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A formalism for energy-dependent many-body perturbation theory �MBPT�, previously indicated in our
recent review articles �Lindgren et al., Phys. Rep. 389, 161 �2004�; Can. J. Phys. 83, 183 �2005��, is developed
in more detail. The formalism allows for an arbitrary mixture of energy-dependent �retarded� and energy-
independent �instantaneous� interactions and hence for a merger of quantum-electrodynamics �QED� and
standard �relativistic� MBPT. This combined many-body-QED procedure is particularly important for light
elements, such as light heliumlike ions, where electron correlation is pronounced. It can also be quite signifi-
cant in the medium-heavy mass range, as recently discussed by Fritzsche et al. �J. Phys. B 38, S707 �2005��,
with the consequence that the effects might be significant also in analyzing the data of experiments with highly
charged ions. A numerical procedure is described, and some preliminary results are given for heliumlike ions
with a single retarded photon. This represent the first numerical evaluation of the combined many-body-QED
effect on an atomic system. It is found that for heliumlike neon the effect of one retarded photon with
correlation represents more than 99% of the nonradiative effects beyond energy-independent MBPT. The new
procedure also allows for the inclusion of radiative effects �self-energy and vacuum polarization� in a more
systematic fashion than has previously been possible.
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I. INTRODUCTION

What is commonly known as many-body perturbation
theory �MBPT� is a class of perturbative schemes for bound
atomic, molecular or nuclear states with a time- or energy-
independent perturbation, based upon the Rayleigh-
Schrödinger perturbative scheme, such as the Brueckner-
Goldstone linked-diagram expansion or variants thereof �1�.
Also certain iterative or “all-order” approaches, like the
coupled-cluster approach �CCA� or “Exponential Ansatz,”
can be referred to this category, although they are not strictly
perturbative in nature. All these approaches can in principle
treat the electron correlation to arbitrary order. In addition,
they have—as distinct from procedures based upon the
Brillouin-Wigner �BW� perturbation expansion—the impor-
tant property of being size extensive in the sense that the
energy scales linearly with the size of the system. Further-
more, by using an extended or multi-reference model space
such schemes can also successfully handle the quasidegen-
erate problem with closely spaced energy levels that are
strongly mixed by the perturbation.

For time- or energy-dependent perturbations, like those of
quantum-electrodynamics �QED�, the situation is quite dif-
ferent and much less developed. There is presently no nu-
merical scheme available that can treat energy-dependent
perturbations together with electron correlation to arbitrary
order, and also the treatment of quasidegeneracy forms a
serious problem in connection with such interactions. In the
numerical methods presently available for QED calculations
the electron-electron interaction is treated by the exchange of

fully covariant photons, which is quite a tedious—and usu-
ally unnecessarily tedious—process to handle the electron
correlation. At most two-photon exchange can be treated in
this way with computers available today, which is insuffi-
cient for light and medium-heavy elements, where the elec-
tron correlation can be quite important.

A major problem in extending the energy-dependent per-
turbation theory to include electron correlation is that most
methods have a structure that is quite different from that of
energy-independent perturbation theory, which makes it dif-
ficult to utilize the well-developed methods of the latter. Of
the available methods only the covariant evolution operator
�CEO� method, that we recently developed, has a structure
that is akin to standard energy-independent MBPT �2–4�.
This opens the possibility of combining the two approaches
into a many-body-QED procedure, as proposed in our recent
review articles �4,5� and further developed in the present
work. In that scheme the CEO method is combined with
all-order MBPT methods of coupled-cluster type, so that the
exchange of covariant photons can be mixed with an arbi-
trary number of instantaneous Coulomb interactions. In this
way electron correlation can, for the first time, be treated to
arbitrary order together with energy-dependent interactions
of QED type.

The retarded electron-electron interaction can be treated
in an approximate way by means of the so-called Mittleman
approximation �6–9�. This potential, however, is originally
based upon energy conservation and, therefore, yields the
correct result only in first order �see, for instance, Eq. �300�
of Ref. �4��. In higher orders it is doubtful if it leads to better
results than the simple unretarded Breit interaction �see, for
instance ��10�, p. 1188�.

The CEO method was originally developed in order to be
able to treat the quasidegeneracy problem in QED calcula-
tions. The standard procedure for bound-state QED is the
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S-matrix formulation �11�, which has been successfully ap-
plied particularly to highly charged ions. For lighter
elements—in addition to the electron-correlation problem—
also the quasidegeneracy problem might be quite pro-
nounced, and the S-matrix formulation fails. One illustrative
example is the fine structure of heliumlike ions, where in the
relativistic formulation, for instance, the lowest triplet state
3P1 is a mixture of the basis states 1s2p1/2 and 1s2p3/2,
which are very closely spaced in energy and strongly mixed
for light elements. In order to be able to use the procedure of
standard MBPT, where quasidegenerate states are included in
an extended model space, off-diagonal elements of the effec-
tive Hamiltonian have to be evaluated, which is not possible
in the standard S-matrix formulation, due to the energy con-
servation of the scattering process �12�. In the CEO method,
based upon the evolution operator for finite time �4�, the
extended-model-space technique can be used, and a few
years ago we applied this to evaluate QED contributions to
the fine structure for heliumlike ions, including the quaside-
generate 3P1 state, down to Z=9 �3�. The same problem has
very recently been treated by Shabaev et al. down to Z=12,
using the two-times Green’s function technique �13–15�. Fur-
thermore, the presently available methods for numerical
QED calculations suffer from the shortcoming that they are
not applicable to the lightest elements—below Z=10, say—
due to convergence problems. The extension of the CEO
method to include electron correlation to arbitrary order, pre-
sented here, is expected to remedy this problem.

The most accurate calculations on light heliumlike ions
have been performed by the analytical or “unified” method
of Drake and related techniques �16–20�. This is based upon
expansion in powers of the fine-structure constant � of the
Bethe-Salpeter equation and the Brillouin-Wigner �BW� per-
turbation series �21,22�. It leads to an extremely high accu-
racy for the lightest elements, but being based upon the BW
perturbation expansion, the procedure is not size-extensive
and less suitable for larger systems.

