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Creation of entanglement is considered theoretically and numerically in an ensemble of spin chains with
dipole-dipole interaction between the spins. The unwanted effect of the long-range dipole interaction is com-
pensated by the optimal choice of the parameters of radio-frequency pulses implementing the protocol. The
errors caused by �i� the influence of the environment, �ii� nonselective excitations, �iii� influence of different
spin chains on each other, �iv� displacements of qubits from their perfect locations, and �v� fluctuations of the
external magnetic field are estimated analytically and calculated numerically. For the perfectly entangled state
the z component M of the magnetization of the whole system is equal to zero. The errors lead to a finite value
of M. If the number of qubits in the system is large, M can be detected experimentally. Using the fact that M
depends differently on the parameters of the system for each kind of error, varying these parameters would
allow one to experimentally determine the most significant source of errors and to optimize correspondingly
the quantum computer design in order to decrease the errors and �M�. Using our approach one can benchmark
the quantum computer, decrease the errors, and prepare the quantum computer for implementation of more
complex quantum algorithms.
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I. INTRODUCTION

A quantum computer is supposed to be an analog device
designed for implementation of quantum algorithms. The
most important algorithm is the Shor’s quantum algorithm
for factorization of large integer numbers �1,2�. Before ex-
perimental realization of this and other complex quantum
algorithms, this computer must be tested by implementation
of simple algorithms, such as, for example, creation of en-
tanglement with two quantum states �and many qubits�. This
procedure would allow one to identify the most significant
sources of errors and to optimize the quantum computer de-
sign.

The following criteria �3� must be met by a physical
implementation of a quantum information processor: �i� the
qubits must be easy to physically manipulate, �ii� easy to
increase the number of qubits, �iii� qubits should interact
with each other, �iv� the qubits should be somewhat isolated
from environment, and �v� the qubit states must be detect-
able. Currently, solid state implementations of a quantum
computer allow �theoretical� scalability �criterion �ii�� and
possibility to substantially increase the number of qubits in
the quantum computer register. In a solid state currently one-
and two-qubit quantum logic operations are implemented
and measured experimentally. Nuclear magnetic resonance
and electron spin resonance techniques have been used for
quantum information processing in solids. Entanglement be-
tween electron and nuclear spins of the same molecule has
been implemented and measured in a malonic acid single
crystal �4� and in 15N@C60 endohedral fullerene �5�. Quan-
tum process tomography has been performed on a solid-state
qubit represented by a nitrogen-vacancy defect in diamond
�6� at room temperature. Initialization �cooling� of nuclear
spin has been realized in isotopically labeled malonic acid

molecules by a controllable transfer of polarization from
neighboring nuclear spins �7,8� at room temperature. One-
and two-qubit quantum logic operations have been imple-
mented and measured in superconducting quantum comput-
ers �9–11�. A further technological advance can be imple-
mentation of simple quantum computing algorithms in a
scalable solid state system with a large �more than two� num-
ber of qubits for demonstration of basic principles of quan-
tum computation �QC�. In this paper, we consider how to
implement, probably, the simplest possible algorithm with
many qubits: creation of entanglement. To implement this
algorithm, we choose one of the most affordable systems: a
spin chain placed in a permanent magnetic field with a gra-
dient along the chain. There is a constant dipole-dipole inter-
action between the qubits. The logic operations are imple-
mented by rectangular radio-frequency pulses. This setup
allows one to achieve all criteria �i�–�v�.

Indeed, criterion �i� is satisfied because in the system
there are no switchable interactions controlled by nanoscopic
metal gates, and quantum logic operations are implemented
using global addressing technique based on rectangular
radio-frequency pulses. Criterion �ii� is satisfied because we
consider solid-state QC architectures and because rectangular
pulses can be used in the QC with many qubits and all pa-
rameters of the applied pulses can be determined analyti-
cally. The number of pulses in our entanglement protocol is
equal to the number of qubits in the chain. The long-range
constant magnetic dipole-dipole interaction satisfies criterion
�iii�. In the majority of spin-based quantum computer archi-
tectures this is the only interaction when neighboring qubits
are separated from each other at the distances �1 nm. Cri-
terion �iv� is satisfied because our system allows implemen-
tations using qubits with long decoherence times. One pos-
sible implementation is based on nuclear spins, for example
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nuclear spins of 31P �12�, 29Si �13�, or Li �14� in 28Si. An-
other implementation is based on endohedral fullerenes,
15N@C60 and 31P@C60 �15�, where the fullerene cage pro-
vides a good isolation of electron or nuclear spin of the en-
closed atom of nitrogen or phosphorus from the environ-
ment. The electrons of the nitrogen or phosphorus atoms
have spin 3/2, and the nuclei have spin 1/2 �16,17�. Conse-
quently, our protocols can work only for the nuclear spins of
the endohedrals. However, a modification of our scheme for
the electrons with spin 3/2 is possible �18�. The third pos-
sible implementation is based on electron spins in self-
assembled monolayer systems �19–21�. Measurement �crite-
rion �v�� can be performed by using an ensemble of many
identical spin chains �19� shown in Fig. 1. The external mag-
netic field in Fig. 1 is nonuniform in the x direction but
uniform in the y direction. Such a gradient can be created by
current�s� flowing along the y axis in the plain formed by the
chains. Consequently, we take the angle � between the qubit
plane and the permanent magnetic field to be �=� /2. If the
distance between neighboring chains is sufficiently large all
chains experience the same conditions. Consequently, one
can create entanglement simultaneously in all chains. If the
number of spins in the system is sufficiently large, one can

detect the macroscopic magnetization M� of the whole sys-
tem. If each chain is in the entangled state

1
�2

��00 ¯ 00� + ei��11 ¯ 11�� , �1�

then z component Mz of the macroscopic magnetization
must be equal to zero. All possible errors result in deviation
of Mz from its perfect value Mz=0. We will show in this
paper that the sign of Mz and the dependence of Mz on
different parameters of the model can provide us the infor-
mation about the main source of error. This information can
be useful for benchmarking the quantum computer and opti-
mization of its architecture and parameters of quantum pro-
tocols.

