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State-dependent quantum electrodynamic corrections are evaluated for the hyperfine splitting of nS states for
arbitrary principal quantum number n. The calculations comprise both the self-energy and the vacuum-
polarization correction of order ��Z��2EF and the recoil correction of order �Z��2�m /M�EF. Higher-order
corrections are summarized and partly reevaluated as well. Accurate predictions for hydrogen hyperfine split-
ting intervals of nS states with n=2, . . . ,8 are presented. The results obtained are important due to steady
progress in hydrogen spectroscopy for transitions involving highly excited S states.
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I. INTRODUCTION

Investigations of the hyperfine structure in light hydro-
genlike atomic systems are interesting for two main reasons.
First, accurate measurements of the hyperfine splitting �hfs�,
combined with high-precision ab initio calculations, can
yield fundamental tests of bound-state quantum electrody-
namic �QED� theory. Second, the accurate knowledge of the
hfs also constitutes a necessary ingredient in the determina-
tion of fundamental constants from hydrogen and deuterium
spectroscopy. The hyperfine components of transitions in hy-
drogen can be accurately resolved at the current level of
spectroscopic accuracy, and the knowledge of the hfs of ex-
cited states is therefore necessary for the interpretation of the
experimental data.

The ground-state hfs in hydrogen is known with an out-
standing accuracy �a part in 1012� for over of 3 decades, and
the value of

�E1S = 1420 405 751.768�1� Hz �1�

has been obtained in Ref. �1� as a conservative average of
various experimental investigations of comparable accuracy,
the first of which was reported in Ref. �2�. Unfortunately, our
theoretical understanding of the ground-state hfs is limited
by the insufficient knowledge of the nuclear charge and mag-
netization distributions, whose contribution of about
−50 kHz �30 ppm� cannot be accurately calculated at
present.

One of the possibilities to overcome this difficulty �3� is
to study the normalized difference of the nS and 1S hfs in-
tervals,

�n = n3�EnS − �E1S. �2�

In this combination of energy intervals, the hfs energy shifts
due to the nuclear charge and magnetization distributions are
largely eliminated. Indeed, the lowest-order nuclear correc-
tions to �E1S and �EnS scale with the nonrelativistic electron
density at the position of the nucleus ��n�r=0��2 which is
strictly proportional to n−3. The nuclear effects thus do not
contribute to the difference �n to leading order. Theoretical

investigations show that the specific difference �n provides
an opportunity to test the QED theory of bound states on a
level of about two orders of magnitude better than for the
ground-state hyperfine interval �E1S alone �1�. According to
widely accepted terminology, the corrections that depend on
n through ��n�r=0��2 only are called “state independent.”
Thus, only state dependent correction should be considered
in theoretical investigations of the difference �n.

Accurate experimental results for the difference �2 are
presently available for the hydrogen, deuterium, and the 3He
ion. Notably, recent progress has been achieved for hydrogen
�4� and deuterium �5� via optical spectroscopy, by comparing
the 1S and 2S hyperfine splittings via a phase-coherent opti-
cal measurements of the 1S�F=0�Û2S�F=0� versus the
1S�F=1�Û2S�F=1� transition. The best absolute accuracy
for the difference �2 is, however, still obtained for the 3He
ion in a combination of two relatively old measurements
�6,7�,

�2�3He+� = 1189.979�71� kHz. �3�

While the specific difference of the 2S and 1S hfs inter-
vals has been a subject of experimental and theoretical �3,8�
investigations for a long time, the difference �n for n�2 has
attracted much less attention up to now. The case n�2 is,
however, becoming of significant interest nowadays, due to
steady progress in hydrogen spectroscopy for transitions in-
volving highly excited S states. Two ongoing experiments
could be mentioned in this connection, which concern the
hydrogen 1S−3S transition �9,10� and are expected to reach
a sub-kilohertz level of accuracy.

In the present work, we perform a calculation of the lead-
ing state-dependent self-energy and vacuum-polarization cor-
rections for an arbitrary nS state. For the case n=2, we re-
produce the well-known results by Zwanziger �8�. We also
generalize the derivation of the leading state-dependent re-
coil correction given by Sternheim �3� for n=2 to general n.
Next, we summarize and partly reevaluate the state-
dependent higher-order correction and present numerical re-
sults for the difference �n with n=2, . . . ,8 for hydrogen.
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This paper is organized as follows: Basic quantities are
introduced in Sec. II. Third-order state-dependent corrections
are analyzed and summarized in Sec. III. Among these, self-
energy corrections are treated in Sec. III A, vacuum-
polarization corrections in Sec. III B, and recoil corrections
in Sec. III C. The current status of higher-order state-
dependent corrections is discussed in Sec. IV. Finally, the
total theoretical predictions for the normalized difference of
the hfs intervals �n in hydrogen are presented in Sec. V for
n=2, . . . ,8.

