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A new nuclear quadrupole moment, Q=0.305�2� b, of 87Sr is determined by combining precise measurement
of the electric quadrupole hyperfine structure constant of the 4d 2D5/2 state of its ion with calculation. This is
a significant improvement over the previous values 0.335�20�, 0.327�24�, and 0.323�20� b. Relativistic
coupled-cluster theory is employed in the calculations and electron correlation effects are included using the
single, double, and an important subset of triple excitations. The magnetic dipole and electric quadrupole
hyperfine structure constants of a few low-lying states are calculated to a high accuracy. The role of different
electron correlation effects in the 4d 2D5/2 state is investigated.
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I. INTRODUCTION

A significantly advanced level of the ion trapping and
cooling technique has been employed to measure precisely
the magnetic dipole and electric quadrupole hyperfine struc-
ture constants �A and B� of the 4d 2D5/2 state in the singly
ionized stable strontium �87Sr+� �1�. Recently, the 2S1/2
→ 2D5/2 transition frequency of Sr+ is proposed to be one of
the best candidates for an optical frequency standard �2�.
Knowledge of accurate A and B results of these states is
essential for this purpose �3�. Accurate calculations of these
results require precise values of the nuclear magnetic mo-
ment ��I� and quadrupole moment �Q� and correct scale of
atomic wave functions. It requires a powerful method to pro-
vide a correct scale of atomic wave functions that is capable
of considering the relativistic and electron correlation effects
rigorously. On the other hand, it is also possible to combine
precisely the measured A and B results with accurately cal-
culated A /�I and B /Q results to determine �I and Q, respec-
tively. A precise �I value is available for 87Sr �4�, but the
available Q values have large errors �5–7�. An accurate de-
termination of Q has many applications in nuclear physics,
e.g., it is used to obtain necessary information about local
symmetry, magnetic properties, and to find out asymmetry
parameters of the nucleus �8,9�. This can also be used to
study the magnetic-field dependence of the dielectric proper-
ties inside the nuclei �10,11�, in determination of electron
quadrupole moment �12�, and in studies of Mössbauer spec-
troscopy for the structural determination of the elements con-
taining solid-state compounds �13�.

Relativistic coupled-cluster �RCC� theory is referred to as
a universal many-body theory �14�. It is successfully applied
in atomic �15�, molecular �16�, and nuclear �17� physics to
calculate both the ground- and excited-state properties. It is
capable of considering the relativistic and correlation effects
to all orders �14� and can be used for accurate calculations of
atomic, molecular, nuclear, and subnuclear properties.

In the present work, we report an accurate value of the
nuclear quadrupole moment �Q� of 87Sr that is derived by

combining the calculated B /Q value using the RCC theory
and the measured B value of the 4d 2D5/2 state of its ion �1�.
Accuracy of the wave functions is verified by calculating A
for the low-lying states. We use the new Q value to deter-
mine B for other states. We investigate the role of the elec-
tron correlation effects from the 4d 2D5/2 state results.

II. THEORY AND METHOD OF CALCULATIONS

The magnetic dipole �A� and electric quadrupole �B� hy-
perfine structure constants are given by �18�

A = �NgI

�J��T�1���J�
�J�J + 1��2J + 1�

�2.1�

and

B = 2eQ	 2J�2J − 1�
�2J + 1��2J + 2��2J + 3�
1/2

�J��T�2���J� ,

�2.2�

where gI=��I

I
� with �I and I are the nuclear dipole moment

and spin, and �N is the Bohr magneton.
Accurate calculations of A /gI and B /Q require accurate

calculations of the �J�T�1��J� and �J�T�2��J� elements, where
T operators are given elsewhere �18�.

The many-body wave functions for the single valence �v�
system Sr+ using RCC theory can be expressed as �19�

��v� = eT�1 + Sv��v� , �2.3�

where ��v� is the open-shell Dirac-Fock �DF� wave function
defined as ��v�=av

†��0� and ��0� is the closed-shell DF wave
function. T and Sv are the closed- and open-shell hole-
particle excitation operators, respectively. The curly brackets
represent the normal ordered form of the operators. In the
singles and doubles �CCSD� approximation, the RCC opera-
tors are given by

T = T1 + T2 = �
a,p

ap
†aata

p +
1

4 �
ab,pq

ap
†aq

†abaatab
pq, �2.4�
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Sv = S1v + S2v = �
p�v

ap
†avsv

p +
1

2 �
b,pq

ap
†aq

†abavsvb
pq, �2.5�

where the �a ,b ,c , . . . � and �p ,q ,r , . . . � subscripts of the sec-
ond quantized operators �a� represent occupied �core� and
unoccupied �particle� orbitals, respectively. The amplitudes
ta
p and tab

pq correspond to the single �T1� and double �T2� ex-
citation operators in the closed shell and sv

p and svb
pq to the

single �S1v� and double �S2v� excitation operators involving
v. The energy and RCC amplitudes in these closed-shell and
single valence open-shell systems are obtained by