II. HAMILTONIAN

We consider the implementation of entanglement only for
one spin chain of the ensemble of chains illustrated in Fig. 1.
Since the chains experience the same conditions the dynam-
ics of all chains is similar. One can neglect the magnetic
dipole-dipole interaction between the spins of the different
chains when the condition �a /d�3�1 is satisfied. �Here a is
the distance between neighboring qubits of a single chain
and d is the distance between different chains, see Fig. 1.�
More exact condition of relative independence of different
chains will be given in Sec. V C below.

The applied magnetic field has the following components:

B� n�x,t� = �B0�x�,Bn
1 cos��nt + �n�,− Bn

1 sin��nt + �n�� ,

where B0�x� is a permanent magnetic field and Bn
1, �n, and �n

are, respectively, the amplitude, frequency, and phase of the
nth circularly polarized radio-frequency rectangular pulse of
a protocol. The permanent magnetic field B0�x� has a con-
stant gradient B0�xl�=�0+ l�B0, where xl is the x coordinate
of the lth qubit. Note that in practice the magnetic field gra-
dient can be variable. Our results can be easily reformulated
for this case, provided that �B0�xl�−B0�xl−1��	Bn

1. If there is
the dipole-dipole interaction between the qubits the Hamil-
tonian is

Hn = H0 + Hint + Vn�t� , �2�

where

H0 = − �
l=0

L−1

�lSl
z,

Vn�t� = −

n

2 �
l=0

L−1

	Sl
− exp�− i��nt + �n�� + H.c.
 , �3�

Hint = −
J

A3 �
l=0

L−1

�
k=l+1

L−1
1

�k − l�3Sl
zSk

z ,

J =
�2

�A3 �3 cos2 � − 1� = −
�2

�A3 . �4�

Here the Hamiltonian is presented in the frequency units; �
is the Planck constant; Sl

±=Sl
x± iSl

y; Sl
x, Sl

y, and Sl
z are the

components of the operator of the kth nuclear or electron
spin 1/2; �l=�0+ l��, �0=B0�x0�, ��=�B0; 
n=Bn

1 is
the Rabi frequency of the nth pulse; =N or =−e, where
N and e are, respectively, the nuclear and electronic gyro-
magnetic ratios; A=1 nm, A is the dimensionless parameter
equal to the distance between neighboring qubits measured
in nanometers, so that a=AA �a is the distance between
neighboring qubits�; �=� /2 is the angle between direction
of the spin chain and direction of the permanent magnetic
field; �=−ge�B for an electron spin and �=gN�N for a
nuclear spin, �B and �N are, respectively, the Bohr and
nuclear magnetons, ge�2 and gN are, respectively, the elec-
tron and nuclear g factors. In Eq. �4� we neglect the x and y
components of the dipole-dipole interaction because the

FIG. 1. A setup for creation of entanglement with ensemble of
spin chains.
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magnetic dipole field on lth qubit in any stationary state
�00 ¯ 00�, �00 ¯ 01�,¼, is much less than �B0. So, only the
z component of the dipole-dipole field significantly affects
the quantum dynamics.

III. CREATION OF ENTANGLEMENT

First, we discuss the formal steps required to create the
entangled state. Let the initial state be the ground state
�0L−10L−2¯0100� as shown in Fig. 1. We split the ground
state into two states by applying the Hadamard transforma-
tion

H0�0L−10L−2 ¯ 0100�

=
1
�2

��0L−10L−2 ¯ 0100� + ei���0L−10L−2 ¯ 0110�� .

�5�

Here and below we omit the total phase factor. Then we
apply controlled-NOT gate �CNOT01� to the 1st qubit to obtain

1
�2

��0L−10L−2 ¯ 0100� + ei���0L−10L−2 ¯ 021110�� . �6�

Applying controlled-NOT gates to the remaining L−2 qubits
we obtain the entangled state

1
�2

��0L−10L−2 ¯ 0100� + ei��1L−11L−2 ¯ 1110�� . �7�

Below we do not take into consideration the phase factor ei�.
One can make � to be equal to zero by a proper choice of the
phases �n of the pulses �22�.

IV. QUANTUM DYNAMICS

We decompose the wave function into the basis states �p�
of the unperturbed Hamiltonian H0:

��t� = �
p=0

2L−1

Cp�t�e−iEpt�p� , �8�

where �p�= �nL−1nL−2¯nl¯n1n0�, nl=0,1, and

Ep = �p�H0 + Hint�p�

= − �
l=0

L−1

�l�p�sl
z�p� −

J

A3 �
l=0

L−1

�
k=l+1

L−1
sl

z�p�sk
z�p�

�k − l�3 . �9�

Here sl
z�p� is the eigenvalue of the operator Sl

z in the state �p�:
if the lth spin of the state �p� is in the state �¯0l¯ � then
sl

z�p�=1/2 and if the lth spin of the state �p� is in the state
�¯1l¯ � then sl

z�p�=−1/2.
Let the jth spin of the state �p� be in the state �¯0 j¯ �

and let the state �q� be associated with the state �p� by flip of
the jth spin, �q�= �¯1 j¯ �. If the frequency �n of the elec-
tromagnetic field is close to the Larmor frequency of the jth
spin, then under the conditions ����	J /A3 and ����	
n the
pulse affects mostly this jth spin, and the approximate solu-
tion is �23�

Cp�tn + �n� = cos��n�q,p��n

2
�

+ i
�n�q,p�
�n�q,p�

sin��n�q,p��n

2
��e−i�n�q,p��n/2,

Cq�tn + �n� = i

n

�n�q,p�
sin��n�q,p��n

2
�ei�n�q,p�tn−i�n+i�n�q,p��n/2,

Cp�tn� = 1, Cq�tn� = 0, �10�

where tn is the time of the beginning of the nth pulse and

�n�q,p� = Eq − Ep − �n, �n�q,p� = ��n
2�q,p� + 
n

2.

If the detuning �n�q , p� is equal to zero, �n�q , p�=0, and for

n�n=� �� pulse�, there is a complete transition between the
states �p� and �q�. Here we neglected the transitions associ-
ated with flips of spins with nonresonant transition frequen-
cies for which l� j. The corrections to the probability ampli-
tude associated with flips of these spins are of order of

n / �2�����j− l�� �24,25�. These corrections are small pro-
vided 
n / �����1.