II. GENERAL FORMULAS AND NOTATIONS

We are using natural units with �=c=�0=1. The electron
charge is denoted by e=−�e� and �=e2 / �4��. The magnetic
dipole moment of the nucleus is

	� = g	NI�, �4�

where g denotes the nuclear g factor, 	N= �e � / �2mp� is the
nuclear magneton, and mp is the proton mass. The vector
potential generated by the nuclear dipole moment is

A� =
	� 
 r�

4�r3 = −
	�

4�

 ��

1

r
. �5�

The interaction of the bound electron with the dipole nuclear
magnetic field is given by the Fermi-Breit operator

Vhfs = − e�� · A� =
�e�
4�

�� · �	� 
 r��
r3 . �6�

The expectation value of the Fermi-Breit operator on Dirac
point-nucleus wave functions is well known. We write it as

Ehfs = ��Z��3g

2

m2

mp

�

���
1

n3�2� + 1���2 − 1/4�


A�Z���F�F + 1� − I�I + 1� − j�j + 1�� , �7�

where A�Z�� is a relativistic factor �A�Z��=1+O�Z��2�,

A�Z�� = n3����2� + 1�
2��� + nr� − N

N4��4�2 − 1�
. �8�

Here, N=�nr
2+2nr�+�2, nr=n− ���, �=��2− �Z��2, n is the

principal quantum number of the electron, � is its Dirac an-
gular quantum number, j= �� �−1/2 is the total momentum of
the electron, and m is the electron mass.

For future reference, we also give the magnetic field cor-
responding to the vector potential �5�,

B� = �� 
 A� =
2

3
	� 
3�r� +

3�	� · r�̂�r�̂ − 	�

4�r3 . �9�

In the nonrelativistic limit, the hyperfine Hamiltonian Hhfs
is given by the sum of two terms, the first of which is pro-

portional to �� ·B� and is denoted here as HS+HD, whereas the
second one �labeled HL� corresponds to the interaction of the
nuclear moment with the magnetic field of the moving elec-
tron, which in turn is proportional to the orbital angular mo-

mentum L� . We have

Hhfs = HS + HD + HL, �10a�

HS =
�e�
3m

�� · 	� 
3�r� , �10b�

HD =
�e�
8m

3�� · r�̂	� · r�̂ − �� · 	�

�r3 , �10c�

HL =
�e�
4m

	� · L�

�r3 . �10d�

Here, r�̂ is the unit vector in the direction of r�. For the
Schrödinger wave function �n of an nS state, the expectation
value of the nonrelativistic Hamiltonian is

�Hhfs� = �HS� =
�e�
3m

��� · 	� ���n�0��2, �11�

and the splitting between the ground-state levels with
F= I+ 1

2 and F= I− 1
2 gives us the Fermi energy

EF =
�e�
3m

g	N��n=1�0��2�2I + 1� , �12�

where ��n=1�0��2= �Z��3m3 /� in the nonrecoil limit.

III. THIRD-ORDER CORRECTIONS

A. Self-energy

The leading state-dependent self-energy correction to the
hyperfine splitting can be conveniently expressed as


�n
SE =

�

�
�Z��2EF	a21

SE�n,1�ln��Z��−2� + a20
SE�n,1�
 .

�13�

Here, 
�n
SE is the contribution to the normalized difference

�n due to self-energy effects, where �n is defined according
to Eq. �2�. In general, we will denote various contributions to
�n by the symbol 
�n with appropriate superscripts. The
coefficients aij

SE�n ,1� are understood as originating from
the difference aij

SE�n ,1�=aij
SE�nS�−aij

SE�1S�, with aij
SE�nS�

being the corresponding coefficient for the nS state. As usual,
the first index of aij

SE counts the power of Z�, and the second
one indicates the power of the logarithm ln��Z��−2�.

The self-energy correction �13� consists of two parts in-
duced by the low-energy and the high-energy virtual photons
�11�. The low-energy part can be immediately obtained by
generalizing formulas given in Refs. �11–13�. The corre-
sponding contribution 
�n

SE,L expressed in units of
��Z��2 /EL� reads


�n
SE,L

�

�
�Z��2EF

=
CL

�

�
�Z��2

=
8

3
�3

4
−

1

n
+

1

4n2 + � + ��n� − ln�n��

 ln� �

�Z��2m
� + N�nS� − N�1S� . �14�

Here, N�nS� is a delta correction to the Bethe logarithm,
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whose numerical values are given in Table I.
We now turn to the contribution due to high-energy vir-

tual photons. Up to relative order ��Z��2, we can use the
modified Dirac Hamiltonian Hrad �for a derivation see, e.g.,
Chap. 7 of Ref. �14��, which reads

Hrad = �� · �p� − eF1��� 2�A� � + �m + F1��� 2�V

+ F2��� 2�
e

2m
�i�� · E� − ��� · B� � . �15�

This Hamiltonian leads to various self-energy corrections.
The first of these is an F2�0� correction to the effective po-
tential, evaluated on the relativistic wave functions. It is gen-
erated by the following term in Eq. �15�:


H = − F2�0�
e

2m
��� · B� =

�

2�
��HS + HD� , �16�

where the Schwinger result F2�0�=� / �2�� has been used, HS

and HD are given in Eqs. �10b� and �10c�, respectively, and �
is the Dirac �0 matrix in the Dirac representation. The cor-
responding relative correction to the Fermi energy �12� is