From a comparison between theoretical calculations and
experiments �23–25� on the helium fine structure, a value of
the fine-structure constant can in principle be deduced. There
is presently, however, a discrepancy of about five standard
deviations between the value deduced in this way and the
established value based upon the g−2 value of the electron,
used in the CODATA adjustment �26�. Hopefully, the tech-
nique presented here could in the future—in combination
with analytical calculations—contribute to a more accurate
theoretical fine-structure evaluation and in this way resolve
the present discrepancy.

In addition to the light heliumlike ions and other light
systems, the combination of QED and many-body effects can
be of importance also for heavier systems, as recently dis-
cussed by Fritzsche et al. �27�. They have analyzed this prob-
lem particularly with regard to possible heavy-ion experi-
ments of the type that can be performed at the big storage
rings, like that at GSI in Darmstadt. They then conclude that
the accurate treatment of the interplay between QED and
many-body effects constitutes one of the most challenging
problems in connection with highly charged-ion experi-
ments.

The present paper will be organized as follows. In the
next section we briefly review the standard perturbation

theory for time-independent and time-dependent perturba-
tions, and next we summarize the properties of our recently
introduced covariant evolution-operator method. The follow-
ing main section deals with the development of the numeri-
cal many-body-QED method by deriving Bloch equations for
combined retarded and instantaneous interactions. Finally,
we describe briefly our numerical procedure and give some
preliminary results of the new method. The numerical proce-
dure together with more complete numerical results will be
published separately �28�.

II. STANDARD MANY-BODY PERTURBATION THEORY

A. Time-independent perturbation theory

In the multi-reference form of MBPT we consider a num-
ber of target states that are eigenstates of the Hamiltonian of
the system

H���� = E����� �� = 1,2, . . . ,d� . �1�

The Hamiltonian is partitioned into a model Hamiltonian,
H0, and a time-independent perturbation, H�,

H = H0 + H�. �2�

For an N-electron system the model Hamiltonian is assumed
to be composed of single-electron Schrödinger or Dirac
Hamiltonians

H0 = �
i

N

h0�i� . �3�

For each target state there is a model state, confined to a
subspace, the model space, with the projection operator P. In
the intermediate normalization we use here the model states
are the projection of the corresponding target states on the
model space

��0
�� = P���� . �4�

A wave operator can be defined for the inverse transforma-
tion

���� = ���0
�� �� = 1,2, . . . ,d� . �5�

An effective Hamiltonian can be defined, Heff= PH�P, that
operates in the model space and for which the eigenvectors
are the model states and the eigenvalues the corresponding
exact energies

Heff��0
�� = E���0

�� . �6�

The corresponding effective interaction is defined

Veff = Heff − PH0P = PH��P . �7�

The wave operator satisfies the generalized Bloch equation
�29–31�

��,H0�P = �H�� − �Veff�P . �8�

This leads to the Rayleigh-Schrödinger perturbative expan-
sion for a general multi-reference �quasidegenerate� model
space, and it can also be used to generate the corresponding
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linked-diagram expansion of Brueckner-Goldstone type

��,H0�P = �H�� − �Veff�linkedP . �9�

Here, only so-called linked terms or diagrams survive on the
right-hand side. Using the exponential Ansatz

� = �eS	 , �10�

where the curly brackets represent normal-ordering, leads to
the coupled-cluster expansion for the same model space �32�

�S,H0�P = �H�� − �Veff�connP . �11�

Here, all terms on the right-hand side are “connected.” �For
the distinction between “linked” and “connected,” see, for
instance, Ref. �1��.

B. Time-dependent perturbation theory

In this paper we shall only be concerned with stationary
states, but we need for our purpose to use the formalism for
time-dependent perturbation, which we shall briefly review.

The time-dependent state vector satisfies the time-
dependent Schrödinger equation �using relativistic units �
=c=m=�0=1�

i
�

�t
���t�� = H�t����t�� , �12�

where

H�t� = H0 + H��t� . �13�

H0 is the time-independent model Hamiltonian and H��t� is a
perturbation that might be time-dependent. In the interaction
picture �IP�, where an operator is related to that in the
Schrödinger picture �SP� by

OI�t� = eiH0tOS e−iH0t �14�

the Schrödinger equation becomes

i
�

�t
��I�t�� = HI��t���I�t�� . �15�

The time-evolution operator is defined by

��I�t�� = UI�t,t0���I�t0�� �16�

and satisfies the equation

i
�

�t
UI�t,t0� = HI��t�UI�t,t0� �17�

with the solution �33�

UI�t,t0� = 1 + �
n=1

�
�− i�n

n!



t0

t

d4xn ¯ 

t0

t

d4x1

�TD�HI��xn�HI��xn−1� ¯ HI��x1�� . �18�

Here, TD is the Dyson time-ordering operator, and HI��x� is
the perturbation density, defined by

HI��t� =
 d3xHI��t,x� . �19�

An adiabatic damping is added to the perturbation

HI��t� → HI	� = HI�e
−	�t�; UI�t,t0� → U	�t,t0� , �20�

where 	 is a small, positive number. This implies that as
t→ ±� the eigenfunctions of H tend to eigenfunctions of H0.

C. Gell-Mann-Low theorem

A crucial component of our theoretical model is the Gell-
Mann-Low (GML) theorem, which in its original form was
presented already in 1951 �34�. According to this theorem,
the wave function at time t=0 is for a single-reference model
space given by

��� = ���0�� = lim
	→0

U	�0,−� ���0�
��0�U	�0,−� ���0�

, �21�

where ��0� is the time-independent model state. It is as-
sumed here that the perturbation H� is time-independent in
the Schrödinger picture—apart from the adiabatic-damping
factor. The wave function �21� satisfies a Schrödinger-type
equation

�H0 + H��� = E� .

The evolution operator normally contains singularities or
quasi-singularities as 	→0, when an intermediate state is
degenerate or closely degenerate with the initial state. In the
GML formulas these �quasi�singularities are eliminated by
the denominator so that the ratio is always regular, which is
one formulation of the linked-diagram theorem �35�.