Controlled--NOT gate for the system with long-range
dipole-dipole interaction. Since the entanglement is imple-
mented by a sequence of controlled-NOT �CNOT� gates we
now derive the parameters required to implement these gates
taking into consideration the long-range interaction. Because
of this interaction the action of the controlled-NOT gate on
the jth qubit depends not only on the states of �j−1�th and
�j+1�th qubits, but also on the states of distant lth qubits,
where l� j−1, j , j+1. Consequently, it is convenient to for-
mulate the controlled-NOT gate CNOT not in terms of the
states of the corresponding qubits, like CNOTj−1,j, but in terms
of the eigenstates �p� of the Hamiltonian H0. For example,
the gate CNOTj�p ,q� flips the jth qubit for the state �p� and
completely suppresses flip of the same jth qubit for the state
�q�. This procedure allows one to compensate the unwanted
action of the long-range interaction by an optimal choice of
the parameters of the pulses. Our approach works for the
case when there are only two “working states” �excluding
error unwanted states� in the quantum register. It is useful for
creation of entanglement with two states introduced in Sec.
III. If there are more than two states in the quantum register,
more complex �shaped� pulses are required to minimize the
effect of the long-range interaction.

Let us write the entangled state in the form �1/�2���0�
+ �p���, where �0� is the ground state and �p�� is the excited
state. The pulses of the protocol must suppress the transitions
from the ground state and to implement the transitions for
the excited states, so that the state �p�� evolves as

�p��: �000 ¯ 001� → �000 ¯ 011� → �000 ¯ 0111� → ¯

→ �001 ¯ 111� → �011 ¯ 11�

→ �111 ¯ 11� . �11�

The controlled-NOT gates implementing these transitions are
CNOTj�p� ,0�, where j=1,2 , . . . ,L−1 is the number of the
spin to be flipped in the excited state �p�� and also the num-

CREATION OF ENTANGLEMENT IN A SCALABLE SPIN¼ PHYSICAL REVIEW A 73, 062336 �2006�

062336-3



ber of the corresponding � pulse. �We do not count the initial
� /2 pulse.�

We now derive the parameters of the initial pulse imple-
menting the Hadamard transform. In order to flip the 0th spin
in the ground state the detuning must be equal to zero, E1
−E0−�H=0, where �H is the frequency of the pulse. Using
Eq. �9� we obtain

�H = E1 − E0 = �0 +
J

2A3 �
l=1

L−1
1

l3 . �12�

The Rabi frequency 
H of the initial pulse must satisfy the
condition 
H��� and the time duration of the pulse is �H
=� / �2
H�.

Consider now the controlled-NOT gate CNOTj�p� ,0�. If the
state �q�� is associated with the state �p�� by a flip of the jth
spin, the frequency is

� j = Eq� − Ep� = � j +
J

A3 �
l=0

l�j

L−1
sl

z�p��
�l − j�3

. �13�

For example, for j=1, one has s0
z�p��=−1/2 and sl

z�p��
=1/2 for l=2,3 , . . . ,L−1, so that the frequency of the first �
pulse is

�1 = �1 +
J

2A3 �
l=3

L−1
1

�l − 1�3 ,

the frequency of the second � pulse is

�2 = �2 +
J

2A3 �
l=5

L−1
1

�l − 2�3 ,

and so on.
In order to suppress the unwanted transitions from the

ground states one can use a 2�K method �2,26,27�. Here we
will modify this method so that it can be applied to the
system with the long-range interaction. As follows from Eq.
�10� the transition with nonzero detuning is suppressed if the
value of the sine is equal to zero, i.e., when


 j =
�� j�q�,0��
�4K2 − 1

, �14�

where K=1,2 , . . . and the state �q�� is associated with the
ground state by a flip of the jth spin. Using Eq. �9� we find

Eq� − E0 = � j +
J

A3 �
l=0

l�j

L−1
sl

z�0�
�l − j�3

= � j +
J

2A3 �
l=0

l�j

L−1
1

�l − j�3
.

From Eq. �13� we obtain the detuning

� j�q�,0� = Eq� − E0 − � j =
J

A3 �
l=0

l�j

L−1
sl

z�0� − sl
z�p��

�l − j�3

=
J

A3�
l=0

j−1
1

�j − l�3 . �15�

We note that if the long-range dipole-dipole interaction is not
taken into consideration, then the error to the probability
amplitude generated by each pulse due to the next-nearest-
neighbor interaction is of the order of �1/2�3=1/8. Our ap-
proach allows us to compensate the unwanted effect of the
long-range interaction by optimal choice of the parameters of
the pulses.

V. ERRORS AND z COMPONENT
OF THE MAGNETIZATION

The protocol consisting of rectangular pulses with the pa-
rameters defined by Eqs. �12�–�15� allows one to implement
entanglement in the ensemble of noninteracting spin chains
with minimum possible error P. It is possible to relate the
error P with the z component Mz of the magnetization of the
system. Since Mz is caused by the error states, then one can
assume that Mz� P. We define the dimensionless z compo-
nent of the magnetization M �Mz in the following way. Let
the maximum value of �M� be 1. Then for the state �00 ¯ 00�
we have M =1 and for the state �11¯11� we have M =−1.
The measured z component of the magnetization of the sys-
tem shown in Fig. 1 corresponding to M is Mz= 1

2 M�RL.
In this section we will estimate and compare contribution

of different kinds of errors to the total error P and relate
these errors with M. Since we can estimate P analytically for
a large number of qubits, the relation between M and P
allows us to estimate M for L	1. Different kinds of errors
can generate positive and negative contributions to M so that
they can cancel each other. For example, the state
Cp��000111�+ �111000�� contributes to P but does not con-
tribute to M. In spite of this we assume that for a definite
range of parameters the relation M =gP holds �see Eq. �24�
below�, where the coefficient g is the “geometrical factor”
and P is the probability of error. For example, if a single spin
in the state �1/�2��0000� of superposition �1� is flipped down
with the probability P then g=−1/L=−1/4. If two spins are
flipped down with the probability P then g=−2/L=−1/2. If
a single spin in the state �1/�2��1111� is flipped up then
g=1/L=1/4 and so on. If, for example, different spins in
the state �1/�2��0000� have different probabilities Pj to
be flipped then M = �−1/L�� j=0

3 Pj �see Eqs. �46� and �51�
below�.

The probability of error P depends on parameters and
number of qubits L. This dependence is different for different
kinds of errors. For example, for nonresonant transitions P
�L �see Eq. �20� below�. By experimental measurement of
M for different parameters one can define the most important
mechanism responsible for the errors. Using this information
one can optimize the design and parameters to decrease the
error and to prepare a quantum computer for implementation
of complex quantum algorithms.
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A. Decoherence