�

2�

�����HS + HD����
���HS���

. �17�

Here, � is the fully relativistic �Dirac� hydrogen wave func-
tion expanded in powers of Z�, whereas � is the nonrelativ-
istic �Schrödinger-Pauli� counterpart. Under the replacement
�→�, Eq. �17� simply gives the leading term � / �2��. The
numerator of Eq. �17� diverges in relative order �Z��2 when
evaluated on an nS state. A finite result is obtained, however,
when the weighted �or normalized� difference of matrix ele-
ments is considered. We define the normalized difference for
the general operator A as

��A�� = n3�nS�A�nS� − �1S�A�1S� . �18�

The correction �17� leads to the following contribution to the
normalized difference �2� of hfs intervals:

C1 =

�n

SE,1

EF
=

�

2�

������HS + HD�����
���HS���

. �19�

The second correction �C2� is an F2� correction to the ef-
fective potential �16�, i.e.,

− F2��0�
e

2m
��� 2�� · B� , �20�

to be evaluated on the nonrelativistic wave functions. For the
third correction C3, we have to evaluate an F1� correction to
the effective potential �10b�; the relevant Hamiltonian can be

expressed as F1��0��� 2HS. The fourth correction is a second-
order correction due to an effective one-loop Lamb-shift po-
tential, which can be expressed as

�V = ��Z���4

3
ln
 m

2�
� +

10

9
�
3�r�

m2

=
�

3�
�Z���ln
 m

2�
� +

5

6
��� 2

m2V . �21�

Here, � is a noncovariant low-energy photon cutoff and V
denotes the Coulomb potential V=−Z� /r. Finally, the fifth
correction is a second-order contribution due to negative-
energy states and is induced by the relativistic hyperfine po-
tential Vhfs as given in Eq. �6� and the term

F2�0�
e

2m
i�� · E� �22�

from the modified Dirac Hamiltonian �15�, where E� is the
electric field generated by the Coulomb potential. From the r
scaling of the two involved Hamiltonians, it is clear that the
resulting operator has to be proportional to 1/r4. The prefac-
tor can be obtained using Dirac algebra and considering the
fact that the main contribution comes from negative-energy
states with an energy �−m.

The high-energy corrections discussed so far are explicitly
given by

C1 =
�

2�

������HS + HD�����
���HS���

, �23a�

C2 =
�

12�

�� �� 4

m4V��
��� 2

m2V� , �23b�

C3 =
�

3�
�ln
 m

2�
� +

11

24
� �� �� 4

m4V��
��� 2

m2V� , �23c�

C4 =
2�

3�
�ln
 m

2�
� +

5

6
� �� �� 2

m2V
1

�E − H��
�� 2

m2V��
��� 2

m2V� , �23d�

TABLE I. Numerical values of the quantity N�nS�.

n N�nS�

1 17.855 672 03�1�
2 12.032 141 58�1�
3 10.449 809�1�
4 9.722 413�1�
5 9.304 114�1�
6 9.031 832�1�
7 8.840 123�1�
8 8.697 639�1�
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C5 =
�

�

�� �2

2m3r4 ��
��� 2

m2V� . �23e�

Here, we reemphasize that ��� is the relativistic wave func-
tion, ��� is the nonrelativistic wave function, and all matrix
elements �A�, by default, are understood in terms of the non-
relativistic wave function.

The results for the normalized S-state difference, ex-
pressed in units of ��Z��2 /�, are

C1

�

�
�Z��2

=
19

48
+

5

8
−

49

48n2 −
1

4
�� + ��n� − ln�n�� ,

�24a�

C2

�

�
�Z��2

=
1

6

 1

n2 − 1� , �24b�

C3

�

�
�Z��2

=
1

6

 1

n2 − 1��2

3
ln
 m

2�
� +

11

36
� , �24c�

C4

�

�
�Z��2

=
8

3
�ln
 m

2�
� +

5

6
��1 −

1

n
+ � + ��n� − ln�n�� ,

�24d�

C5

�

�
�Z��2

= −
2

3
+

1

2n
+

1

6n2 + � + ��n� − ln�n� . �24e�

Adding all the contributions together, we obtain the fol-
lowing result for the self-energy correction �13�,

a21
SE�n,1�ln��Z��−2� + a20

SE�n,1� =
CL + � j=1

5 C j

�

�
�Z��2

. �25�

Of course, the dependence on the noncovariant photon en-
ergy cutoff � disappears in the final answer. The result for the
logarithmic term is �16�

a21
SE�n,1� =

8

3
�3

4
−

1

n
+

1

4n2 + � + ��n� − ln�n�� . �26�

For the nonlogarithmic term a20
SE�n ,1�, we obtain the general

result

a20
SE�n,1� = N�nS� − N�1S� +

71

48
−

79

72n

−
55

144n2 +
107

36
�� + ��n� − ln�n��

−
8

3
ln�2��3

4
−

1

n
+

1

4n2 + � + ��n� − ln�n�� .