We have in our previous work generalized this important
theorem to the case of a general multi-reference model space
��4�, Eq. �110��

���� = lim
	→0

N�U	�0,−� ��
��
�
��U	�0,−� ��
��

�� = 1,2, . . . ,d� , �22�

where N� is a normalization factor. The zeroth-order vector
�
�� is here defined as

�
�� = lim
	→0

lim
t→−�

����t�� . �23�

Kuo et al. �36� have generalized the Gell-Mann law to the
case of a degenerate model space, and then have found that it
is sufficient that the zeroth-order function has a nonzero
overlap with the target function. In the quasidegenerate case
we have found that this is insufficient, and that the starting
function for the theorem must be the limiting function above,
which is an eigenfunction of the model Hamiltonian H0. This
means that this function is generally distinct from the zeroth-
order model function �4� �for further details, see our review
paper ��4�, Sec. 3.3��.

According to the generalized Gell-Mann-Low theorem the
wave function �22� satisfies the time-independent
Schrödinger-type equation

�H0 + H���� = E��� �� = 1,2, . . . ,d� , �24�

where H� is, as before, the time-independent perturbation in
the Schrödinger picture. This relation gives the important
connection between energy-dependent MBPT and the stan-
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dard energy-independent procedure and, therefore, forms the
basis for the procedure developed here.

III. COVARIANT EVOLUTION-OPERATOR APPROACH

�The reader is referred to Refs. �4,5� for more details con-
cerning the basic covariant evolution-operator formalism.�

A. Interaction with the electro-magnetic field

We consider now the interaction between electrons and
the quantized electro-magnetic field represented by the per-
turbation density �37�

HI��x� = − e�̂I
†��A��̂I . �25�

Here, �̂I , �̂I
† are the electron field operators, �� the Dirac

alpha operators and A� is the radiation field

A� 
 ��
r �ar

†�k�ei�x + ar�k�e−i�x� , �26�

applying standard summation convention. ar
†�k� ,ar�k� are the

photon creation/absorption operators, k is the wave vector, �
is the four-vector momentum �= �� ,−k� �k= �k � �, and �r

�

represent the polarization vectors. The Hamiltonian of the
radiation field is represented by

Hrad = �ar
†�k�ar�k� = kar

†�k�ar�k� . �27�

With the interaction density �25� the evolution operator
�18� for single-photon exchange becomes

U�2��t�,t0� = −
1

2

 


t0

t�
d4x1d4x2�̂I+

† �x1��̂I+
† �x2�iI�x1,x2�

��̂I+�x2��̂I+�x1� , �28�

integrated over all space coordinates and time coordinates as

indicated. �̂I+ , �̂I+
† are the positive-energy part of the

electron-field operators, and the interaction kernel

�29�
is given by the product of two perturbations �25� with con-
traction of the radiation-field operators �indicated by the
hook�. DF���x1−x2� is the Feynman photon propagator.

The evolution operator above is noncovariant but can be
made covariant by inserting zeroth-order two-particle
Green’s functions on the in- and outgoing states �3,4�
�G0�x1� ,x2� ;x1 ,x2�=SF�x1� ;x1�SF�x2� ;x2�, where SF�x� ;x� repre-
sents the electron propagator or zeroth-order single-particle
Green’s function�

UCov
�2� �t�,t0� = −

1

2

 
 d3x1�d

3x2��̂I
†�x1���̂I

†�x2�� 
 
 d4x1d4x2

�G0�x1�,x2�;x1,x2� 
 
 d3x10d
3x20iI�x1,x2�

�G0�x1,x2;x10,x20��̂I�x20��̂I�x10� , �30�

as illustrated in Fig. 1 �left�. Here, the time integrations over
t1 and t2 are performed over all times, and positive- as well
as negative-energy states are allowed as incoming and out-
going states. The initial and final times are the same for the
two electrons, i.e.,

t10 = t20 = t0 and t1� = t2� = t�.

We shall in the following assume that the initial time is t0
=−�, and then due to the adiabatic damping �20� we can
leave out the rightmost Green’s function �4�

UCov
�2� �t�,−� � =

1

2
�̂I

†�x1���̂I
†�x2��G0�x1�,x2�;x1,x2�

�iI�x1,x2��̂I�x2��̂I�x1� �31�

�see Fig. 1 right�. Here, we have left out the integrations, and
in the following we shall also leave out the subscript Cov as
well as the initial time.

B. Wave operator and effective interaction

The evolution operator is generally singular and can be
expressed �4�

U�t�P = P + Ũ�t�P · PU�0�P , �32�

where Ũ�t� is always regular and known as the reduced evo-
lution operator—all singularities are collected in the last fac-
tor PU�0�P. The heavy dot indicates here that the two factors
evolve in time independently from different model-space
states �as further discussed in Sec. IV A�. For the time t=0
this becomes

U�0�P = �1 + QŨ�0��P · PU�0�P , �33�

where Q is the projection operator for the “complementary
space” �outside the model space�.

Inserting the expression �33� into the GML formula �22�,
yields

FIG. 1. Graphical representation of the covariant-evolution op-
erator for single-photon exchange in the form �30� �left� and in the
form �31� with t0→−�. The wavy lines represent covariant pho-
tons, and the free vertical lines represent single-electron Dirac
states, generated in the nuclear potential. The lines between the
heavy dots represent electron propagators �single-electron Green’s
functions�.
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���� = �1 + QŨ�0��P lim
	→0

N�U	�0,− � ��
��
�
��U	�0,− � ��
��

= �1 + QŨ�0��P���� . �34�

But P����=�0
� is the model state �4�, and hence the expres-

sion in the square brackets represents the wave operator �5�,

� = 1 + QŨ�0� . �35�

The Q operator is for a two-electron system given by

Q = 1 − P = �rs��rs� , �36�

where the ket vectors �rs� represent straight �nonantisymme-
trized� products of single particle states, summed over all
states outside the model space. The single-particle states are
generated by the single-particle Hamiltonians �3�

h0�i� = �i�i� , �37�

which also include the nuclear field �Furry picture�. In the
two-electron system we shall study here, the occupied elec-
tron states are treated as open-shell or valence states, which
implies that there are no core or hole states—apart from the
negative-energy states.