The influence of environment can be characterized by the
temperature-dependent spin-lattice relaxation time T1 and
spin-spin relaxation time T2, where T2�T1. The relaxation
time T2 defines the maximum number of pulses and conse-
quently the maximum number Lmax of qubits in each spin
chain. Increasing Lmax is desirable for increasing the number
of qubits in the quantum register and for better measurement
�because the total magnetization of the ensemble of the spin
chains is proportional to Lmax�. We note that the number of
the spin chains Rmax theoretically is not limited, so that the
size of the whole system and the total number of spins can be
increased by increasing R. If L�Lmax the influence of envi-
ronment is small and one can formulate quantum dynamics
in terms of wave function instead of using density matrix.
This allows one to consider quantum logic operations with
many qubits �23,25,28� and to analytically estimate the in-
fluence of other sources of error which, as shown below, can
cause a much more profound destructive effect on quantum
computation.

We define Lmax from the condition

�H + �
j=1

Lmax−1

� j � T2, �16�

where � j =� /
 j. The pulse performing the Hadamard trans-
form can be made very short by increasing the amplitude BH

1

of this pulse, so that we will neglect contribution of �H. Us-
ing Eqs. �14�–�16� we obtain

�
j=1

Lmax−1 ��
l=0

j−1
1

�j − l�3�−1

�
�J�T2

�A3�4K2 − 1
. �17�

The left-hand side for Lmax	1 can be approximated as

�
j=1

Lmax−1 ��
l=0

j−1
1

�j − l�3�−1

�
Lmax − 1

��3�
+ 0.3399, �18�

where ��3��1.202057, and ��x� is the Riemann zeta func-
tion.

We now estimate Lmax for endohedral fullerenes. The very
sharp electron spin resonance spectra from the endohedrals
15N@C60 and 31P@C60 indicates very long longitudinal re-
laxation time T1�10 ms at the temperature T=10 K, and
T1�0.9 ms at T=300 K. The transverse relaxation time is
T2�20 �s at T=50 K and T2�13 �s at T=300 K �29�. No
nuclear relaxation times have yet been recorded but they are
expected to be several orders of magnitude longer than the
electronic relaxation times. We will make our estimation of
Lmax for the electron spins. The value of the coupling con-
stant �Je� for two electron spins is ��B=9.274
�10−21 erg/G��Je� / �2���52 MHz. The minimum distance
between two endohedrals is close to the diameter of the C60
cage �1 nm� and can be as small as 1.1 nm �18�. Taking K
=1, T2=20 �s, and A=2.2, the right-hand side of Eq. �17�
becomes equal to 113. From Eq. �18� this value corresponds
to Lmax=136. The value of Lmax decreases when the distance
A between neighboring endohedrals increases.

Due to the interaction of the spin system with the envi-
ronment M becomes positive. The reason is that the energy
of the state �1� is larger than the energy of the state �0�, so
that the influence of the environment causes the transitions
�1�→ �0� while the transitions �0�→ �1� are suppressed.

B. Nonresonant transitions

Since wavelength of the radio-frequency pulses is much
larger than the size of the quantum register, the pulses affect
all spins. If the pulse frequency is close to the frequency � j
of jth spin then the probability of flipping kth spin, k� j is of
order of �24�

� jk = � 
 j

2�j − k����
2

.

The probabilities of the nonresonant transitions are small
provided that the ratio 
 j / �2����� is small. Using Eqs. �14�
and �15� we obtain

� jk �
�2

4�j − k�2 , � =
�J�

�4K2 − 1A3����
. �19�

The probabilities of unwanted quantum states created in the
result of the nonresonant transitions are of the order of �2,
and the probability error Pnr caused by the nonselective ex-
citations is proportional to �2. The error Pnr grows linearly
with the number of pulses L �28�. A typical behavior of
Pnr�L� is shown in Fig. 2 for a small number of qubits L and
for two values of �: �=0.02 and �=0.09. For example, for
two electron spins with �J� / �2��=52 MHz separated by the
distance 2.2 nm and for K=1 these values of � correspond,
respectively, to ���� / �2��=141 MHz and ���� / �2��
=31.4 MHz. These values of �� correspond, respectively, to
the following magnetic field gradients ���=e�B0 ,e / �2��
�28.025 GHz/T�: 2.3�106 and 5.1�105 T/m, which can
be realized experimentally �30–33�.

Comparison of Fig. 2�a� with Fig. 2�b� indicates the im-
portance of the strong magnetic field gradient in keeping the
error small in the system with a large number of qubits. As
follows from the figures, increasing L, for example, to L
=100 results in the error of the order of 70% for �=0.09 and
the error of the order of 4% for �=0.02.

We approximate Pnr as

Pnr�L� = − Pnr
0 + Pnr

1 L, L � 2. �20�

The values of Pnr
0 and Pnr

1 found numerically are shown in
Fig. 3. The numerical simulations are performed by diago-
nalization of the full Hamiltonian Hn given by Eq. �2� for
each nth pulse in the rotating frame where Hn is time inde-
pendent. The obtained eigenstates were used for simulation
of the quantum dynamics �26�. The best fit obtained from the
data presented in Fig. 3 gives us the expressions

Pnr
0 = 0.8236�1.988, Pnr

1 = 0.8615�1.987, � � 1. �21�

In Fig. 2 we use these parameters to approximate the func-
tion Pnr�L�. One can see that there is a good correspondence
between the numerical results and our estimate �20�. Our
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estimate �20� is especially useful when L is large, L�102

−103, when no exact solution is available.
Since the z component of the magnetization Mnr is pro-

portional to Pnr it is reasonable to present the dependence of
Mnr on L in the form

Mnr = Mnr
0 − Mnr

1 L . �22�

A typical behavior of Mnr as a function of L is shown in Fig.
4 for two values of �. From this figure one can see that Mnr
is negative.

From Fig. 4 one can numerically calculate Mnr
0 and Mnr

1 .
We calculated M0 and M1 for different values of � �see Fig.
5� and obtained

Mnr
0 = 1.341�2.044, Mnr

1 = 0.60786�1.9795, � � 1.