�27�

In the particular case n=2, we reproduce the known value for
this coefficient �15�. Explicit numerical results for a20

SE�n ,1�
are given in Table II for n=1, . . . ,8. In the table, we also list
the values of a20

SE�nS� obtained with the help of an improved
1S numerical value, which we give here for reference pur-
poses

a20
SE�1S� = 17.122 338 75�1� . �28�

This result can be immediately obtained according to the
improved numerical evaluation of the low-energy part as de-
scribed in Ref. �13�, which contains a correction to the Bethe
logarithm induced by a Dirac-delta local potential �see also
the entries in the fourth column of Table II of Ref. �17��.

B. Vacuum polarization

The leading state-dependent vacuum-polarization correc-
tion to the hyperfine splitting can be conveniently expressed
as


�n
VP =

�

�
�Z��2EFa20

VP�n,1� . �29�

The correction 
�n
VP consists of two parts �8�, with the first

one given by a matrix element of the radiatively corrected
external magnetic field and the other by a matrix element of
the vacuum-polarization operator between the wave func-
tions corrected by the presence of the external magnetic field.

We start with the first part. To the leading order, the ra-
diatively corrected magnetic interaction �magnetic loop� is
well-known to be

TABLE II. Numerical values of the nonlogarithmic self-energy
coefficient for the normalized difference �a20

SE�n ,1�� and for the
single nS states �a20

SE�nS�� in the range n=1, . . . ,8.

n a20
SE�n ,1� a20

SE�nS�

1 17.122 338 75�1�
2 −5.221 233 33�1� 11.901 105 41�1�
3 −6.705 291�1� 10.417 048�1�
4 −7.402 951�1� 9.719 388�1�
5 −7.809 635�1� 9.312 703�1�
6 −8.076 773�1� 9.045 565�1�
7 −8.266 081�1� 8.856 258�1�
8 −8.407 461�1� 8.714 878�1�
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VVP,mag�r�� = Vhfs�r��
2�

3�
�

1

�

dt
�t2 − 1

t2 
1 +
1

2t2�

�1 + 2mrt�e−2mrt. �30�

We recall that the matrix element of Vhfs between the Dirac
wave functions is, for nS states

�n�Vhfs�n� = −
EF

m2�Z��3�
0

�

drgn�r�fn�r� , �31�

where gn and fn are the upper and the lower radial compo-
nent of the Dirac wave function, respectively. We thus im-
mediately have that


En
VP,mag = �n�VVP,mag�n�

= −
EF

m2�Z��3

2�

3�
�

1

�

dt
�t2 − 1

t2 
1 +
1

2t2�

�

0

�

dr�1 + 2mrt�e−2mrtgn�r�fn�r� . �32�

To the leading order in Z� for an nS state,

gn�r� =
2

n

�

n
�3/2

e−�r/nLn−1
1 
2�r

n
� , �33�

and

fn�r� =
1

2m

d

dr
gn�r� , �34�

where �=Z�m, and Ln−1
1 are generalized Laguerre polyno-

mials. Performing the integration over r in Eq. �32� with help
of entry �2.19.14.6� in Vol. 2 of Ref. �18�, expanding the
result in Z�, and integrating over t, we obtain


En
VP,mag =

EF

n3

�

�
�Z���3�

8
−

2

15

5 +

1

n2��Z��� . �35�

The corresponding contribution to �n is


�n
VP,mag =

�

�
�Z��2EF

2

15

1 −

1

n2� . �36�

The second vacuum-polarization contribution is given by
the second-order correction


En
VP,el = 2�n�Vhfs

1

�E − H��
VVP�n� , �37�

where VVP is the vacuum-polarization potential. Due to
spherical symmetry of VVP, only the nS intermediate states
contribute in the above expression. To the leading order, we
have

VVP�r�� = −
4

15

��Z��
m2 
�r�� , �38�

and we can replace Vhfs→HS, with HS being given in Eq.
�10b�. The second-order matrix element �37� diverges for nS
states. It is, however, finite for the normalized difference,
with the result


�n
VP,el = −

8

15
EF

��

m5�Z��2 ��
�r��
1

�E − H��

�r���� . �39�

Using the formulas from Ref. �17� for the matrix element, we
arrive at


�n
VP,el =

�

�
�Z��2EF
−

8

15
��1 −

1

n
+ � + ��n� − ln�n�� .

�40�

Finally, the total result for the vacuum-polarization cor-
rection �Eq. �29�� reads

a20
VP�n,1� = −

8

15
�3

4
−

1

n
+

1

4n2 + � + ��n� − ln�n�� ,

�41�

in agreement with Ref. �16�.

