculation of the
one-dimensional Hubbard model with the variational 2-RDM
method. Advantages in the RDM method include: �i� genera-
tion of a rigorous lower bound on the ground-state energy
�10,17�, �ii� invariance of the results with respect to unitary
transformations of the basis set �38�, and �iii� efficient use of*Electronic mail: damazz@uchicago.edu
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both spatial- and spin-symmetries in the two-electron basis
set of the 2-RDM �13� for the potential treatment of very
large systems. Calculations are performed with two sets of
N-representability conditions on the 2-RDM: �i� the
2-positivity conditions �4,8,10�, and �ii� partial 3-positivity
conditions �8�, including the T2 condition �11–13�. The
2-RDM energies are compared to the exact energies from the
Lieb-Wu equations �before taking the thermodynamic limit�
for a broad range of interaction strengths.

II. THEORY

In this section, we define the Hubbard Hamiltonian, sum-
marize the lower-bound variational principle for the ground-
state energy as a function of the 2-RDM including the im-
posed N-representability constraints, and develop a measure
of correlation for the Hubbard model by using the cumulant
�or connected� part of the 2-RDM.

A. Lower-bound variational principle

The one-dimensional Hubbard Hamiltonian in a lattice-
site basis set is given by

Ĥ = − �
i

���

�
�=�,�

�âi,�
† âi+1,� + âi,�

† âi−1,�� + U�
i

���

âi,�
† âi,�âi,�

† âi,�,

�1�

where âi,�
† and âi,� are the creation and annihilation opera-

tors, respectively, for a particle at site i with spin �, and the
symbol ��� represents the number of lattice sites. Periodic
boundary conditions are imposed on the lattice. The spin �
of the particle is either +1/2 ��� or −1/2 ���. In the calcu-
lations, the lowest singlet state of the half-filled Hubbard
model is computed, where half-filled means that the number
N of fermions equals the number of lattice sites ���. Taking
the expectation value of the Hamiltonian yields the energy

E = �
i,j,k,l

���

�1Tk,�
i,�

�
1Il,�

j,� + 1Ik,�
i,�

�
1Tl,�

j,� + 2Uk,�;l,�
i,�;j,��2Dk,�;l,�

i,�;j,� ,

�2�

where the elements of the one- and two-particle
reduced Hamiltonian matrices, 1T and 2U, respectively, are
1Tk,�

i,� =−1 if i=k±1 and 2Uk,�;l,�
i,�;j,� =U if i= j=k= l, and

2Dk,�;l,�
i,�;j,� = ���âi,�

† âj,�
† âl,�âk,���	 �3�

is the two-particle reduced density matrix �2-RDM�.
Direct variational minimization of Eq. �2� yields an en-

ergy that is unrealistically low because the 2-RDM must be
constrained by N-representability conditions �3�. A system-
atic hierarchy of N-representability conditions, known as
p-positivity conditions, has been developed. Coleman and
Yukalov �3� and Garrod and Percus �4� originally showed
that three different matrix forms of the 2-RDM must be con-
strained to be positive semidefinite. A matrix is positive
semidefinite if and only if all of its eigenvalues are non-
negative. These conditions, which are called 2-positivity
conditions, have been generalized by Erdahl and Jin �7� and
Mazziotti and Erdahl �8� to p-positivity conditions which
enforce the generalized uncertainty relations for all pairs of
Hermitian p /2-body operators. Calculations on atoms and
molecules �10,11,13� as well as quasi-spin models �8,12,23�
show that the lower bound on the ground-state energy rap-
idly converges with increasing p.

The p-positivity conditions may be explained as follows.
The p-particle RDM may be represented by �p+1� distinct
metric �or overlap� matrices M

Mj
i = ���ĈiĈj

†��	 , �4�

where each Ĉi is a product of p creation and/or annihilation
operators �8�. The three metric matrices of 2-positivity, de-
noted as the 2D-, 2Q-, and 2G-matrices, can be generated by

choosing the operators Ĉi to be products of two creation
operators, two annihilation operators, and one creation and
one annihilation operator, respectively �8,17�:

TABLE I. Errors in the ground-state energies of the half-filled Hubbard model with ���=6 from the
variational 2-RDM method with the DQG and DQGT conditions. Exact full-configuration-interaction �FCI�
energies are computed by Lanczos diagonalization. Energies are in dimensionless units.