�23�

From Fig. 3 one can see that Eq. �22� with parameters �23�
gives us a good approximation of Mnr. It is important that the
number of qubits in Eqs. �20� and �22� is an explicit param-
eter, so that one can calculate the probability errors and z
component of the magnetization due to the nonresonant tran-
sitions for an arbitrary number of qubits L. Combining Eqs.
�20� and �22� we obtain the relation between Mnr and Pnr

Mnr = gnr
0 + gnr

1 Pnr, �24�

where

gnr
0 = Mnr

0 −
Pnr

0

Pnr
1 Mnr

1 , gnr
1 = −

Mnr
1

Pnr
1 .

C. Interaction between different chains

Here we will discuss the possibility to decrease the influ-
ence of the chains on each other by optimal choice of the
parameters of the pulses. We will show that if the long-range
interaction between the chains is not taken into consideration
the influence of the chains on each other causes the error of
the order of L�a /d�3. Consider the jth spin of the rth spin
chain in the field of the spins of the �r−1�th, rth and �r
+1�th chains. �See Fig. 6.� The resonant frequency is �com-
pare with Eq. �13��

� j = � j +
J

A3 �
l=0

l�j

L−1
sl

z�p��
�l − j�3

+
2J

D3 �
l=0

l�j

L−1
sl

z�p��
�1 + �2�j − l�2�3/2 , �25�

where D is the dimensionless distance between neighboring
chains measured in nanometers and �=a /d=A /D�1. The

FIG. 2. The probability error Pnr obtained using numerical so-
lution �25� and estimate using Eqs. �20� and �21� as a function of
the number of qubits L for two values of �. FIG. 3. Pnr

0 and Pnr
1 in Eq. �20� obtained using numerical solu-

tion and the best fits with the parameters defined by Eq. �21�.
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Rabi frequency of the pulse is �see Eqs. �14� and �15��


 j =
�J�

A3�4K2 − 1
�
l=0

j−1
1

�j − l�3

+
2�J�

D3�4K2 − 1
�
l=0

j−1
1

�1 + �2�j − l�2�3/2 . �26�

We now can estimate the error caused by the influence of
different chains on each other if we neglect the interaction
between them. Consider the resonant transition for the ex-
cited state of the superposition using Eq. �10�. If we disre-
gard the influence of the neighboring chains on each other,
then instead of the resonant transition with � j�q� , p��=0 we
have the nonzero contribution of the third term in Eq. �25�

�� j�q�,p��� =
2�J�
D3 ��l=0

l�j

L−1
sl

z�p��
�1 + �2�j − l�2�3/2� .

Since the value of the sine in the first Eq. �10� is of the order
of unity and the value of the cosine is close to zero, the value

FIG. 4. The dimensionless z component Mnr of the magnetiza-
tion generated in result of the nonresonant transitions as a function
of the number of qubits L for two values of �. The estimates are
calculated using Eq. �22� with the parameters defined by Eq. �23�.

FIG. 5. Mnr
0 and Mnr

1 as a function of �. The best fit gives the
parameters defined by Eq. �23�.

FIG. 6. A scheme for calculation of the influence of the lth spin
of the �k−1�th and �k+1�th spin chains on the jth spin of the kth
spin chain.
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of the coefficient CP�tj +� j� is of the order of �instead of zero
in the ideal case�

�Cp��tj + � j�� � �� j�q�,p��
� j�q�,p��

� � �� j�q�,p��

 j

�
� 2�4K2 − 1�3��l=0

l�j

L−1
sl

z�p��
�1 + �2�j − l�2�3/2�

���
l=0

j−1
1

�j − l�3�−1

. �27�

The error Pint caused by the influence of neighboring chains
on each other is of the order of Pint= �Cp��tj +� j��2. From Eq.
�27� one can see that Pint increases with the Rabi frequency

 j decreasing.

In order to estimate the error in the probability amplitude
given by Eq. �27� consider a typical example. Let the dis-
tance between the chains be equal to the size of a single
chain, d= �L−1�a �D= �L−1�A�, L	1. Then �=1/ �L−1�.
Let us estimate �Pint for j=L−1. The first sum in Eq. �27� is

−
1

2 �
l=0

L−2
1

�1 + �2�L − 1 − l�2�3/2

= −
1

2 �
l=0

L−2 �1 + �1 −
l

L − 1
�2�−3/2

.

For all terms of the sum we have

1

23/2 � �1 + �1 −
l

L − 1
�2�−3/2

� 1,

so that

L − 1

23/2 � �
l=0

L−2 �1 + �1 −
l

L − 1
�2�−3/2

� L − 1.

For the second sum we have

�
l=0

L−2
1

�L − 1 − l�3 = 1 +
1

23 +
1

33 + ¯ +
1

�L − 1�3 � ��3�

� 1.202.

Finally, assuming K=1 we obtain

�Pint � 0.51�L − 1��3. �28�

This is the error introduced by only one pulse. The errors
generated by different pulses of the protocol can accumulate.

From Eq. �28� one can see that a small parameter which
characterizes the dipole-dipole interaction between the
chains is L�3 rather than �3. The influence of neighboring
chains on each other can be minimized by introducing the
corrections to the frequency �the third term in the right-hand
side of Eq. �25�� and to the Rabi frequency �the second term
in the right-hand side of Eq. �26��. These corrections mini-
mize the errors only for intermediate chains and do not mini-
mize the error for the edge chains with r=0 and r=R−1.
One can use our corrections if the number of chains R is

large, so that one can neglect the edge chains, or when the
chains are placed relatively close to each other, when these
corrections are relatively large.

If one minimizes the errors caused by the nearest-
neighboring chains, the error in the probability amplitude
caused by the influence of the next-nearest neighboring
chains is of the order of �Pint /8. Using our approach one can
minimize the errors caused by the next-nearest neighboring
chains and disregard the chains with r=0,1 ,R−2,R−1. This
makes the error caused by the next-next-nearest neighboring
chains to be of the order of �Pint /27 and so on.

D. Qubit displacements

One of the most serious problems that prevents building a
solid-state quantum computer is manufacturing the spin sys-
tem such as that shown in Fig. 1. Atoms with nonzero spin,
such as 31P, can be placed on the surface of a magnetically
neutral substance, such as 28Si, using, for example, scanning
tunneling microscopy technique �34,35�. The placement of
the qubits can be not perfect, so that these qubits form dis-
torted spin chains. If one deals with a single chain, one can
measure the locations of the qubits and choose the suitable
pulse parameters to compensate the deviations of the qubits
from their prescribed positions. On the other hand, if one
implements a quantum algorithm on an ensemble of spin
chains, the deviation in the location of a qubit from the per-
fect position �called below displacement� in a chain makes
this chain different from other chains, and this error cannot
be completely compensated by a proper choice of the param-
eters of the pulses. Here we will investigate this kind of
error.

