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Mapping the system evolution of a two-state system allows the determination of the effective system
Hamiltonian directly. We show how this can be achieved even if the system is decohering appreciably over the
observation time. A method to include various decoherence models is given and the limits of this technique are
explored. This technique is applicable both to the problem of calibrating a control Hamiltonian for quantum
computing applications and for precision experiments in two-state quantum systems. The accuracy of the
results obtained with this technique are ultimately limited by the validity of the decoherence model used.
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I. INTRODUCTION

Recent developments in the fabrication and control of few
state quantum systems have allowed unprecedented tests of
both our experimental and theoretical understanding of their
behavior. This is typified by the continuing interest in quan-
tum information processing and efforts to construct a quan-
tum computer, but equally applies to other more mainstream
technologies such as atomic clocks and quantum optics
�1–3�.

Precision control of these systems inevitably requires very
accurate information about the system Hamiltonian. Tradi-
tionally this has been obtained via a variety of experimental
and theoretical techniques, though as we move toward even
higher precision experiments, the development of more effi-
cient characterization techniques is of utmost importance.

Recently, we introduced the concept of characterizing an
unknown two-state quantum system by mapping its time
evolution and using this data to determine the underlying
Hamiltonian �4,5�. Mapping the evolution in this way has the
advantage that minimal knowledge of the system is required
initially. This is in contrast to tomographic methods that are
in common use to map the fidelity of a given quantum op-
eration, which assumes basic knowledge of the system, spe-
cifically the ability to rotate into different input and measure-
ment bases �6–9�.

For solid-state systems, characterization is especially im-
portant, as the effective Hamiltonian is strongly dependent
on the fabrication process and control systems. The result is
that the Hamiltonian of otherwise identical systems can vary
significantly from device to device and even between differ-
ent regions of the same device, making calibration or char-
acterization of the device a necessity.

Typically tomography is applied to a system whose be-
havior is known, but where the decoherence processes need
to be characterized. Here we take the opposite approach in
which the dominant decohering mechanisms are known, but
it is the strengths of the various decoherence channels that

each system experiences, as well as the system control pa-
rameters, which are unknown or not known to sufficient pre-
cision. In this paper we extend our previous results �5� by
demonstrating how the rate of decoherence can be character-
ized along with the system Hamiltonian.

Initially, we consider the effect of a pure dephasing deco-
herence channel �Sec. III� and how this can be included in
the characterization process. This simple model is then ex-
tended to a more general decoherence model in Sec. IV and
we derive analytic expressions for the Fourier transform of
the time evolution of the system. Finally, in Sec. V, we con-
sider the way in which the resulting uncertainties scale as a
function of the number of measurements and discuss the use
of our analytic results in fitting experimental data.

II. SINGLE-QUBIT CHARACTERIZATION

Consider a two-state quantum system with a control
Hamiltonian of the following form

H =
d

2
�sin����x + cos����z� , �1�

using the unnormalized Pauli matrices ���, where the z axis
is defined by the measurement basis. The angle � param-
etrizes the ratio of the �x and �z components and d is the
magnitude of the Hamiltonian. When the control Hamil-
tonian is turned on, the evolution of the z projection of the
state of the system which is initially in the state z�0�=1, is
given by

z�t� = cos�dt�sin2��� + cos2��� . �2�

We have the freedom to choose the alignment of the x axis
and therefore do not include the effects of the �y component
initially by arbitrarily setting the x axis to coincide with the
Hamiltonian. Once an initial axis is defined either by char-
acterization or on experimental grounds, then the angle be-
tween any further control Hamiltonians and the x axis can be
determined using additional measurements �4,5�.

To measure z�t� experimentally, typically the system is
initialized in some known state, allowed to evolve for some*Electronic address: j.cole@physics.unimelb.edu.au
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time �t and then measured. The amount of time the system is
allowed to evolve for is progressively increased in incre-
ments of �t, giving the evolution, z�t�, as a function of time
at Nt time points over a total observation time tob=Nt�t. The
process must be repeated Ne times to determine an ensemble
average as a function of evolution time. This is the conven-
tional coherent oscillation experiment and results in a total of
NT=NeNt measurements of the system that will, in general,
be very large. In this paper we will only consider so-called
“strong” measurements where the measurement projects the
system onto one of the two available measurement basis
states.