��L��HeTˆ ��0� = E0�L,0, �2.6�

��v
L��HeTˆ Sv��v� = − ��v

L��HeTˆ ��v� + ��v
L�Sv��v�Ev�L,0

= − ��v
L��HeTˆ ��v� ,

+ ��v
L�Sv��v���v��HeTˆ �1 + Sv��v��L,0,

�2.7�

where the superscript L �=1,2� represents excited states from
the corresponding DF states and the widehat symbol denotes
connected terms. E0 and Ev are the energies for the closed-
shell and open-shell states. �L,0 represents the Kronecker
delta function, which is zero for L=0. The difference be-
tween E0 and Ev can give us the ionization potential energy
of the valence electron, v.

We consider the Dirac-Coulomb-Breit Hamiltonian in the
above equations, which is given by

H = �H0� + �Ves� = �
i

N

�i
+�c�� i · p� i + ��i − 1�c2 + Vnuc�ri�

+ U�ri���i
+ + ��

i	j

N

�i
+� j

+V�rij�� j
+�i

+ − �
i

N

�i
+U�ri��i

+� ,

�2.8�

where H0 is the DF Hamiltonian and Ves is the residual terms
in atomic unit due to the Coulomb and Breit interactions
�V�rij�� given by

V�rij� =
1

rij
−

�� i · �� j

rij
+

1

2	�� i · �� j

rij
−

��� i · r�ij���� j · r�ij�
rij

3 
 ,

and �+ are the projection operators onto the positive-energy
states of the Dirac Hamiltonian in the nuclear �Vnuc�ri�� and
DF �U�ri�� potentials.

We include leading-order triple excitations �CCSD�T�� in
the calculation by constructing effective operators as �20�

Svbc
pqr =

VesT2
ˆ + VesSv2

ˆ


v + 
b + 
c − 
p − 
q − 
r
, �2.9�

where 
i is the DF energy of the electron in the ith orbital.
These operators are correlated with Eq. �2.7�. We have given
typical Goldstone diagrams representing these triple excita-
tions in Fig. 1.

The expectation value of a Hermitian operator �O� in the
single valence states can be expressed as

�O� =
��v�O��v�
��v��v�

=
��v��1 + Sv

†eT†
OeT�1 + Sv��v�

1 + Nv
,

�2.10�

where we define Nv=Sv
†eT†

eTSv. In the CCSD �T� method,
both eT†

OeT and eT†
eT truncate naturally at effective five-

body terms while expanding this expression using Wick’s
generalized theorem �21�. Since these operators have to fi-
nally connect with Sv operators, only up to three-body terms
contribute to the calculations. We consider all possible effec-

tive one-body �Ō= �eT†
OeT�one� terms from the following ex-

pressions:

Ō � O + OT1 + T1
†O + OT2 + T2

†O + T1
†OT1 + T1

†OT2

+ T2
†OT1 + T2

†OT2. �2.11�

We include effective two-body terms only from

eT†
OeT � OT1 + T1

†O + OT2 + T2
†O . �2.12�

The justification for neglecting other terms from the above
expansions is discussed in the next section by calculating
contributions from some of the important immediate leading-
order diagrams.

Contributions from the normalization factors are given by

Normalization Factors = ��v�O��v�	 1

1 + Nv
− 1
 .

�2.13�

III. RESULTS AND DISCUSSIONS

The orbitals are constructed as linear combinations of
Gaussian type orbitals �GTOs� of the form �22�

FIG. 1. Typical Goldstone diagrams representing leading-order
triple excitations over the CCSD method. Double arrows in the
diagrams represent valence electron v, and VN is the normal order
form of the residual interaction, Ves.
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Fi,k�r� = rke−�ir
2
, �3.1�

where k=0,1 , . . . for s , p , . . . type orbital symmetries, respec-
tively. For the exponents, we use the even tempering condi-
tion as

�i = �0�i−1. �3.2�

In our earlier work it was found that GTOs are able to
produce accurate hyperfine structure constants in different
sizes of systems �20,23�. For the present system we consider
30s1/2, 25p1/2, 25p3/2, 25d3/2, 25d5/2, 20f5/2, 20f7/2, 20g7/2,
and 20g9/2 GTOs. The �0 and � values are considered to be
0.00525 and 2.73, respectively, for all the symmetries. All
core electrons are activated in the RCC calculations.