Since a qubit in a solid state is usually incorporated into
the crystal lattice, the minimum possible qubit displacement
is equal to the lattice constant. If the displacement happens in
the direction of the magnetic field gradient �along the x axis
in Figs. 1 and 6�, then even a small displacement causes a
relatively large change in the Larmor frequency of this qubit
because the magnetic field gradient is supposed to be large.
Consequently, we believe that this kind of error causes the
most profound destructive effect on quantum computation in
our system. Since the frequency of the displaced kth qubit
considerably differs from the frequency of the pulse, this
qubit will not flip and the other �k+1�th, �k+2�th, . . . , �L
−1�th qubits will not flip also. For example, if k=3 and L
=6 the excited state evolves as

�050403020�110� → �0000�11� → �0000�111� → �00�0111�

→ �0�00111� → �000111� ,

where the qubit to be flipped by the corresponding pulse is
underlined. One can see that the z component M of the mag-
netization due to the error caused by displacement of qubits
is positive.

We now calculate the error due to the qubit displace-
ment�s�. It is convenient to define the dimensionless dis-
placement vk of the kth qubit as
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vk =
�d�k�
��

= ±
�dxk�

a
, �29�

where dxk is the dimensional displacement, d�k is the change
of the Larmor frequency of the kth qubit caused by this dis-
placement, the sign “�” must be used if one considers
nuclear spins and the sign “�” must be used for electron
spins. For example, the value vk=1/15 corresponds to the
displacement by one lattice site if the number of atoms be-
tween neighboring qubits is equal to 14 and by two lattice
sites if the number of atoms between neighboring qubits is
equal to 29.

If the probability P of a displacement is relatively large,
P�1/L then the number of “perfect” spin chains, where all
spins are not displaced, is relatively small, so that it is im-
portant first to study the errors Pd and the magnetization Md
caused by the qubit displacements in a single spin chain.

The displaced kth qubit affects all other qubits in the
chain. The transition frequency and detuning of the jth qubit
�j�k� change by the value �see Eq. �13��

�� jk� =
�J�

2A3� 1

�k ± vk − j�3
−

1

�k − j�3
� �

3�J�
2A3

�vk�
�k − j�4

�
 j .

�30�

It is convenient to characterize the influence of the displaced
qubit on all other qubits by a small dimensionless parameter

� jk =
3vk

�4K2 − 1

2�j − k�4 ��
l=0

j−1
1

�j − l�3�−1

�
�� jk�

 j

� 1. �31�

Then in Eq. �10� we have

sin�� j�

2
� � 1 −

�2

32
� jk

4 � 1, cos�� j�

2
� � −

�

2
� jk

2 .

When the jth qubit is flipped in the excited state we have
�=� jk instead of �=0 and the error is

Pjk �
� jk

2

� jk
2 =

1

2
� jk

2 �
9�4K2 − 1�

8�j − k�8�2�3�
vk

2.

For example, for vk=1/20 and K=1 we have

Pk±1,k � 0.006, Pk±2,k � 2.3 � 10−5.

The probability of the transition from the ground state caused
by the deviation in the detuning is

Pjk� �
�2�4K2 − 1�

128K4 � jk
2 .

For K=1 the error caused by the ground state Pjk� �0.25� jk
2 is

of the same order as the error Pjk caused by the excited state.
Below we will neglect the errors Pjk and Pjk� caused by the
influence of the displaced qubit on all other qubits as being
small compared to the other errors.

We now estimate the probability Pkk caused by the kth
pulse on the kth displaced qubit. Since ��1/ ���� it is con-
venient to measure the dimensionless frequency displace-
ment in units of 1 /�, so that the change in the transition
frequency of the kth qubit caused by its displacement is pro-

portional to vk /�. We first analyze the action of the kth pulse
on the excited state. Instead of the resonant transition with
the detuning �k=0 we have the transition with the detuning
�k= ±vk��, where the sign “�” corresponds to the displace-
ment in the positive x direction and the sign “�” corresponds
to the displacement in the opposite direction.

If k�0 then the amplitude of the excited state is

�Cq�� =
1
�2

1
�1 + �vk/�k�2

sin��
2
�1 + � vk

�k
�2� ,

where

�k =

k

����
= ��

l=0

k−1
1

�k − l�3
. �32�

The error generated by the excited state is

Pkk � Pd =
1

2
1 −

1

1 + �vk/�k�2 sin2��
2
�1 + � vk

�k
�2�� .

�33�

One can see that the ratio vk /� characterizes the error caused
by the displacement vk: if vk /�→0 then Pd→0, otherwise
Pd→1/2.

The error caused by the action of the kth pulse, k�0, on
the ground state of the superposition is

Pd��±� =
1

2�1 + ��4K2 − 1 �
vk

�k

�2�
�sin2��

2
�1 + ��4K2 − 1 �

vk

�k

�2� . �34�

For a large magnetic field gradient the error Pd� is small,

Pd� �
1

�vk/�k�2 ,
�vk�
�k

	 1. �35�

For k=0 the probability of the excited state after imple-
mentation of the Hadamard transform on the displaced qubit
is

� = �C1�2 =
1

1 + �v0/�0�2 sin2��
4
�1 + � v0

�0
�2� , �36�

where �0=
H / ����, 
H is the Rabi frequency of the pulse
implementing the Hadamard transform. Here and in the se-
quel we take �0=�1=�. The probability of error generated
by this pulse is

�1

2
− �C0�2� + �1

2
− �C1�2� ,

where �C0�2=1− �C1�2. Assuming that the other pulses of the
protocol do not generate error, we obtain that the error due to
the displaced zeroth qubit is

P00 � Pd� = �1

2
− �1 − ��� + �1

2
− �� = 1 − 2� . �37�

CREATION OF ENTANGLEMENT IN A SCALABLE SPIN¼ PHYSICAL REVIEW A 73, 062336 �2006�

062336-9



Since 1/������ decreasing ���� decreases the error Pd.
On the other hand, due to Eqs. �20� and �21�, the error Pnr
caused by the nonselective excitations �nonresonant transi-
tions� increases with ���� decreasing. The total probability
error for k�0 is

P = Pnr + Pd + Pd��− � , �38�

where the qubit is assumed to be displaced in the negative x
direction. In Fig. 7 we plot the probability error P, defined as

P = �1

2
− �C0�T��2� + �1

2
− �C2L−1�T��2� , �39�

which was obtained using exact numerical solution for k
�0. In Eq. �39� T is the total time of implementation of the
entanglement protocol. When 1/� is small the probability
error P is large due to the nonresonant excitations. When
1/� is large P is large because the displaced qubit does not
flip. From the results presented in Fig. 7 one can see that if
the displacement is relatively large �vk=1/10�, then the error
is always large and the entanglement protocol cannot be op-
timized for any parameters of the model.