The various parameters of the Hamiltonian can be deter-
mined from the normalized Fourier spectrum of the time
evolution, F�z�t��. As the evolution is purely sinusoidal, in
the limit of no decoherence the Fourier spectrum is particu-
larly simple. It comprises � functions at frequencies �=0
and �=d, with magnitudes F0=F�0� and Fp=F�d�, respec-
tively. An example spectrum is shown in Fig. 1 with the
appropriate features labeled. The position of Fp gives the
value for d, whereas � can be found from the peak heights
using

cos2��� = F0 = 1 − 2Fp. �3�

If there is an inherent measurement error probability � �or
equivalently some probability of initialization error�, this re-
sults in a reduction of the amplitude of the oscillations in a
well defined manner. This effect can be computed by calcu-
lating the sum of the Fourier spectrum, which for the case of
pure � functions is

�
�

F�z�t�� = F0 + 2Fp = 1 − 2� . �4�

The noise floor apparent in the Fourier spectrum stems from
both the inherent noise in the experimental setup and the

discretization or “projection” noise �10� due to the fact that
each measurement only returns a binary result. As the num-
ber of ensemble measurements �Ne� is increased, the noise
floor reduces accordingly. We can therefore use the distribu-
tion of the noise spectrum to assign uncertainty estimates to
the various parameters measured from the Fourier spectrum
�5�.

III. MODELING THE EFFECT OF DECOHERENCE

To model the effect of decoherence on the characteriza-
tion process, we use the Lindbladian formalism. The time
evolution of the system is then governed by the Liouville-
von Neumann equation �3,11,12�

d�

dt
= −

i

�
�H,�� + �

i

L��,Li� , �5�

where � is the density matrix of the system and

L��,Li� = Li�Li
† − 1

2 �Li
†Li,�� , �6�

where Li is the Lindbladian operator corresponding to a par-
ticular decoherence channel. In general a decoherence model
can include several different Lindbladian operators, each of
which corresponds to a different decoherence mechanism.

While the Lindblad formalism allows the inclusion of
general forms of decoherence, it still assumes the Born
�weak coupling� and Markovian �uncorrelated noise� ap-
proximations. These approximations are made when analyz-
ing decoherence for a range of systems �9,13–15�. There are,
however, some systems where it is generally believed that
the Markov approximation is not valid. A notable example of
this are systems based on superconducting qubits �16–19�,
where the dominant source of noise is thought to be from
background charge fluctuators and/or 1 / f noise. In this situ-
ation, it is often difficult or impossible to write down the
evolution of the system in the form of Eq. �5� and therefore
the analysis of the decoherence needs to be tailored to the
particular system in question �20–24�. For simplicity, we will
not treat systems of this form but merely point out that our
analysis is only valid for systems whose evolution can be
modeled using a master equation of Lindblad form. Alterna-
tively, our approach can be used to determine an effective
phenomenological model for the system if Markovian evolu-
tion is assumed.

Initially we will only consider pure dephasing, as this is
often considered to be the dominant form of decoherence for
solid-state qubits �14,25,26�. We will consider a more gen-
eral model of decoherence in a later section. The Lindbladian
operator for pure dephasing is given by

Lz = �	z�z. �7�

For the case of pure dephasing, we expect an approximately
exponential decay in the oscillations given by the decoher-
ence rate, 	z. As the original evolution consists of only one
oscillation frequency, the exponential decay results in a
broadening of the peaks in the Fourier spectrum into Lorent-
zian �Cauchy� distributions. It is instructive to look at how
this behavior is modified when ��
 /2, both in the time and

FIG. 1. �Color online� Example double sided frequency spec-
trum showing the labeling of peaks for the case of no decoherence.
The zero-frequency peak F�0�=F0 and the oscillation frequency
peak F�d�=Fp while the effect of only taking a finite number of
measurements is to produce a noise floor. The distribution of the
noise floor gives an uncertainty estimate for the peak heights and
therefore the system parameters.
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frequency domains, for reasons that will become apparent
later.