C. Recoil corrections

The leading-order state-dependent recoil correction can be
parameterized as


�n
REC = �Z��2 m

M
EFa20

REC�n,1� , �42�

where M is the mass of the nucleus. The general expression
for this correction was derived by Sternheim �3�. It reads


En
REC = �HM

�3�� + ��2HM
�1� + HM

�2��
1

�E − H��
HM

�2�� , �43�

where

HM
�1� = −

e

8m2�� · E� −
p4

8m3 −
e

m
p� · 
A� , �44a�

HM
�2� = −

e

2m
�� · B� , �44b�

HM
�3� = −

e

2m
�� · �−

p2

4m2B� − B�
p2

4m2 −
e

2m
E� 
 A�

+
1

4m
�
E� 
 p� − p� 
 
E� �

−
i

8mM
��p� 
 A� − A� 
 p��,p�2�� . �44c�

Here, A� is given in Eq. �5�, 
E� is the electric field induced by
the scalar potential of a moving magnetic dipole 
V,


V = −
e

4�

	� +

Ze

2M
I�� 


p�

M
· ��

1

r
, �45�

and 
A� is the vector potential of the moving nucleus,
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e
A� =
1

8�

Z�

Mr

p� +

r�

r

r�

r
· p�� . �46�

The matrix elements in Eq. �43� diverge for nS states, but
they yield a finite result for the normalized difference �n,
which reads

a20
REC�n,1� = −

3

2

1 −

1

n2� −
7�

8
�17

28
−

9

14n
+

1

28n2 + �

+ ��n� − ln�n��+ 
1 − �

2�
��−

11

12
+

1

2n
+

5

12n2

+ � + ��n� − ln�n�� , �47�

where �=gM / �Zmp� and mp is the proton mass. For the par-
ticular case n=2, our result is in agreement with the one
originally obtained by Sternheim �3�.

D. Summary of the theory up to third order

To the leading order in the parameters �, Z�, and m /M,
the normalized difference of the hyperfine-structure nS inter-
vals �n is given by the sum of the relativistic �Breit�, self-
energy, vacuum-polarization, and recoil corrections

�n = �Z��2EF
a20
Br�n,1� +

�

�
	a21

SE�n,1�ln��Z��−2� + a20
SE�n,1�

+ a20
VP�n,1�
 +

m

M
a20

REC�n,1�� , �48�

where the Fermi energy EF is defined as the splitting be-
tween the ground-state levels with the atomic angular mo-
mentum F= I+1/2 and F= I−1/2 calculated within the non-
relativistic approximation and is given by

EF =
4

3
��Z��3 m2

mp

	

	N

2I + 1

2I

1 +

m

M
�−3

, �49�

with the nuclear magnetic moment 	=g	NI. Notice that this
expression follows from Eq. �12� after restoring the correct
reduced-mass dependence.

For the particular �and the most important� case n=2, the
coefficients in Eq. �48� were obtained long ago �3,8,19�. The
full n dependence of the coefficients a21

SE and a20
VP was re-

ported in Ref. �16�. In the present investigation, we have
derived the results for all coefficients in Eq. �48� for general
n. The self-energy, vacuum-polarization, and recoil correc-
tion are given by Eqs. �27�, �41�, and �47�, respectively. The
remaining second-order Breit contribution to �n is given by

a20
Br�n,1� = 
1

3
+

3

2n
−

11

6n2� . �50�

IV. HIGHER-ORDER CORRECTIONS

Higher-order QED and nuclear corrections to the differ-
ence �2 were extensively investigated during the last years
�16,20–25�. The general n dependence of the difference �n

received significantly less attention up to now. In this sec-
tion, we would like to summarize the results for higher-order
corrections and reevaluate some of them.

The higher-order relativistic �Breit� corrections are imme-
diately obtained by expanding the general formula �8�:


�n
Br

EF
= �Z��4
25

36
+

25

8n
−

67

36n2 −
55

12n3 +
21

8n4� + �Z��6
245

216

+
245

48n
−

721

432n2 −
1195

144n3 −
33

16n4 +
147

16n5 −
163

48n6� ,

�51�

where the sixth-order contribution is included for complete-
ness.

The state-dependent two-loop correction to order �2�Z��2

was found in Ref. �16� in the logarithmic approximation.
This result can be easily derived if we observe that the lead-
ing one-loop a10 correction for the ground-state hfs is gener-
ated by an effective magnetic form-factor correction �Eq.
�23a�� to the Hamiltonian �10b�. We thus employ �10b� as an
input for a Dirac-delta correction to the Bethe logarithm and
obtain the result


�n
two-loop = 
�

�
�2

�Z��2EF ln��Z��−2�
4

3


�3

4
−

1

n
+

1

4n2 + � + ��n� − ln�n�� , �52�

in agreement with Ref. �16�.
According to Ref. �16�, analogous considerations are

valid also for the radiative-recoil correction, and hence,


�n
rad-rec =

�

�
�Z��2 m

M
EF ln��Z��−2�
−

16

3
�


�3

4
−

1

n
+

1

4n2 + � + ��n� − ln�n�� . �53�

We now turn our attention to the state-dependent recoil
correction to order �m /M��Z��3EF, which we evaluate in the
logarithmic approximation. We have identified two such con-
tributions. The first one can be obtained as a second-order
perturbation correction induced by two effective local poten-
tials, the first one being HS �Eq. �10b�� and the second one
corresponding to the logarithmic recoil correction to the
Lamb shift to order �Z��5m2 /M. The result is