We present our calculated A and B /Q values of 87Sr+ in
Table I. We use gI=−0.24283 �4� to calculate A. Our results
are compared with the available experimental results and
other calculations. In the paper by Yu et al., they have con-
sidered only the lowest-order relativistic many-body pertur-

bation theory �RMBPT� in their calculations �6�, in contrast
to our RCC theory. Mårtensson’s calculations are based on
DF �O� and a variant of many-body theories �7� to our ab
initio method. The DF results of Mårtensson’s work are al-
most the same as ours. The difference between these two
results could be due to the fact that Mårtensson’s calculations
omit Breit interaction and use a different method. In Table II,
we give Breit interaction contributions to the A and B /Q
results of various states. Yaun et al. have also calculated A
for the the ground state using RMBPT �24�.

From Table I, it is clear that our results are very close to
the experimental results. This demonstrates the power of the
RCC method to produce accurate results. In our earlier work,
we found that the d states are strongly affected by the core
electrons �20�. Therefore, it is difficult to calculate the 4d
2D5/2 state accurately. This would require us to include core-
polarization effects to all orders. It is known that the RCC
theory can incorporate core-polarization effects to all orders
�20,23�. We give a breakdown of the contributions in Table
III from different RCC terms representing various correlation
effects to the total calculated A and B /Q results of the 4d
2D5/2 state and investigate the role of different correlation
effects in this state. We find from this table that contributions

from ŌS2v, which at the lowest order corresponds to a core-
polarization effect �20,23�, play a crucial role in determining

the final results. The DF and ŌS2v contributions have oppo-
site sign and the latter is larger than the former. Contribu-
tions from all other RCC terms are comparatively small. This
justifies our argument of how strongly the d states interact
with the core electrons in this system. We show all order
Goldstone diagrams representing core-polarization effects in
Fig. 2.

A couple of experiments have been carried out to measure
the A and B values in this system �1,25–28�. Among them,
Sunaoshi et al. have measured the A of the ground state
�5s2S1/2� very precisely using the ion-trap technique with
laser-microwave double resonance spectroscopy �25�. Bar-
wood et al. have also measured A for the 5s 2S1/2 state and A

TABLE II. Breit contributions to the A and B /Q in MHz and
MHz b−1, respectively.

5s 2S1/2 5p 2P1/2 5p 2P3/2 4d 2D3/2 4d 2D5/2

A −1.799 −0.665 0.017 −0.138 −0.009

B /Q −0.305 −0.017 −0.090

TABLE I. A and B /Q results in 87Sr+.

A �MHz�

B /Q
�MHz b−1�Calculation Experiment

5s 2S1/2 −1001.203a −1000.5�1.0�e

−1003.177b −1000.473673�11�f

−1000c −990g

−987d −993.5h

−1000.5i

5p 2P1/2 −176.561a

−178.389b

−177c

5p 2P3/2 −35.596a −36.0�0.4�i 272.955a

−35.114b 274.279b

−35.3c 271c

4d 2D3/2 −45.604a 116.108a

−47.356b 118.238b

−46.7c 115c

4d 2D5/2 2.145a 2.1743�14�e 161.201a

2.507b 168.513b

1.1c 160c

aThis work.
b�6�.
c�7�.
d�24�.
e�1�.

f�25�.
g�26�.
h�27�.
i�28�.

TABLE III. Break down of the RCC contributions to the
4d 2D5/2 state hyperfine structure constants calculation.

RCC terms

4d 2D5/2

A �MHz� B /Q �MHz b−1�

O �DF� −13.006 110.231

O− Ō −0.491 7.781

ŌS1v+c.c. −2.292 19.259

ŌS2v+c.c. 18.885 27.016

S1v
† ŌS1v

−0.101 0.817

S1v
† ŌS2v+c.c. 0.848 0.319

S2v
† ŌS2v+c.c. −1.696 −1.585

Important effective two-body terms

S2v
† OT1+c.c. 0.023 −0.188

S2v
† OT2+c.c. 0.016 −0.134

Norm. −0.037 −2.649
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and B for the 4d 2D5/2 state very accurately using a Paul trap
and cooled technique �1�.

The nuclear Q value can be obtained by measuring the
coupling constant due to the electric-field gradient at the
nucleus and accounting Sternheimer corrections �29�. As
mentioned before, it can also be determined by combining a
precise measured B and accurately calculated B /Q results. In
Table IV, we present experimental B results of the 5p 2P3/2
and 4d 2D5/2 states. Among them, the B result of the 4d 2D5/2
state is measured to an accuracy of 0.1%. Combining this
result with our B /Q result of the same state, we obtain Q
=0.305b. We calculate B in other states by substituting this
new value of Q, and these are given in the same table. It
shows that our calculated B value of the 5p 2P3/2 state is
within the uncertainty of the available experimental result.