Solving Eq. �5� numerically for pure dephasing, the oscil-
lations do decay exponentially when �=
 /2. When �
�
 /2, the effect of dephasing is no longer purely exponen-
tial decay, but shows a slow decrease towards the maximally
mixed state z���=0. Figure 2 shows the evolution of the z
projection for �a� �=
 /2 and �b� �=
 /4 for several different
dephasing rates. To characterize a system which is undergo-
ing decoherence, we need to be able to account for these
effects.

Ideally we would like to solve Eq. �5� for an arbitrary
Hamiltonian to obtain the time domain behavior, though in
general it is nontrivial to invert the evolution to compute the
Hamiltonian parameters. Instead, we will look at the system
behavior in the Fourier domain. Figure 3 gives the Fourier
transform of the evolution shown in Fig. 2 to demonstrate the
dependence on both the decoherence rate and the angle �.

Observing the peak positions under the influence of
dephasing, we note that the peak position does not move
appreciably. As the peak is approximately stationary, the
magnitude of the Hamiltonian vector can still be determined
from its position �at least to first order�. As in the case for no
decoherence, as � is varied from 
 /2, the zero-frequency
peak grows as expected. The ratio of the area under the two
peaks can be used to obtain a first order estimate of the value
of � while the width of the peaks is strongly dependent on
the dephasing rate.

In the case of negligible decoherence, the Hamiltonian
parameters were determined from the Fourier transform of
the system evolution and the resulting �-function peaks. If
we now consider the situation where the decoherence rate is
nonnegligible, but slower than the system oscillations �	z

�d�, a broadening of the peaks in the Fourier spectrum is
introduced. Solving Eq. �5� analytically provides a functional

form which can be used to fit the experimental data. Starting
from Eq. �5�, we gain insight by using the conventional vari-
able substitution

x = ��01 + �10�/2,

y = ��01 − �10�/2i ,

z = �00 − �11, �8�

to rewrite the matrix equation as a set of three coupled dif-
ferential equations �2�, where �ij are the components of the
density matrix �. For the case of pure dephasing, this gives

dx�t�
dt

= − d cos���y�t� − 2	zx�t� ,

dy�t�
dt

= d�sin���z�t� − cos���x�t�� − 2	zy�t� ,

dz�t�
dt

= − d sin���y�t� . �9�

The solution of Eqs. �9� in the time domain is tractable, but
does not provide any useful insight due to its complexity.
Instead we take the Fourier transform of the set of equations
which results in a set of algebraic equations in terms of
X���=F�x�t��, Y���=F�y�t��, and Z���=F�z�t��

i�X��� = d cos���Y��� − 2	zX��� ,

i�Y��� = d�sin���Z��� − cos���X���� − 2	zY���

i�Z��� = − d sin���Y��� + CF. �10�

These can be solved to obtain an expression for Z���, where
CF is a constant of integration arising from z�0��0. This

FIG. 2. �Color online� The z projection of the time evolution of
a two-state system after preparation in the z=1 state, for several
different dephasing rates. The magnitude of the Hamiltonian �d
=1� is kept constant while the angle between the components is
varied. �a� For �=
 /2, the oscillations decay exponentially. �b�
With �=
 /4, the system undergoes a different evolution, but still
decays to the mixed state z���=0. Note the difference in scales on
the vertical axes in �a� and �b�.

FIG. 3. �Color online� The Fourier transform of the system evo-
lution given in Fig. 2, in the presence of dephasing, plotted for
�
0. The magnitude of the Hamiltonian, d, is kept constant and
results displayed for �a� �=
 /2, and �b� �=
 /4. The peak is re-
duced when ��
 /2, as expected, and the zero-frequency compo-
nent increases. As the decoherence rate increases, the peaks broaden
and the frequency shifts slightly.
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gives the solution to the Fourier transform of z�t� as

Z��� =
CF

i� +
d2�2	z + i��sin2���

�2	z + i��2 + d2 cos2���

, �11�

where CF is still unknown in general.
It is instructive to consider the case where �=
 /2, in

which we find that setting CF=1 artificially and expanding to
first order around �=d, the real component of Eq. �11� is
given by

Re�Z���� 	
	z

�d − ��2 + 	z
2 , �12�

which is a Lorentzian centred about the frequency �=d with
width given by 	z.