Performing the integrations for the single-photon ex-
change �31�, yields �3,4�

�rs�U�2��t��ab� = �rs�e−it�Eab−�r−�s��Q�Eab�V1�Eab��ab�;

Eab = �a + �b �38�

or, generally, operating on a model-space state of energy E,

U�2��t�P = e−it�E−H0��Q�E�V1�E�P . �39�

Here,

�Q�E� =
Q

E − H0
�40�

is the resolvent, and

�rs�V1�E��tu� = �rs� 
 dk f�x1,x2,k�

�� 1

E − �r − �u − sgn��r��k − i	�

+
1

E − �s − �t − sgn��s��k − i	�
�tu� �41�

is the matrix element of the potential, considering both time
orderings �see Fig. 2�. Using the evolution operator �39� and

the relation �35� �with Ũ�2�=U�2��, this gives the wave opera-
tor for single-photon exchange

��1�P = �Q�E�V1�E�P . �42�

The effective interaction �7� can generally be expressed �4�

Veff = P�i
�

�t
Ũ�t�


t=0
P . �43�

The reduced evolution operator has the same time depen-
dence in all orders as in first-order �39�, which implies that
the time derivation eliminates the resolvent. In first-order this
yields

Veff
�1��E� = PV1�E�P . �44�

The function f�x1 ,x2 ,k� in the potential �41� depends on
the gauge used and is in the Feynman gauge given by

fF�x1,x2,k� = −
e2

4�2 �1 − �1 · �2�
sin�kr12�

r12
,

where r12 is the interelectronic distance.
In the Coulomb gauge, which is natural to use in many-

body calculations, the potential can be separated into an in-
stantaneous and a retarded part,

V�E� = VI + VRet�E� , �45�

where only the latter is energy dependent. The instantaneous
part is the Coulomb interaction

VI = V12 =
e2

4�r12
, �46�

and the retarded part is given by the expression �41� with

fC�x1,x2,k� = −
e2

4�2�− �1 · �2
sin�kr12�

r12
+ ��1 · �1�

���2 · �2�
sin�kr12�

k2r12

 , �47�

where the nabla operators do not operate beyond the square
bracket. Here, the first term represent the Gaunt part and the
second term the scalar-retardation part, which together form
the Breit interaction. In the following we shall assume that
the Coulomb gauge is used.

The relations given here, particularly the equations �35�
and �43�, demonstrate the close analogy between the covari-
ant evolution-operator approach and standard MBPT, which
opens up the possibility for a merger of the two procedures.

FIG. 2. Graphical representation of single-photon potential
�41�.
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IV. DEVELOPMENT OF A MANY-BODY-QED
PROCEDURE. BLOCH EQUATION FOR INSTANTANEOUS

AND RETARDED INTERACTIONS

A. Retarded interactions

From the definition �32�, the following relation can be
derived, using standard algebra �5�,

Ũ�t�P = Ū�t�P + Ũ�t�PŪ�0�P − Ũ�t�P · PŪ�0� . �48a�

In the product Ũ�t�PŪ�0�P the time-dependent part, Ũ�t�,
evolves from the energy of the state to the far right �E� and,
therefore, depends on this energy. In the dot product,

Ũ�t� · PŪ�0�P, on the other hand, the operator Ũ�t� evolves
from the energy of the intermediate state �E1�. More explic-
itly, we can then express the relation �48a� as

Ũ�E,t�P = Ū�E,t�P + Ũ�E,t�P1Ū�E,0�P − Ũ�E1,t�P1Ū�E,0�P ,

�48b�

where P �P1� represents a model-space state of energy
E �E1�. “Ubar” represents the evolution operator without in-
termediate model-space states,

Ū�t�P = Ũ�t�P − M�t� , �49�

and M is the model-space contribution �MSC�. From the
relation above we then find that the latter part becomes

M = �Ũ�E,t� − Ũ�E1,t��P1Ū�E,0�P . �50�

U and Ũ have the general form in analogy with the first-
order result �39�, i.e., a resolvent with an energy denominator
�in this case equal to E−E1� and a corresponding time expo-
nential. Introducing the effective interaction without MSC,

V̄eff, in analogue with the interaction �43�,

V̄eff = P�i
�

�t
Ū�t�


t=0
P , �51�

we find as before that the time derivative eliminates the en-
ergy denominator. We then have

P1Ū�E,0�P =
V̄eff�E�
E − E1

,

and

M =
Ũ�E� − Ũ�E1�

E − E1
V̄eff =

�Ũ

�E
V̄eff, �52�

using the difference ratio defined in Appendix B. This gives
with the relation �49�

Ũ�t�P = Ū�t�P +
�Ū

�E
V̄eff. �53�

With the wave-operator relation �35� we then have

�P = �̄P +
��

�E
V̄eff, �54�

where the last term represents the MSC �including “folded”

diagram� and �̄ is the wave operator without MSC.
The relation �48a� leads to the expansion

Ũ�t�P = Ū�t�P + Ū�t��PŪP − · PŪP� + Ū�t��PŪP − · PŪP�

��PŪP − · PŪP� + ¯ . �55�

The exchange of a single photon corresponds to the second-
order evolution operator and leads to the result given above
�42�. The two-photon exchange corresponds to the next even
order of the evolution operator

Ũ�4��t�P = Ū�4��t�P + Ū�2��t��PŪ�2�P − · PŪ�2�P� . �56�

Since there is no MSC in lowest order, we have U�2�= Ū�2�

= Ũ�2�, and the corresponding wave operator becomes

��2�P = QŨ�4��0�P = �̄�2�P +
���1�

�E
Veff

�1�, �57�

where �̄�2�P=�QV1�QV1P. In the case of degeneracy this
goes over into

��2�P = �̄�2�P +
���1�

�E
Veff

�1�. �58�

In third order we have ��5�, Appendix D�

��3�P = �̄�3�P +
���2�

�E
Veff

�1� +
���1�

�E
V̄eff

�2�, �59�

which leads to

��3�P = �̄�3�P +
���1�

�E
Veff

�2� +
��̄�2�

�E
Veff

�1� +
�2��1�

�E2 �Veff
�1��2,

�60�

where the second-order difference ratio is defined in Appen-
dix B. The last term is associated with double model-space
contributions �“double fold”�. This leads to conjecture for the
all-order expansion �cf. �5�, Eq. �116��

�P = �̄P + �
n=1

�
�n�̄

�En �Veff�n, �61�

which we shall now verify.
In order to prove the relation above, we start by using this

relation to form the difference ratio

��

�E
=

��̄

�E
+

�2�̄

�E2 Veff +
�3�̄

�E3 �Veff�2 + ¯

+
��̄

�E
�Veff

�E
+

�2�̄

�E2 Veff
�Veff

�E
+ ¯

= �
n=1

�
�n�̄

�En �Veff��n−1��1 +
�Veff

�E 
 . �62�
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�It should be noted that the different Veff operators are in
general associated with different energies, as explained in
Appendix B, Eq. �B8�.� Next, we take the time derivative of
the relation �53�, using the relation �43�, which yields

Veff = �1 +
�Veff

�E 
V̄eff. �63�

This gives with the relation �62�

��

�E
V̄eff = �

n=1

�
�n�̄

�En �Veff�n, �64�

and with the relation �53� we retrieve the relation �61�, which
is then proven.

In order to obtain more Bloch-type relations, we first in-
troduce the reaction operator, which is the effective interac-
tion �43�, apart from the projection operators,

VR = �i
�

�t
Ũ�t�


t=0
. �65�

This gives Veff= PVRP, and the reaction operator is equal to
the wave operator, apart from the resolvent,

QŨ�0� = Q� = �QVR. �66�

We also introduce the operator

V̄R = �i
�

�t
Ū�t�


t=0
, �67�

where Ū is the evolution operator without MSC. This leads
in analogy with the relation �66� to

QŪ�0� = Q�̄ = �QV̄R. �68�

Using the rule for differentiating a product, developed in
Appendix B �Eq. �B4��, and the relation

�m�Q�E�
�Em = �− 1�m�Q�E��Q�E1� ¯ �Q�Em�

= − �Q�E�
��m−1��Q�E1�

�E1
�m−1� , �69�

we can express the difference ratios of �̄ as

�n�̄�E�
�En =

�n

�En ��Q�E�V̄R�E��

= �
m=0

n
�m�Q�E�

�Em

��n−m�V̄R�Em�

�Em
�n−m�

= �Q�E�
�nV̄R�E�

�En

− �
m=1

n

�Q�E�
��m−1��Q�E1�

�E1
�m−1�

��n−m�V̄R�Em�

�Em
�n−m� . �70�

The last term can be expressed

− �Q�E��
m=0

n−1
�m�Q�E1�

�Em

��n−m−1�V̄R�Em�

�Em
�n−m−1� = − �Q�E�

��n−1��̄�E1�

�E1
�n−1� .

�71�

Inserted in the expansion �61�, the last term yields

− �
n=1

�

�Q�E����n−1��̄�E1�

�E1
�n−1� �Veff��n−1�
Veff = − �Q�Veff

�72�

Finally, we have the relation

Q�P = Q�̄P − �Q�Veff + �Q�
n=1

�
�nV̄R

�En �Veff�n, �73�

which will later be used to derive the Bloch equations for
energy-dependent interactions.

B. Instantaneous interactions

The instantaneous Coulomb interaction can be treated es-
sentially as in standard �relativistic� many-body theory, and
we start by recalling the treatment of the correlation effect
for a two-electron system. The wave operator in the coupled-
cluster formalism �10� can then be expressed �1�

� = 1 + S2, �74�

where S2 is the two-body cluster operator. Operating on a
model-space state, yields a pair function

��ab� = ��ab� = �ab� + sab
rs �rs� . �75�

Inserting the pair function into the Bloch equation �11�,
yields the corresponding pair equation

��a + �b − h0�1� − h0�2����ab�

= �rs��rs�V12��ab� − ��cd��cd�Veff�ab� . �76�

The last term is the folded term and is the result of the re-
duction of singularities which appear when the intermediate
states lie in the model space, which we have referred to
above as model-space contribution �MSC�. When the equa-
tion is solved iteratively, the Coulomb interactions are gen-
erated to all orders, as illustrated in Fig. 3. This is the type of
pair functions we have been using in our many-body calcu-
lations for several decades �38–42�.

We denote the wave operator with only Coulomb interac-

tions by �I and the part with no folded diagrams by �̄I. Then
we have

�̄IP = �1 + �QV12 + �QV12�QV12 + ¯ �P , �77�

and using the relations �73� and �61�, this leads to the stan-
dard Bloch equation �8�

��I,H0�P = V12�IP − �IVeff. �78�

C. Combined instantaneous and retarded interactions

We shall now find Bloch equations for the combined re-
tarded and instantaneous interactions. In the Coulomb gauge

MANY-BODY PROCEDURE FOR ENERGY-DEPENDENT¼ PHYSICAL REVIEW A 73, 062502 �2006�

062502-7



the function f�x1 ,x2 ,k�, involved in the exchange of a re-
tarded photon, is given by the expression �47�, which can be
separated into products of single-electron operators, as
shown in Appendix A,

fC�x1,x2,k� = �
l=0

�

�VG
l �kr1� · VG

l �kr2� − VSR
l �kr1� · VSR

l �kr2�� .

�79�

The two terms represent the Gaunt and scalar-retardation
parts, respectively, and we shall treat each of them as the
result of two perturbations, namely VG

l �kr1� and VG
l �kr2� in

the case of the Gaunt interaction and VSR
l �kr1� and VSR

l �kr2�
for the scalar retardation—of course, with summation over
the angular momentum of the photon, l, and integration over
space and the linear photon momentum, k.

The photon can also be absorbed by the same electron,
leading to self-energy and vertex-correction contributions, as
we shall briefly indicate below.