�n
HREC,a =

�Z��3

�

m

M
EF ln�Z��
−

4

3
�


�1 −
1

n
+ � + ��n� − ln�n�� . �54�

This expression generalizes the result for the difference �2
reported in Ref. �23�. The second contribution �absent in Ref.
�23�� is obtained as a second-order perturbation induced by
the operator HS and by the operator responsible for the non-
logarithmic recoil correction to the Lamb shift to order
�Z��5m2 /M. The logarithm of Z� then arises from the sec-
ond term of the Z� expansion of the electron propagator after
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an integration over the logarithmic region �26�. The result
reads


�n
HREC,b =

�Z��3

�

m

M
EF ln�Z��

28

3


�−
1

2
+

1

2n
+ � + ��n� − ln�n�� . �55�

We note that this contribution, unlike Eq. �54�, is finite for
single nS states. For 1S state, the constant in Eq. �55� turns
into �124/9+28/3 ln 2�, which coincides with a part of the
complete 1S result obtained by Kinoshita �27� �2CS in his
notation�. Our result for the logarithmic part of the fourth-
order recoil correction is the sum of Eqs. �54� and �55�,


�n
HREC =

�Z��3

�

m

M
EF ln�Z��


8�−
3

4
+

3

4n
+ � + ��n� − ln�n�� . �56�

We do not have a proof that this result is complete.
Some incomplete results for the fourth-order one-loop

self-energy and vacuum-polarization corrections were ob-
tained in Ref. �16�. With misprints being corrected in Ref.
�22�, these corrections read, respectively,


�n
HSE = ��Z��3EF�−

621

320

n2 − 1

n2 + 
191

16
− 5 ln 2�


�11

20
−

1

n
+

9

20n2 + � + ��n� − ln�n��� ,

�57a�


�n
HVP = ��Z��3EF
−

13

24
�


�−
55

26
−

1

n
+

81

26n2 + � + ��n� − ln�n�� .

�57b�

It should be noted that the one-loop self-energy correction
yields the largest contribution among all fourth-order correc-
tions mentioned so far and the incompleteness of the result
�57a� provides the dominant theoretical uncertainty for �n.
For the particular case n=2, this correction was evaluated
numerically to all orders in Z� in Refs. �21,25�. The devia-
tion of the contribution �57a� from the all-order result was
found to be on the level of 20%. The evaluation of the com-
plete result for the fourth-order vacuum-polarization correc-
tion is a much simpler task than for the self-energy. It can be
solved either analytically, as was done for n=2 in Ref.
�22,28�, or �which is much easier� numerically, as was done
for n=2 in Ref. �25�. However, in view of the absence of
complete results for the self-energy correction, we do not
pursue the matter any further in the current investigation.

The nuclear-structure correction was found in Refs.
�16,20� to be


�n
Nucl = − �Z��2�E1S

Nucl�−
5

4
−

1

n
+

9

4n2 + � + ��n� − ln�n��
+

4

3
�Z��2�� + ��n� − ln�n� +

n − 1

n

− 
RM

RE
�2n2 − 1

4n2 ��mRE�2EF, �58�

where RE and RM are the electric and the magnetic charge
radii, respectively, and �E1S

Nucl is the nuclear correction for
the ground-state hfs.

V. THEORETICAL RESULTS FOR �n

In this section, we collect all theoretical contributions
available to the normalized difference of nS states �n �Eq.
�2��. Numerical results for individual contributions and the
total theoretical values of �n in hydrogen are listed in Table
III for principal quantum numbers n=1, . . . ,8. The second-
order and third-order corrections summarized by Eq. �48� are
given in the first five rows of this table. Fourth-order QED
corrections discussed in Sec. IV are tabulated in the next
seven rows, and the nuclear-structure correction completes
the analysis. Parameters of the proton used for calculating
numerical data in Table III agree with those from Table 8 of
Ref. �1�. The nuclear-structure correction for the ground-state
hfs that enters Eq. �58� was taken from Ref. �22�, where it
was obtained by subtracting all known QED corrections
from the experimental result for the ground-state hfs �1�. Its
numerical value is −46 kHz.

We already mentioned above that in the particular case
n=2, there are complete all-order results available for the

�n

HSE and 
�n
HVP corrections. We thus employ the numerical

values for the self-energy and vacuum-polarization remain-
der functions for the difference �2 as given in Ref. �25�, as
well as the uncertainty estimates given in the cited reference.
The corresponding entries in the table are marked with the
asterisk. For n�2, we use the formulas �57a� and �57b� and
ascribe the 50% uncertainty to them. The error estimates for
the other fourth-order corrections are as follows: for the two-
loop and the radiative recoil corrections, we assume the un-
certainty to be a half the numerical value of the logarithmic
terms, while for the recoil correction we use 100% of the
correction given by Eq. �56�.

The two last rows of Table III are reserved for the total
theoretical predictions for the normalized difference �n and
for the complete values of the hfs frequency of excited hy-
drogenic nS states. The latter are obtained by combining the
highly accurate experimental value of the ground-state hfs
interval �1� and the theoretical prediction for �n given in the
previous row of the table.