U

FCI DQG DQGT

EFCI ECORR ERDM−EFCI %ECORR ERDM−EFCI %ECORR

1 −6.601 −0.203 −0.0161 107.94 −0.0006 100.30

2 −5.409 −0.830 −0.0669 108.06 −0.0046 100.55

3 −4.433 −1.897 −0.1401 107.39 −0.0150 100.79

4 −3.669 −3.334 −0.2094 106.28 −0.0212 100.63

8 −2.048 −10.122 −0.2999 102.96 −0.0338 100.33

20 −0.853 −29.163 −0.1870 100.64 −0.0160 100.05

40 −0.429 −59.573 −0.1009 100.17 −0.0064 100.01

80 −0.215 −119.785 −0.0514 100.04 −0.0016 100.00
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2Dk,l
i,j = ���âi

†âj
†âlâk��	 , �5�

2Qk,l
i,j = ���âiâjâl

†âk
†��	 , �6�

2Gl,j
i,k = ���âi

†âkâj
†âl��	 , �7�

where the indices refer to a finite basis set of spin orbitals.
Each of these metric matrices must be positive semidefinite,
which we indicate by 2D	0, 2Q	0, and 2G	0. By rear-
ranging the second-quantized operators in Eqs. �6� and �7�,
we can express 2Q and 2G in terms of 2D, and hence, the
2-positivity conditions for 2Q	0 and 2G	0 restrict the al-
lowed values for 2D in the variational expression for the
energy in Eq. �2�.

If we define the set of 
Ĉi� to include all products of three
creation and/or annihilation operators, we generalize the
three 2-positivity metric matrices to obtain four 3-positivity
metric matrices:

3Dl,m,n
i,j,k = ���âi

†âj
†âk

†ânâmâl��	 , �8�

3El,m,n
i,j,k = ���âi

†âj
†âkân

†âmâl��	 , �9�

3Fl,m,n
i,j,k = ���âiâjâk

†ânâm
† âl

†��	 , �10�

3Ql,m,n
i,j,k = ���âiâjâkân

†âm
† âl

†��	 . �11�

Relating these matrices by linear mappings and restricting
them to be positive semidefinite generates the 3-positivity
conditions. Approximate 3-positivity conditions, originally
proposed by Erdahl �5�, are given by

T1 = 3D + 3Q 	 0, �12�

T2 = 3E + 3F 	 0. �13�

These special combinations of the 3-positive metric matrices
cause the connected �or cumulant� �6,41–44� part of the met-
ric matrices to cancel exactly, and hence, both the T1 and the
T2 metric matrices can be evaluated with the 2-RDM only
�12,13�. The T1 and T2 conditions were implemented recently
for atoms and molecules �11,13,20� and the Lipkin model
�12�. Because previous investigations have the found the T1
condition to be less important than the T2 condition �11�, it
will not be employed in the present paper, and the use of
2-positivity �DQG� and the T2 condition will be denoted by
DQGT.

The 2-RDM and each of the metric matrices are both
spin- and symmetry-adapted �13,40�. The spatial symmetry
adaptation is accomplished by the Bloch transformation
âk=�re

ikrâr ,r��. For ���=6, the largest RDM block in the

TABLE II. Accuracy of the 2-RDM as a function of the interaction strength U for the lowest singlet state
of the half-filled Hubbard model with ���=6. Spin adaptation of the 2-RDM yields two distinct matrices 2Ds
and 2Da which are symmetric and antisymmetric respectively in the permutation of their indices �13,40�. The
error in the 2-RDM is reported as the L2 norm of the difference matrix from the approximate 2-RDMs and the
exact 2-RDMs from Lanczos diagonalization �FCI�.

U

Antisymmetric Symmetric

�2DFCI�2

�2DRDM− 2DFCI�2

�2DFCI�2

�2DRDM− 2DFCI�2

DQG DQGT DQG DQGT

1 0.9873 0.0039 0.0010 1.0042 0.0199 0.0049

2 0.9482 0.0137 0.0030 1.0056 0.0410 0.0044

3 0.8834 0.0225 0.0051 0.9910 0.0722 0.0163

4 0.8026 0.0344 0.0088 0.9589 0.1127 0.0241

8 0.5543 0.0641 0.0074 0.8265 0.2056 0.0166

20 0.3798 0.0921 0.0093 0.7383 0.2782 0.0252

40 0.3372 0.0969 0.0078 0.7226 0.2913 0.0204

80 0.3241 0.0981 0.0082 0.7185 0.2946 0.0208

FIG. 1. The total, connected, and unconnected energies as func-
tions of U for the 6-site half-filled Hubbard model. The connected
�correlation� energy grows dramatically after U=6, while the total
energy remains fairly constant due to significant cancelation of the
connected and unconnected energies. Energies are computed from
the connected part of the 2-RDM obtained from FCI.
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Wannier representation is 36�36, but in the Bloch represen-
tation the largest RDM block is only 6�6. The ���-fold
reduction in matrix rank reduces the computational work by
����3. The SU�2� pseudospin symmetry �39� was not used in
the present calculations.