The error in this method arises from the exclusion of
higher-order excitations by the CCSD�T� method and sup-
pressed terms from Eq. �2.10�. We attempt to verify system-
atically contributions from the lowest-order triple and qua-
druple excitations and we would like to estimate possible
errors in the determination of Q. In a recent work, Porsev
and Derevianko �30� have shown that for some systems the
effect of triple excitations of fourth order in the residual in-
teraction, Ves, plays a significant role in the linearized CCSD
�lin-CCSD� method. Indeed, most of these triple excitations
have been taken into account in the evaluation of the CCSD
amplitudes through the nonlinear terms of Eq. �2.7�. A cer-
tain class of triple excitations to the CCSD method have
been considered using the CCSD�T� approach through Eq.
�2.9�. The difference of the CCSD and CCSD�T� results at
linearized and nonlinearized methods may give a signature
of the importance of the contributions of these triple excita-
tions. We present these results for A and B /Q of the 4d 2D5/2
state of 87Sr+ in Table V. Again, we try to construct more
triple excitations in the following way for better understand-
ing of these effects in the present system. As discussed by
Sur et al. �31�, it is possible to obtain more accurate leading-
order triple and quadruple excitations than the CCSD�T�
method by constructing a singles and doubles unitary
coupled-cluster �UCCSD�T�� method. We consider all these
extra diagrams in the lowest order for the calculations of the
hyperfine structure constants of the 4d 2D5/2 state of 87Sr+,

and some of the corresponding Goldstone diagrams are
shown in Fig. 3 �i�–�iv�. These contributions to the A and
B /Q results are 0.045 MHz and 0.342 MHz b−1, respec-
tively. We consider total contributions from these methods to
the hyperfine structure constant calculations of the 4d 2D5/2
state as the maximum possible source of error in the
CCSD�T� method. We also find separately contributions
from some of the neglected leading higher-order diagrams
from Eq. �2.10�, which are shown in Fig. 3 �v�–�vi� with their
exchange diagrams, and we consider this as a second pos-
sible source of error. Contributions from these diagrams to
the A and B /Q of the 4d 2D5/2 state in 87Sr+ are 0.002 MHz
and 0.007 MHz b−1, respectively. These results also justify
the truncation of the exponential form given in Eqs. �2.11�
and �2.12� for the present calculations and save a lot of com-
putational time. By considering the quadrature formula of the
maximum possible errors from the calculation and system-
atic error present in the experimental result of B, we obtain
the Q value of 87Sr precisely as 0.305�2�.

We also give other estimated results of the Q value in
Table VI. Heider and Brink have determined Q by using an

FIG. 2. Goldstone diagrams representing all order core-

polarization effects from ŌS2v.

TABLE IV. Comparison of experimental and our calculated B
results in MHz. New Q value is used to calculate B.

5p 2P3/2 4d 2D3/2 4d 2D5/2

Experiment 88.5�5.4��28� 49.11�6��1�
This work 83.251 35.413 49.166

TABLE V. Estimation of contributions from the leading-order
triple excitations to the CCSD�T� method in the 4d 2D5/2 state of
87Sr+ hyperfine interactions. Here we use the notation lin-CCSD�T�
for the linearized CCSD�T� method.

lin-CCSD lin-CCSD�T� CCSD CCSD�T�

A �MHz� 0.889 0.892 2.141 2.145

B /Q �MHz b−1� 169.568 169.597 161.174 161.201

FIG. 3. Some of the important Goldstone diagrams considered
to account for errors: �a� diagrams �i�–�iv� and their complex con-
jugate �c.c.� diagrams are the typical higher-order contributions to
the CCSD �T� method and �b� diagrams �v�–�vi� are the leading-
order diagrams of those that are neglected in the property
calculations.
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antishielding correction estimated by Sternheimer �5�. Both
Mårtensson and Yu et al. have calculated this quantity using
their B /Q results with an old experimental B result of the 5p
2P3/2 state, which has a large systematic error. They also do
not give the uncertainty in their calculations.

IV. CONCLUSION

We employ the RCC theory to study both the magnetic
dipole and electric quadrupole hyperfine structure constants

very accurately in the singly ionized stable isotope of stron-
tium. It shows the power of the method to incorporate cor-
relation effects and the potential to produce accurate results.
We obtain an accurate value of the nuclear quadrupole mo-
ment, Q=0.305�2�, of 87Sr by combining a precise experi-
mental result of its ion with our sub-1% calculation.
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