The perturbations above are time-independent in the
Schrödinger picture, and we can then apply the Gell-Mann-
Low theorem �22�, which leads to the Schrödinger-type
equation �24�

�H0 + H���� = E���, �80�

where H� is given by the instantaneous Coulomb interaction
VI=V12 and the two retarded components VG

l �kr� and
VSR

l �kr�. The wave function lies here in an extended Fock
space with variable number of uncontracted, virtual photons,
which we indicate by using the boldface symbol ��. The
boldface symbol H0 represents the model Hamiltonian in-
cluding the radiation field �27�. We also introduce a Fock-
space wave operator in analogy with the standard wave op-
erator �5�

�� = ��0
�. �81�

The resolvent �40� is now generalized to

�Q�E� =
Q

E − H0
�82�

when operating on a model-space state of energy E.
Q=1− P is here the projection operator for the complemen-
tary Fock space, for a two-electron system given by

Q = �rs��rs� + �ij,k��ij,k� + ¯ . �83�

The first term represents the part of the operator in the re-
stricted space with no photons �cf. Eq. �36�� with �rs� being a
state outside the model space. The second term represents the
part with one photon, with �ij� being an arbitrary state, etc.

In order to treat the case where the instantaneous interac-
tions cross a retarded photon, we have to apply the former
between the two perturbations of the retarded interaction. We
denote the wave operator with an “uncontracted” retarded
photon and an arbitrary number of instantaneous interactions
before and after the retarded photon is created by �G

l �k� and
�SR

l �k�, respectively, for the two components of the retarded
interaction. The components of these operators with no
model-space contributions are in analogy with previous cases

denoted by �̄G
l �k� and �̄SR

l �k�, respectively. We then have for
the Gaunt interaction �and similarly in the scalar-retardation
case�

�̄G
l �k�P = �1 + �QV12 + �QV12�QV12 + ¯ ��QVG

l �k�

��1 + �QV12 + �QV12�QV12 + ¯ �P . �84�

The rightmost bracket represents the wave operator �̄I �77�,
which leads to

�̄G
l �k�P = �QVG

l �k��̄IP + �QV12�̄G
l �k�P . �85�

Inserting this into the expression �73�, yields

Q�G
l �k�P = �Q�

n=0

�
�n
„VG

l �k��̄I…

�En �Veff�n

+ �Q�
n=0

�
�n
„V12�̄G

l �k�…
�En �Veff�n − �Q�G

l �k�Veff.

�86�

Since V12 as well as VG
l �k� are energy independent, we have

�
n=0

�
�n
„VG

l �k��̄I…

�En �Veff�n = VG
l �k��

n=0

�
�n�̄I

�En �Veff�n = VG
l �k��IP

�87�

again using the expansion �61� and the rule �B4�. Treating
the second sum similarly, leads to

FIG. 3. Graphic representation of pair func-
tions �ab generated by the pair equation �76�.
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Q�G
l �k�P = �QVG

l �k��IP + �QV12�G
l �k�P − �Q�G

l �k�Veff

�88�

and to the Bloch equation

��G
l �k�,H0�P = VG

l �k��IP + V12�G
l �k�P − �G

l �k�Veff.

�89�

In the next step the photon of the function �G
l �k� is being

absorbed by the other electron, followed by additional Cou-
lomb iterations. We denote the corresponding wave operator
by �G. Omitting for the time being the MSC associated with
the Coulomb interactions, this leads to

�̄GP = �1 + �QV12 + �QV12�QV12 + ¯ ��QVG
l �k��G

l �k�P ,

�90�

integrating over k and summing over l according to the rela-
tion �79�. The MSC are as before obtained by inserting this
relation into the formula �73�, which—using the same argu-
ment as before—yields

��G,H0�P = VG
l �k��G

l �k�P + V12�GP − �GVeff. �91�

The equations above represent our main equations for
dealing with the combined retarded and unretarded interac-
tions. For a two-electron system they can be converted to the
pair equations

��a + �b − h0�1� − h0�2� − k���G,ab
l �k��

= �rs��rs�VG
l �k���ab� + �rs��rs�V12��G,ab

l �k��

− ��G,cd
l �k���cd�Veff�ab�

��a + �b − h0�1� − h0�2����G,ab�

= �rs��rs�VG
l �k���G,ab

l �k�� + �rs��rs�V12��G,ab�

− ��G,cd��cd�Veff�ab� . �92�

Note that the first of these equations is deduced from the
relation �89� with the extended H0, which leads to the mo-
mentum k on the left-hand side. These equations, which can
be solved using standard technique �43,44�, are illustrated in
Fig. 4. In Figs. 5 and 6 �upper line� we show more explicitly
the diagrams involved in the process just described—in the
former case without any Coulomb interactions before and
after the retarded interaction and in the latter case with such
interactions.

When the photon is instead absorbed by the same electron
as it is emitted from, we get the corresponding self-energy
and vertex-correction effects—of course, after appropriate
renormalization—as indicated in the bottom lines of the
same figures.

FIG. 4. Graphical representa-
tion the pair equations �92�, solv-
ing the Bloch equations �Eqs. �89�
and �91��.

FIG. 5. Graphical representation of a single retarded photon with crossing Coulomb interactions and without Coulomb interactions before
and after the retarded interaction.

MANY-BODY PROCEDURE FOR ENERGY-DEPENDENT¼ PHYSICAL REVIEW A 73, 062502 �2006�

062502-9



D. Derivation of the general Bloch equations

The Bloch equations derived above are valid only in the
case of no more than one uncontracted photon at each in-
stance. In order to derive the more general Fock-space Bloch
equation, we can proceed exactly as in the energy-
independent case �29�, starting from the Schrödinger-type
equation �80�. We first project this equation on the model
space

P�H0 + H����0
� = H0�0

� + PH���0
� = E��0

�, �93�

using the fact that P and H0 commute, and then operate from
the left with �

�H0�0
� + �PH���0

� = E���. �94�

Subtracting the original SE �24�, then yields the Fock-space
Bloch equation

��,H0�P = H��P − �Veff, Heff = PH0P + Veff,

Veff = PH��P , �95�

The solution can be expressed

Q�P = �Q�H�� − �Veff�P , �96�

where �Q is the generalized resolvent �82�.
We can expand the Fock-space wave operator and resol-

vent into components acting in the subspace with no pho-
tons, with one photon, etc. as

� = � + �+ + ¯ ,

�Q = �Q + �Q
+
¯ . �97�

The generalized Bloch equation �96� can then be separated
into

�98�

The hook represents integration over the photon momentum
k and summation over the angular momentum l, according to

the single-photon expression �79�. These equations are valid
also in the case of multiple free photons at the same time and
can, therefore, be used for the evaluation of irreducible dia-
grams with several retarded photons �see Fig. 8�. Consider-
ing at most a single free photon, we see that they lead to the
Bloch equations �89� and �91� derived above.