B. Correlation analysis

The correlation energy is usually defined as the exact en-
ergy in a given finite basis set, obtained from full configura-
tion interaction, minus the Hartree-Fock energy. For strongly
correlated systems, however, the Hartree-Fock calculation
may not be meaningful. In this paper, we define the correla-
tion energy as the energy from the connected �or cumulant�
part 2
 of the 2-RDM:

E = Tr�2K2
� , �14�

where 2
 is defined by the cumulant expansion of the
2-RDM �6,41–44�:

2Dk,l
i,j = 1Dk

i Ù 1Dl
j + 2
k,l

i,j �15�

=
1

2
�1Dk

i
�

1Dl
j − 1Dl

i
�

1Dk
j� + 2
k,l

i,j . �16�

The wedge Ù denotes the antisymmetric tensor product
known as the Grassmann wedge product �6�. Because the
mean-field �or unconnected� energy calculated from 1DÙ 1D
is not necessarily the variationally optimized solution from a
Hartree-Fock computation, it will always be an upper bound
on the Hartree-Fock energy. Consequently, the correlated �or
connected� energy in Eq. �14� is a rigorous lower bound to
the conventional value of the correlation energy.

III. COMPUTATIONAL METHODOLOGY

The energy minimization in Eq. �2� with a 2-RDM con-
strained by N-representability conditions generates a special
optimization problem which can be solved by semidefinite
programming �8–11,13–17�, The 2-RDM semidefinite pro-
gramming for the DQG conditions was performed with a
second-order primal-dual interior-point algorithm imple-
mented in SeDuMi �45�, while the optimization for the
DQGT conditions was performed with a first-order nonlinear
algorithm implemented in RRSDP �16,17�. We calculated total
energies for ���=6, 10, and 14 using the variational 2-RDM
method with two levels of N-representability conditions, the
2-positivity conditions �DQG� and the 2-positivity conditions
plus the T2 condition �DQGT�. For six sites, correlation �or
connected� energies were computed from the connected �or
cumulant� part of the 2-RDM. Exact energies were obtained
by numerical solution of the exact Lieb-Wu equations using
MAPLE �46�, while exact RDMs were obtained using the
ARPACK �47� Lanczos diagonalization method in MATLAB

�48�.

IV. RESULTS

For the lowest singlet state of the half-filled Hubbard
model with ���=6, Table I shows the error in the ground-
state energy as a function of the interaction strength U. The
percentage of correlation energy achieved is always within
10% for the DQG constraints and 1% for the DQGT con-
straints, which highlights the nonperturbative character of
the variational 2-RDM method with the positivity conditions.
In general, the addition of the T2 condition improves the
lower bound on the ground-state energy by an order of mag-
nitude. The largest absolute error is obtained when U=8,

TABLE III. Ground-state energies per lattice site E / ��� of the half-filled Hubbard model with ���=10 and
���=14 from the variational 2-RDM method with the DQG and DQGT conditions. The energy errors are
reported as energy error per lattice site, that is �ERDM−EExact� / ���. The exact energies were obtained via
numerical solution of the Lieb-Wu equations using MAPLE �46�. Energies are in dimensionless units.