For the case n=2, our evaluation differs from the previous
investigation of the difference �2 presented in Ref. �22� in
two ways: �i� we employ the latest numerical results for the
self-energy remainder from Ref. �25� and the error estimate
from this reference and �ii� we also have found an additional
�numerically small� higher-order logarithmic recoil contribu-
tion �55�. Despite the small change of the theoretical predic-
tion, our final result for the hfs frequency of the 2S state still
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deviates by 1.4� from the experimental result E2S
=177 566 860�16� Hz �4�. We mention also a similar �1.8��
deviation of the theoretical value of �2 for the 3He ion from
the experimental result �3� observed in Ref. �25�.

VI. CONCLUSION

The normalized difference of the hfs intervals �2
=8�E2S−�E1S has been a subject for both theoretical and
experimental investigations since a long time. In this paper,
we have presented calculations that generalize the previous
studies of �n=n3�EnS−�E1S to general n. Our results are
complete through third order in the parameters �, Z�, and
m /M; an estimation of the fourth-order corrections is also
supplied.

The dominant source of the present theoretical uncertainty
for the difference �n comes from the higher-order one-loop
self-energy correction. Further improvement of the theory
can be achieved by a numerical all-order �in Z�� evaluation

of this correction. Such a calculation has been carried out for
the difference �2 in Refs. �21,25� based on a method devel-
oped by a number of authors �29–31� and seems feasible for
higher values of n as well. It should be noted that the results
for hydrogen reported in Refs. �21,25� involved an extrapo-
lation of numerical data obtained for Z�5 towards Z=1. It
would clearly be preferable to perform a direct numerical
calculation of the higher-order self-energy correction for Z
=1, as it was done for the Lamb shift in Refs. �32,33�. This
project is underway.

ACKNOWLEDGMENTS

The authors acknowledge helpful discussions with P. J.
Mohr. U.D.J. acknowledges support from Deutsche
Forschungsgemeinschaft �DFG, Heisenberg program� under
Contract No. JE285/3-1, and V.A.Y. gratefully acknowledges
support from RFBR under Contract No. 04-02-17574. This
project has also been supported by the DFG collaborative
research Grant No. 436 RUS 113/853/0-1.

�1� S. G. Karshenboim, Phys. Rep. 422, 1 �2005�.
�2� L. Essen, R. W. Donaldson, M. J. Bangham, and E. G. Hope,

Nature �London� 229, 110 �1971�; L. Essen, R. W. Donaldson,
E. G. Hope, and M. J. Bangham, Metrologia 9, 128 �1973�.

�3� M. M. Sternheim, Phys. Rev. 130, 211 �1963�.
�4� N. Kolachevsky, M. Fischer, S. G. Karshenboim, and T. W.

Hänsch, Phys. Rev. Lett. 92, 033003 �2004�.
�5� N. Kolachevsky, P. Fendel, S. G. Karshenboim, and T. W. Hän-

TABLE III. Individual contributions to the normalized difference �n of hfs frequencies, and absolute values of the hyperfine splitting
frequencies of excited S states in hydrogen. For the entries marked with an asterisk �*�, we employ the numerical results for the self-energy
and vacuum-polarization remainder functions as reported in Ref. �25� instead of the analytic expressions given in Eqs. �57a� and �57b� used
in other cases. The absolute values for the hfs frequencies of excited states are obtained with the help of 1S experimental result in Eq. �1�
as a reference. Units are hertz.

Effect 2S 3S 4S 5S 6S 7S 8S

�Z��2 47 222.0 47 571.8 44 860.9 42 310.9 40 226.1 38 548.6 37 187.3

��Z��2 �SE� 1936.0 2718.6 3134.2 3390.9 3564.9 3690.4 3785.3

��Z��2 �VP� −58.0 −79.2 −90.1 −96.8 −101.3 −104.5 −106.9

�Z��2�m /M� −162.9 −210.3 −232.6 −245.6 −254.0 −260.0 −264.4

Sum of third
order

48 937.1 50 000.9 47 672.4 45 359.4 43 435.7 41 874.5 40 601.3

�Z��4 5.6 5.6 5.2 4.9 4.6 4.4 4.2

�2�Z��2 3.3�1.7� 4.5�2.3� 5.1�2.6� 5.5�2.8� 5.8�2.9� 6.0�3.0� 6.1�3.1�
��Z��2�m /M� −3.1�1.6� −4.2�2.1� −4.8�2.4� −5.2�2.6� −5.4�2.7� −5.6�2.8� −5.7�2.9�
��Z��3 �SE� 9.7�5�* 15.8�7.9� 19.1�9.6� 21.2�10.6� 22.7�11.3� 23.7�11.9� 24.5�12.3�
��Z��3 �VP� 3.0* 3.7�1.9� 3.8�1.9� 3.7�1.9� 3.7�1.9� 3.7�1.8� 3.7�1.8�
�Z��3�m /M� 0.3�3� 0.4�4� 0.4�4� 0.5�5� 0.5�5� 0.5�5� 0.5�5�

Sum of fourth
order

18.7�2.3� 25.8�8.7� 28.8�10.4� 30.6�11.4� 31.8�12.2� 32.7�12.7� 33.3�13.1�

Nucl −1.8 −1.8 −1.7 −1.6 −1.5 −1.5 −1.4

Total �n 48 954.0�2.3� 50 024.9�8.7� 47 699.5�10.4� 45 388.4�11.4� 43 466.0�12.2� 41 905.7�12.7� 40 633.2�13.1�

HFS frequency 177 556 838.2�3� 52 609 473.2�3� 22 194 585.2�2� 11 363 609.1�1� 6 576 153.79�6� 4 141 246.81�4� 2 774 309.35�3�

ULRICH D. JENTSCHURA AND VLADIMIR A. YEROKHIN PHYSICAL REVIEW A 73, 062503 �2006�

062503-8



sch, Phys. Rev. A 70, 062503 �2004�.
�6� H. A. Schluessler, E. N. Fortson, and H. G. Dehmelt, Phys.