V. NUMERICAL PROCEDURE AND RESULTS

The pair equations �92� considered here can be solved
numerically with essentially the same technique as devel-
oped by Salomonson and Öster for �relativistic� many-body
calculations �43,44� and used in our previous works �3,45�.
The radial integrations are performed with an exponential
grid with 70–150 grid points and the k integration with 100–
150 points using Gaussian quadrature. For excited states,
poles appear in the k integration, which require special atten-
tion �for details, see Ref. �45��. The numerical calculations
are quite time consuming in the present case, since separate
pair functions have to be constructed for each value of the
photon momentum. On the other hand, the procedure is par-
ticularly well suited for parallel computing, and we hope that
the procedure can be speeded up considerably, when our rou-
tines are better optimized.

Here, we shall only give some illustrative examples of our
numerical results—more results will be published separately
�28�. In Table I we show the effect of one retarded photon

FIG. 6. Graphical representation of a single
retarded photon with crossing Coulomb interac-
tions and with Coulomb interactions before and
after the retarded interaction. The diagrams in up-
per line are obtained by solving the pair equations
�92� and those in lower line by analogous
equation.

TABLE I. Effects of one- and two-photon exchange on the en-
ergy of the excited 1s2s1S and 3S states of heliumlike neon �in �H�.

1s2s 1S 1s2s 3S

One-photon Gaunt 2465.44 171.50

Scalar ret. 171.58 −171.58

Two-photon Coul.-Gaunt −794.8 −51.8

�noncrossing� Coul.-Scal.ret. 22.5 42.5

One � two-photon Gaunt 1670.7 119.7

Scal.ret. 194.2 −129.1

One photon correlated Gaunt 1752.0 124.6

Scal.ret. 183.9 −132.2
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with one and infinitely many noncrossing Coulomb interac-
tions for the 1s2s 1S and 3S states of heliumlike neon, ex-
cluding virtual pairs �NVP�. This corresponds to the dia-
grams shown in Fig. 7. Figures 7�c� and 7�e� have not yet
been evaluated in the present work but calculations are un-
derway. Fig. 7�c� was previously evaluated by means of
S-matrix method �45�, and the result of Fig. 7�e� is presently
estimated.

The two-photon effect �Fig. 7�b�� has been compared with
the corresponding S-matrix results �45� and are found to
agree to 3-4 digits, which represents the numerical accuracy
of the present calculations. The effect of correlation beyond
the second-order �Figs. 7�d� and 7�e�� is in this case found to
be about ten percent of the two-photon effect �Fig. 7�b�� and
in turn one order of magnitude larger than the effect of the
retarded two-photon interaction �45� in Fig. 8. The effect of
virtual pairs is of the same order as that of two retarded
interactions. This indicates that for heliumlike neon the pro-
cedure described here with a single retarded photon together
with Coulomb interactions is capable of reproducing about
99% of the nonradiative effects not included in a standard
many-body perturbation treatment with only instantaneous
Coulomb interactions. By including the effect of two re-
tarded photons that can be evaluated by standard method, the
energy contributions beyond standard relativistic MBPT can
for heliumlike neon be reproduced to something like 99.8%–
99.9%.

VI. SUMMARY AND OUTLOOK

We have, in previous articles, described a new technique
for QED calculations that we refer to as the covariant

evolution-operator �CEO� method �2–5�. This method has the
great advantage compared to other QED techniques that it
has a structure very akin to that of standard many-body per-
turbation theory, which opens up the possibility for a merger
of the two techniques. In two previous papers �4,5� we have
indicated how such a merger can be accomplished, and this
is developed further in the present paper into a rigorous
many-body-QED procedure. Some preliminary numerical re-
sults are presented. Combined QED and correlation effects,
which can be treated only in a very limited fashion by stan-
dard techniques, are of particular importance for light and
medium-heavy elements. The CEO method also has the ad-
vantage compared to the standard S-matrix technique that it
can be applied to the case of quasidegeneracy �a property it
shares with the two-times Green’s-function technique of Sha-
baev et al. �14��.

The numerical procedure we have developed so far repre-
sents the exchange of a single retarded photon and an arbi-
trary number of instantaneous Coulomb interactions between
the electrons, crossing and noncrossing. We have been work-
ing with positive-energy intermediate states—no-virtual-pair
�NVP� approximation—but single and double virtual pairs
can be included in the procedure. The procedure can also be
used—with proper renormalization—for radiative effects
�self-energy and vertex corrections� with a single retarded
photon �see Figs. 6 and 5�. In principle, the procedure can be
used also for irreducible multi-photon effects, where re-
tarded interactions overlap in time, like those indicated in
Figs. 8�b� and 8�c�, by treating more than one uncontracted
photon at a particular time. At present, however, this is be-
yond reach with the computers we have available. On the
other hand, reducible multi-photon effects, where the inter-
actions are separated in time, as illustrated in Fig. 8�a�, can
already be included at present by repeated use of the proce-
dure described.