U

���=10 ���=14

EExact

per site

Error per site

EExact

per site

Error per site

DQG DQGT DQG DQGT

1 −1.0614 −0.0040 −0.0002 −1.0511 −0.0046 −0.0004

2 −0.8638 −0.0162 −0.0009 −0.8539 −0.0185 −0.0024

3 −0.7046 −0.0326 −0.0021 −0.6963 −0.0362 −0.0041

4 −0.5834 −0.0458 −0.0052 −0.5777 −0.0491 −0.0077

5 −0.4933 −0.0533 −0.0075 −0.4895 −0.0561 −0.0094

6 −0.4255 −0.0568 −0.0085 −0.4226 −0.0594 −0.0099

7 −0.3730 −0.0579 −0.0085 −0.3707 −0.0603 −0.0097

8 −0.3315 −0.0576 −0.0082 −0.3295 −0.0599 −0.0089

10 −0.2704 −0.0547 −0.0069 −0.2688 −0.0570 −0.0074

20 −0.1390 −0.0372 −0.0027 −0.1381 −0.0391 −0.0028

100 −0.0281 −0.0087 −0.0002 −0.0279 −0.0093 −0.0001
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where competition between kinetic effects and localization
effects �U� is strong. As U→�, where ordinary perturbation
theory fails, the variational 2-RDM method with both DQG
and DQGT constraints remain accurate. Figure 1 shows the
total, connected, and unconnected energies as a function of U
for the 6 site Hubbard model. The connected �correlation�
energy grows dramatically after U=6, while the total energy
remains fairly constant due to significant cancellation of the
connected and unconnected energies. In addition to energies,
the variational 2-RDM method with positivity conditions
yields accurate 2-RDMs for the calculation of other ground-
state properties. Table II shows the L2-norm of the matrix
difference between the exact and approximate 2-RDMs. Spin
adaptation of the 2-RDM yields two distinct matrices 2Ds
and 2Da, which are symmetric and antisymmetric, respec-
tively, in the permutation of their indices �13,40�. As with the
energies, the 2-RDMs calculated by DQGT are generally an
order of magnitude more accurate than those of DQG.

With the variational 2-RDM method using the DQG and
DQGT conditions, Table III examines the ground-state ener-
gies per lattice site E / ��� of the half-filled Hubbard model
with ���=10 and ���=14. The energy error per site is com-
puted by �ERDM−EExact� / ��� where the exact energies were
obtained via numerical solution of the Lieb-Wu equations
using MAPLE. The energy per site slightly increases as the
number of sites per period ��� is increased from 10 to 14.
This increase reflects the contributions of the correlations
with a length scale between 10 and 14. As for ���=6 the
maximum error for ���=10 and ���=14 is near U=8 where
there is strong competition between the kinetic and static
terms in the Hamiltonian. The steep increase in absolute er-
ror between U=4 and U=8 for DQGT suggests an increase
in the importance of higher-order positivity conditions. As U
becomes large, which corresponds to the t-J model, the en-
ergies from both DQG and DQGT become more accurate.
The addition of the T2 condition generally improves the
lower bound on the ground-state energy by an order of mag-
nitude.

V. CONCLUSIONS

Variational 2-RDM calculations employing positivity con-
straints known as the DQG and DQGT conditions have been
shown to be accurate for the one-dimensional Hubbard

model. Although an exact solution for the one-dimensional
Hubbard model exists �34�, these calculations suggest that
the variational 2-RDM method is an excellent candidate for
approximate numerical calculations on other strongly corre-
lated lattice models. There exist few, if any, approximate
numerical methods that are capable of treating strongly cor-
related models, such as the Hubbard model, accurately for a
wide range of parameters. The potentially exact methods
QMC and DMRG are incredibly powerful, but they often
require significant computational resources and have well-
known limitations.

Important aspects of the variational 2-RDM method are as
follows: �i� a distinctive lower bound on the ground-state
energy is generated, �ii� spin symmetry, which is often diffi-
cult for wave-function-based methods, is implemented
readily on the space of two electrons �13,40�, �iii� spatial
symmetry permits the 2-RDM to be represented by many
small matrix blocks for computational efficiency, and �iv� the
positivity conditions are size extensive, meaning that the er-
ror in the ground-state energy scales linearly with system
size. Previous 2-RDM calculations �49� have produced accu-
rate results for zero-dimensional �Lipkin quasi-spin models
�8,12,22��, quasi-one-dimensional �atomic chains �50��, and
three-dimensional �molecules �18,19� and radicals �20��
quantum systems. The 2-RDM variational method and the
N-representability conditions employed in this paper are ap-
plicable to a wide variety of quantum systems. Quantum lat-
tice systems with more general kinetic and potential terms
could be calculated without modification, and unlike alge-
braic and perturbative methods, the variational 2-RDM
method is not limited to special cases, such as half-filling or
special U / �t� values. Because of this generality, variational
2-RDM methods provide an important new tool for studying
lattice models, particularly those with strong correlations.
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