Returning to the general case, if we assume the system
starts in the state x�−� �=y�−� �=z�−� �=0, the input state
z�0�=1 can be modeled as an impulse at t=0, resulting in the
term z�0���0� being added to the equation for dz�t� /dt.
Transforming to the frequency domain and taking into ac-
count the fact we are using the discrete Fourier transform
gives

CF =
z�0�
�t

= Nt�� , �13�

as the contribution from this impulse function.
For the case of pure dephasing, the system must approach

the perfectly mixed state in the long time limit, i.e., x���
=y���=z���=0. This means that the boundary condition re-
quirements of the Fourier transform are automatically satis-
fied. The steady state solution z���=0 also means the issues
of frequency resolution and phase matching, raised in Ref.
�5�, are not as relevant. As long as enough data is gathered
that the steady state limit is reached, the time evolution data
can be “zero padded” to increase the frequency resolution. If
the steady state limit is not reached, then the phase difference
will need to be minimized as in the case of no decoherence,
though a residual error will still be present due to the ampli-
tude mismatch.

Providing the necessary boundary conditions are met, we
now have a general procedure for dealing with a system un-
dergoing dephasing. We take the Fourier transform of the
data, as before, and measure the peak position to determine d
approximately. We then use the analytic form given in Eq.
�11� and perform a nonlinear fit on d, 	z, and � to obtain the
system parameters. To obtain a more accurate fit, the fitting
process can be repeated iteratively using the same equations.

An initial estimate is obtained for each parameter and then
the parameters are refitted in turn until the estimates con-
verge.

The parameters d, 	z, and � predominately control the
peak position, height, and width, respectively, and the inter-
dependence of the parameters are second order effects. We
can see this effect in the numerical results shown in Sec. III
and it is this independence of the parameters that ensures
good convergence, as the covariances between the param-
eters are small. The effect of imperfect measurement or ini-
tialization can still be characterized by computing the sum of
the Fourier spectrum as before, see Appendix A.

IV. CHARACTERIZATION WITH A MORE GENERAL
DECOHERENCE MODEL

To treat more general decoherence, we add terms that
model spontaneous absorption �	+� and emission �	−� �e.g.,
thermal population transfer� given by Lindbladian operators
of the form

L± = �	±�±. �14�

The decoherence operator becomes

�
i

L��,Li� = L��,Lz� + L��,L−� + L��,L+� , �15�

containing the three forms of decoherence that, in general,
will have three different characteristic rates. To apply the
method given in Sec. III to the more general case requires a
variable substitution to match the boundary conditions. We
define x��t�=x�t�−x���, y��t�=y�t�−y���, and z��t�=z�t�
−z��� and then solve as before. The initial conditions must
also be redefined such that x��0�=−x���, y��0�=−y���, and
z��0�=z�0�−z���. Solving in the steady state limit, we get

x��� =
2d cos���y���
4	z + 	+ + 	−

, �16�

y��� = Kz��� , �17�

z��� =
	+ − 	−

	+ + 	− + d sin���K
, �18�

where

K =
2d sin����4	z + 	+ + 	−�

4d2 cos2��� + �4	z + 	+ + 	−�2 . �19�

The resulting solution in the Fourier domain is

Z���� =
�CF + 	+��1 − z���� − 	−�1 + z���� − d sin����L��� + L*�− ���

i� + 	− + 	+ +
2d2M sin2���

M2 + 4d2 cos2���

, �20�
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where

L��� =
�CF − i���y��� + ix���� − d z���sin���

M − 2id cos���
, �21�

M = 2i� + 4	z + 	+ + 	−, �22�

and L*��� denotes the complex conjugate of L���. As z��� is
a constant, Z���0�=Z����0� and Z�0�=Z��0�+z���. This
solution is an algebraic combination of the free variables �d,
�, and 	’s� and can therefore be used as a fitting function for
the transform of the oscillation data, as outlined previously.

The effect of different decoherence channels can be diffi-
cult to discriminate in the Fourier domain, due to their simi-
lar action on the spectrum. Hence a multiparameter fit will
exhibit large covariance terms, with a relatively flat potential
surface of the fitting function that will not easily converge. In
this case the underlying physics of the system should be used
to connect the different decoherence rates and their
asymptotic values using thermodynamic, or other physical
arguments. In this way we can use the physics to provide
additional constraints to improve the success of the fitting
procedure; an example of this is now given for the model in
question.