It has been demonstrated that one retarded photon with
Coulomb interaction represents by far the dominating part of
the nonradiative multi-photon exchange for light and
medium-heavy elements beyond the standard Coulomb cor-
relation �of the order of 99% for heliumlike neon�, and the
situation can be expected to be similar for the radiative part.
The small effects due to two irreducible retarded photons
without Coulomb interactions can be evaluated with standard
QED methods, and combining the two methods would yield
something like 99.8%–99.9% of the effects beyond standard
MBPT. Higher-order effects can with good accuracy be esti-
mated by means of analytical approximations. Therefore, it is
our belief that the method presented here, when the routines
are fully developed, should be able to produce accurate re-
sults for energy separations, such as the fine-structure sepa-
rations, for light and medium-heavy elements, hopefully
down to neutral helium.
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FIG. 7. Diagrams evaluated for the 1s2s1S and 1s2s3S states of
heliumlike neon with the results given in Table I. �The numbers
represent the energy contributions to the singlet state in �H. The
result �c� is taken from our previous work �45� and �e� is so far only
estimated.�

FIG. 8. Reducible �a� and irreducible �b� and �c� two-photon
diagrams that have previously been evaluated �45�.
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APPENDIX A: COULOMB-GAUGE INTERACTION

The terms in the Coulomb-gauge expression �47� can be
separated into a product of two single-particle potentials by
the spherical wave expansion, using the relation

sin�kr12�
r12

= k�
l=0

�

�2l + 1�jl�kr1�jl�kr2�Cl�1� · Cl�2� ,

�A1�

where Cl is a spherical tensor, associated with the spherical
harmonics Yl. The Gaunt term then becomes

�l=0

�
VG

l �kr1� · VG
l �kr2� , �A2�

where VG
l �kri� is

VG
l �kr� =

e

2�
�k�2l + 1��jl�kr�Cl. �A3�

For the scalar-retardation term we use the relation ��46�, Sec.
5.7� ��47�, Part II, Appendix A�

��f�r�Cm
l � =

1

2l + 1
�− ��l + 1��2l + 3�� d

dr
−

l

r
� f�r�Cm

l,l+1��
+ �l�2l − 1�� d

dr
+

l + 1

r
� f�r�Cm

l,l−1
 , �A4�

where Cm
l,l±1 is a vector, associated with the vector spherical

harmonics Ym
l,l±1, and the relation

� · Cm
l,k = ��Cl	m

k , �A5�

where the left-hand side is a scalar product and the right-
hand side a tensor product. Together with �48�

� d

dr
−

l

r
� jl�kr� = − kjl+1�kr� , �A6�

� d

dr
+

l + 1

r
� jl�kr� = kjl−1�kr� , �A7�

the final result of the scalar retardation term becomes

− �
l=0

�

VSR
l �kr1�VSR

l �kr2� , �A8�

where expression for the single-particle potentials for the
scalar retardation is written as

VSR
l �kr� =

e

2�
� k

2l + 1
���l + 1��2l + 3�jl+1�kr���Cl+1	l��

+ �l�2l − 1�jl−1�kr���Cl−1	l� . �A9�

The function, f�k�, in the Coulomb gauge expression �47�
then becomes

f�k� = �
l=0

�

�VG
l �kr1�VG

l �kr2� − VSR
l �kr1�VSR

l �kr2�� .

�A10�

APPENDIX B: RULES FOR DIFFERENTIATION

The difference ratios we use in the formalism presented
here are of a special kind and give rise to special handling
rules �see also Ref. �5�, Appendix E�.

If A�E� is an operator function of the �energy� parameter
E, then we define the first-order difference ratio

�A�E�
�E

=
�EE1

A�E�

�E
=

A�E� − A�E1�
E − E1

.

Then

�

�E
�A�E�B�E�� =

�EE1
A�E�

�E
B�E1� + A�E�

�EE1
B�E�

�E
. �B1�

The second difference ratio is defined as

�2A�E�
�E2 =

�EE1E2

2 A�E�

�E2 =
�EE1

�E
�EE2

A�E�

�E

and generally

�EE1¯En

n

�En =
�EE1

�E
�EE2

�E
¯

�EEn

�E
.

It then follows that

�2

�E2 �A�E�B�E�� =
�EE1E2

2

�E2 �A�E�B�E��

=
�EE1

�E
�EE2

�E
�A�E�B�E��

=
�EE1

�E ��EE2
A�E�

�E
B�E2� + A�E�

�EE2
B�E�

�E 

=

�EE1E2

2 A�E�

�E2 B�E2� +
�EE1

A�E�

�E
�E1E2

B�E1�

�E1

+ A�E�
�EE1E2

2 B�E�

�E2 . �B2�

It should be noted that the operator B�E2� is unaffected by the
differentiation �EE1

. Note also that, in view of the result �B1�,
the B operator in the second term of the last row depends on
E1. This result can be generalized to

�EE1¯En

n

�En �A�E�B�E�� = �
m=0

n �EE1¯Em

m A�E�

�Em

�EmE�m+1�¯En

�n−m� B�Em�

�Em
�n−m�

�B3�

�with �=�0� or with simplified notations

�n

�En �A�E�B�E�� = �
m=0

n
�mA�E�

�Em

��n−m�B�Em�

�Em
�n−m� . �B4�

In the case of complete degeneracy we have in first-order
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lim
E1→E

�EE1
A�E�

�E
=

�A�E�
�E

, �B5�

while in second-order we have

lim
E1,E2→E

�EE1E2

2 A�E�

�E2 =
1

2

�2A�E�
�E2 �B6�

and generally

lim
E1,E2¯→E

�EE1E2

n A�E�

�En =
1

n!

�nA�E�
�En . �B7�

If we have a product of effective interactions, then they
are separated by model-space states, which generally have
different energies,

¯P2VeffP1VeffP ,

where P corresponds to the energy E, P1 to E1, etc. This
appears in multiple folded terms, and the effective interac-

tions have the corresponding energy parameter,

¯P2Veff�E1�P1Veff�E�P .

If we now form the difference ratio of this product

�

�E
�¯P2Veff�E1�P1Veff�E�P� ,

implying that the parameter E is changed, only the last factor
is affected, and

�

�E
�¯P2Veff�E1�P1Veff�E�P� = ¯ P2Veff�E1�P1

�Veff�E�
�E

P

or generally

��Veff�n

�E
= �Veff��n−1��Veff

�E
. �B8�
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