As follows from Fig. 7, the magnitude of P becomes close
to 1/2 and relatively independent of L and 1/� when 1/� is
large, i.e., when �vk /��2	1. For these parameters we have
mostly two states in the superposition: the ground state and
the partially excited state. For example, if the kth qubit is
displaced, k=3 and L=6, then instead of the desired en-
tangled state

1
�2

��00000� + �111111�� �40�

we have the state

1
�2

��00000� + �000111�� .

The z component of the magnetization Md due to a dis-
placed qubit can be estimated using the probability error. If
k�0 the probability Pd is mostly independent of the position
k of the displaced qubit in the chain. Unlike P, Md is large
�and positive� if the displaced qubit is located in the begin-
ning of the spin chain and relatively small if the displaced
qubit is located in the end of the chain. For example, if k is
the number of the displaced qubit and k=1 then the excited
state is �L=6� �000001� instead of �111111� and the entangled
state is

1
�2

��00000� + �000001�� �41�

instead of the state �40�. The z component of the magnetiza-
tion for the state �41� is Md= �5/6�. If the displaced qubit is
located in the end of the chain, for example, if k=6, then the
value of M for the state

1
�2

��00000� + �011111�� �42�

is Md= �1/6�.
In order to relate M with the probability error consider the

two situations when k�0 and when k=0. If k�0 we note
that after implementation of the entanglement protocol on
the spin chain with a displaced qubit in the register there are
mostly four quantum states: the ground state with the prob-
ability 1 /2− Pd��±�, the error state with the probability Pd��±�
created from the ground state, the error state with the prob-
ability Pd created from the excited state, and the fully excited
state �11¯11� with the probability 1 /2− Pd. Next, we assume
that the position of the displaced qubit in the chain is ran-
dom. By averaging over many random realizations we obtain
that the two error states do not contribute to M. For example,
the z component of the magnetization of the partially excited
state in Eq. �41� is M = 1

2
4
6 while in Eq. �42� M =− 1

2
4
6 , so that

the average of these two contributions is zero. The contribu-
tion to the M due to the fully excited state is −� 1

2 − Pd�. By
adding all these contributions we obtain

Md =
1

2
− Pd��±� − �1

2
− Pd� = Pd − Pd��±� . �43�

If k=0 there are mostly two states in the register: the ground
state with the probability 1−� and the fully excited state
with the probability �, where � is given by Eq. �36�. The
magnetization due to the displaced zeroth qubit is

Md� = 1 − 2� = Pd�. �44�

The total magnetization is

M = Mnr + Md, for k � 0,

M = Mnr + Md�, for k = 0, �45�

where Mnr is given by Eqs. �22� and �23�.
Assume that we have an ensemble of R spin chains and

the probability of a qubit to be displaced by one lattice site is
 . If, for example,  =1/L, then on average one qubit in each
chain is displaced, if  =1/ �nL� then on average one qubit in

FIG. 7. The probability error P obtained using numerical solu-
tion as a function of 1/� for different values of vk. The displaced
qubit is located at the center of the chain L=9.
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n chains is displaced. The total number of displaced qubits
with k�0 is on average  R�L−1� and the total number of
displaced qubits with k=0 is on average  R, so that

M̄d =
 

L��
k=1

L−1

�Pd,k − Pd,k� � + Pd�� ,

Pd,k� �
1

2
�Pd,k� �− � + Pd,k� �+ �� , �46�

where Pd,k and Pd,k� depend on k through the dependence of
�k on k in Eq. �32�. We calculated numerically

M̄ = Mnr + M̄d �47�

as a quantum-mechanical average for 100 noninteracting
spin chains with randomly chosen displaced qubits and ran-
dom displacement directions �in positive and negative direc-

tions along the x axis�. In Fig. 8 we plot M̄ as a function of
� obtained using the exact numerical solution and our esti-
mate given by Eq. �47� for  =1/ �5L�. As follows from the
figure our estimate �47� is a good analytical approximation of
M. In particular, Eq. �47� can be used for estimation of M
when the number of qubits L in each chain is large.

E. Fluctuations of permanent magnetic field

The error Posc caused by fluctuations of permanent mag-
netic field d� due, for example, to unwanted oscillations of
the dc current in wires needed for creating the magnetic field
gradient can be estimated using Eqs. �33� and �34�. Instead
of the dimensionless deviation vk we introduce the average
dimensionless deviation v̄ as

v̄ = �d�

��
� ,

where �d�� is the average deviation of the transition fre-
quency of a qubit from the optimal value caused by a fluc-
tuation of the current in the wires creating the magnetic field
gradient. We assume that this deviation is small, �v̄ /��2�1.

The average error due to unwanted transitions from the
excited and ground states for k�0 is �see Eqs. �33� and �34��

Posc�k� = Posc� �k� + Posc� �k� , �48�

where

Posc� �k� =
�2�4K2 − 1�

128K4 � v̄
�k
�2

, Posc� �k� =
1

2
� v̄
�k
�2

.

Here Posc� �k� and Posc� �k� are the probability errors created
from, respectively, the ground and excited states by action of
the kth pulse of the protocol. For k=0 �Hadamard gate� from
Eq. �36� the probability of the excited state is

� �
1

2
�1 + ��

4
− 1�� v̄

�0
�2� ,

so that the average error is

Posc�k = 0� = 1 − 2� = �1 −
�

4
�� v̄

�0
�2

.