Rev. 187, 5 �1969�; �Phys. Rev. A 2, 1612 �E� �1970��.
�7� M. H. Prior and E. C. Wang, Phys. Rev. A 16, 6 �1977�.
�8� D. Zwanziger, Phys. Rev. 121, 1128 �1961�.
�9� Th. Udem �private communication�.

�10� O. Arnoult �private communication�.
�11� K. Pachucki, Phys. Rev. A 53, 2092 �1995�.
�12� M. Nio and T. Kinoshita, Phys. Rev. D 55, 7267 �1997�.
�13� U. D. Jentschura, J. Phys. A 36, L229 �2003�.
�14� C. Itzykson and J. B. Zuber, Quantum Field Theory �McGraw-

Hill, New York, 1980�.
�15� The coefficient a20

SE�2,1� was evaluated by Zwanziger �see Ref.
�8�� to be a20

SE�2,1�=−5.37�6�. A more accurate value for this
coefficient was later obtained by P. J. Mohr by recalculating
the integrals listed in Eq. �B.5� of Ref. �8� �private communi-
cation�. According to P. J. Mohr, the expression �1−s�2 in Eq.
�B.5� of the cited reference should be replaced by �1−s�. After
the elimination of this typographical error, the formulas of Ref.
�8� may be used for an accurate evaluation of the difference
a20

SE�2,1�. The private communication by P. J. Mohr is also
quoted as reference number �18� of Ref. �7�, and the value of
−5.5515 given in Eq. �37� of Ref. �7� is the sum of a20

SE�2,1�
+a20

VP�2,1�, which implies a value of −5.2212 for a20
SE�2,1�.

According to S. G. Karshenboim �private communication�, the
value of −5.221 233�3� for a20

SE�2,1� has been obtained inde-
pendently by J. R. Sapirstein and S. G. Karshenboim in an
unpublished investigation, as cited in Ref. �16�.

�16� S. G. Karshenboim, in The Hydrogen Atom—Lecture Notes in
Physics Vol. 570, edited by S. G. Karshenboim and F. S.
Pavone �Springer, Berlin, 2001�, pp. 335–343.

�17� U. D. Jentschura, A. Czarnecki, and K. Pachucki, Phys. Rev. A

72, 062102 �2005�.
�18� A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marychev, Inte-

grals and Sums, 2nd ed. �Fizmatlit, Moscow, 2002�, in Rus-
sian.

�19� G. Breit, Phys. Rev. 35, 1447 �1930�.
�20� S. G. Karshenboim, Phys. Lett. A 225, 97 �1997�.
�21� V. A. Yerokhin and V. M. Shabaev, Phys. Rev. A 64, 012506

�2001�.
�22� S. G. Karshenboim and V. G. Ivanov, Eur. Phys. J. D 19, 13

�2002�.
�23� S. G. Karshenboim and V. G. Ivanov, Phys. Lett. B 524, 259

�2002�.
�24� S. G. Karshenboim and V. G. Ivanov, Can. J. Phys. 83, 1063

�2005�.
�25� V. A. Yerokhin, A. N. Artemyev, V. M. Shabaev, and G. Plu-

nien, Phys. Rev. A 72, 052510 �2005�.
�26� S. G. Karshenboim, Zh. Eksp. Teor. Fiz. 103, 1105 �1993�;

JETP 76, 541 �1993�.
�27� T. Kinoshita, e-print, hep-ph/9808351 �1998�.
�28� S. G. Karshenboim, V. G. Ivanov, and V. M. Shabaev, Zh.

Eksp. Teor. Fiz. 117, 67 �2000�; JETP 90, 59 �2000�.
�29� S. A. Blundell, K. T. Cheng, and J. Sapirstein, Phys. Rev. Lett.

78, 4914 �1997�.
�30� V. A. Yerokhin, V. M. Shabaev, and A. N. Artemyev, e-print

physics/9705029 �1997�.
�31� P. Sunnergren, H. Persson, S. Salomonson, S. M. Schneider, I.

Lindgren, and G. Soff, Phys. Rev. A 58, 1055 �1998�.
�32� U. D. Jentschura, P. J. Mohr, and G. Soff, Phys. Rev. Lett. 82,

53 �1999�.
�33� U. D. Jentschura and P. J. Mohr, Phys. Rev. A 69, 064103

�2004�.

QUANTUM ELECTRODYNAMIC CORRECTIONS TO THE¼ PHYSICAL REVIEW A 73, 062503 �2006�

062503-9