The average total error due to the nonresonant transitions and
oscillations of the magnetic field is

P = Pnr + Posc�0� + �
k=1

L−1

Posc�k� . �49�

Since Pnr��2 and Posc�k��1/�2 there is an optimal value
of �

�opt � � v̄2

�− 0.82 + 0.86L��1/4

�1 −
�

4
+ �1

2
+
�2�4K2 − 1�

128K4 ��L − 1

�2�3�
+ 0.6��1/4

,

�50�

where P is minimal. For example, for v̄=10−4, L=9, and K
=1 we have �opt�9.08�10−3.

In Fig. 9 we plot the error P caused by action of both
nonresonant transitions and unwanted oscillations of the per-
manent magnetic field. Numerical results are obtained by
diagonalization of the full Hamiltonian matrix in the rotating
frame. The random values of v for the numerical results have
the Gaussian distribution with the zero average and disper-
sion equal to v̄. In our model a magnetic field fluctuation is
constant �and random� during each pulse. Each point of the
numerical results is the average over 30 realizations with the
random values of v. One can see from the figure that for �
��opt the error is mostly defined by the fluctuations of the
permanent magnetic field and P decreases with increasing �
as P�1/�2. For ���opt the error is due to the nonresonant
excitations and P��2. From Fig. 9 one can see that our

FIG. 8. The z component of the magnetization M̄ as a function
of 1/� for R=100 spin chains with L=7 qubits in each chain. The
numerical results are averaged over 50 realizations of different 7
�100 qubit ensembles with randomly chosen displaced qubits,  
=1/ �5L�. The displacements are in the random directions along the
x axis. The estimate is calculated using Eq. �47�. vk=1/20, K=1.
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estimate �49� correctly describes the probability error in the
presence of unwanted oscillations of the permanent magnetic
field.

Now we will calculate the z component of the magnetiza-
tion Mosc. Consider a typical example with L=4 qubits. If the
first pulse of the protocol �k=1� generates error and other
pulses do not generate the error, then after implementation of
the entanglement algorithm there are four states in the regis-
ter with the following probabilities:

�0000�,
1

2
− Posc� �1� ,

�1110�, Posc� �1� ,

�1111�,
1

2
− Posc� �1� ,

�0001�, Posc� �1� .

The value of Mosc for this superposition is

Posc� �1� − Posc� �1� +
L − 2

L
�Posc� �1� − Posc� �1�� .

If all the pulses of the protocol generate the error, then the z
component of the magnetization is

Mosc = Posc�0� + �
k=1

L−1 �1 +
L − 2k

L
��Posc� �k� − Posc� �k�� .

�51�

In Fig. 10 we compare our estimate

M = Mnr + Mosc �52�

with the results of numerical simulations for the same values
of � as in Fig. 9. One can see that our estimate gives us a
good approximation of M.

VI. DISCUSSION

We considered the implementation of entanglement in a
two-dimensional ensemble of spin chains. We demonstrated
that the entanglement can be created in the system with a
long-range interaction, such as dipole-dipole interaction, and
the error caused by this interaction can be significantly re-
duced by optimization of parameters of the pulses.

If the entanglement is implemented with no error, then
M =0. We considered different mechanisms which can gen-
erate errors and make M �0. By experimental measurement
of M for different parameters one can define the most impor-
tant mechanism responsible for the errors and optimize the
design using the obtained information. The output signal can
be enhanced by the multiple copies of the spin states. The
most important dimensionless parameter characterizing the
model is � which is proportional to the ratio of the Rabi
frequency to the difference �� between the Larmor frequen-
cies of neighboring qubits. We now summarize the influence
of different kinds of errors on M.

�1� Decoherence. Decreasing � by decreasing the Rabi
frequency one can increase the total time of implementation
of the algorithm and increase �M�. The value of M is positive.
Decreasing � by increasing the gradient ���� does not influ-
ence M.

�2� Nonselective excitations (nonresonant transitions).
Decreasing � by decreasing the Rabi frequency or increasing
���� one can decrease �M�. The value of M is negative.

�3� Influence of different chains on each other can be
estimated in the following way. �a� One implements the pro-
tocol using the frequency � and the Rabi frequency 
 given
by Eqs. �13�–�15�. �b� One takes into consideration the influ-
ence of neighboring chains on each other and modifies the
frequencies and the Rabi frequencies using Eqs. �25� and
�26�. If �M� decreases then the error is mostly caused by the
dipole-dipole interactions between the spins of different
chains.

�4� The error is caused by displacements of the qubits if
one observes the following properties: �a� if the gradient ��

FIG. 9. The error caused by nonresonant transitions and un-
wanted oscillations of the permanent magnetic field as a function of
� for v̄=10−4 and L=9. The estimate is obtained using Eq. �49�.

FIG. 10. M as a function of � in the presence of unwanted
oscillations of the external permanent magnetic field. The param-
eters are the same as in Fig. 9. The estimate is calculated using Eq.
�52�.
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is relatively large ��vk /��2	1 in Eq. �33�� M is positive and
independent of �; �b� the same effect is observed if the dis-
tance a between the qubits is relatively small and the relative
displacement of the kth qubit �vk�= �dxk� /a, where dxk is the
displacement of the kth qubit along the chain, is relatively
large, �vk��1/10; �c� if the gradient �� is relatively small
��vk� /��1� increasing � we decrease �M� and M�0. The
latter effect is opposite to the influence of � in nonresonant
excitations where increasing � we increase �M� and M�0.

�5� Unwanted fluctuations of permanent magnetic field.
When � increases M decreases, M�0, and M �1/�2.

We did not consider all possible mechanisms such as, for
example, the influence of magnetic impurities in the sub-
strate �36�. Some processes not considered here in detail,
such as the decoherence caused by environment, can be in-
vestigated by using the density matrix if one finds that this
kind of decoherence is the most important mechanism re-
sponsible for the errors.

In conclusion, we note that the presence of noise in the
measurement of Mz is a limiting factor. This noise in an

experimental setup could make it hard to measure small
changes in Mz and our technique can be useful for systems
with relatively large errors. The sensitivity in our system can
be increased by increasing the number of spins. For example,
a superconducting quantum interference device �SQUID� can
be used for measurement of magnetization from as small as
40 qubits �37� by measuring the magnetic flux through the
loop. The SQUID loop size �of the order of 3 �m�3 �m�
makes it possible to allocate thousands of qubits inside the
loop. Increasing the number of qubits to, for example, 4000
would allow one to measure relatively small variations in
Mz and to test our theoretical results.
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