To illustrate how this process works, we consider the spe-
cial case when the measurement �initialization� axis is coin-
cident with the axis in which the dephasing acts. In this
situation we can measure the effect of the other �nondephas-
ing� decoherence terms separately and therefore reduce the
number of free parameters. By repeating the experiments as
detailed earlier, in the limit of either d=0 or �=0, we build
up a picture of the non-Hamiltonian evolution. As the system
does not have a mechanism to move away from the z axis,
the influence of pure dephasing is effectively removed and
the population decay results purely from the absorption and
emission terms only. This situation corresponds physically to
the limit of either no driving field �d=0 in the rotating frame�
or the large detuning limit ��=0� where the system eigen-
states are coincident with the measurement basis ��z�. The
system evolution in this limit is illustrated in Fig. 4 for an
example system where 	− /	+=5. Notice that the path taken
by the system is different depending on which state is used
for initialization, though the steady state limit, z���, is the
same for both. The steady state population is given by

z��� =
	+ − 	−

	+ + 	−
, �23�

which provides one equation for determining the two rates.
Note Eq. �23� is just Eq. �18� with d=0 or �=0. This means
that by observing the long time behavior only we can reduce
the number of free parameters by one. We can use this result
to define the ratio of 	− to 	+ even in the presence of dephas-
ing and Hamiltonian evolution.

Observing the time behavior of the total system, Eq. �5�,
with d=0 or �=0 provides us with another handle, as shown
in Fig. 4. If we label the trajectories taken by the system
from the two initial states as z−1 and z1 for the ground and
excited states respectively, we can then fit the curves to de-
termine both decay rates. Alternatively, plotting the differ-

ence between the trajectories gives a simple expression

z1�t� − z−1�t� = 2 exp�− t�	+ + 	−�� , �24�

which can be easily fitted to determine the sum of the rates.
This can then be used with Eq. �23� to determine both rates
independently without the need to fit a double exponential.
In practice, the experiment could be conducted by binning
each measurement result based on the previous measurement
and therefore the initialization state. This would save time in
the initialization phase as single-qubit operations could then
be minimized.

Using this type of auxiliary experiment, the number of
free parameters in the expression for Z��� can be reduced,
resulting in better convergence during the fitting process.
This in turn gives higher precision estimates for the system
parameters for the same number of measurements.

V. ESTIMATING THE UNCERTAINTY

To illustrate the method developed so far, we simulate an
experiment with an arbitrary example Hamiltonian H
=0.93�x+0.38�z �d=1, �=1� and include a pure dephasing
term with decoherence rate 	 /d=0.1. We numerically solve
the system evolution for tob=15 and then include the effect
of finite measurement by simulating projective measurement,
using Nt=1000 and Ne=50. The resulting Fourier spectrum
is then fitted using the Levenberg-Marquardt nonlinear re-
gression algorithm �27,28� to perform a nonlinear fit in the
Fourier domain, see Fig. 5.

Using conventional nonlinear fitting routines to fit the
measured data with the functions developed in Sec. IV has
the advantage that these routines also provide uncertainty

FIG. 4. �Color online� The evolution of a two-state system under
the influence of both spontaneous absorption and emission, in the
limit of large detuning. For this example, the emission rate is five
times that of spontaneous absorption �	− /	+=5�. The path taken by
the system depends on which initial state is used, though the
asymptotic behavior is the same. The two paths are labeled z−1 and
z1 depending on whether the system is initialized in the ground
�z�0�=−1� or excited state �z�0�=1�, respectively.
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estimates based on the goodness of fit. These uncertainties
can be used to directly estimate the uncertainty in the final
Hamiltonian parameters using the same relations derived for
no decoherence �5�. We obtain rough estimates for the vari-
ous parameters and then perform an iterative fitting process
where each parameter is varied in turn. Generally, conver-
gence is achieved within 2–3 interations, although this de-
pends on the number of measurements and ultimately on the
quality of the experimental data. The numerical values ob-
tained from the data shown in Fig. 5 are given in Table I, for
an example run. The true value �x�, the estimate �x̂�, and the
3� confidence interval ��x� are given for d, �, and 	z.

As in the case of no decoherence, we are ultimately inter-
ested in how the parameter uncertainties scale with increas-
ing number of measurements. Figure 6 shows the fractional
uncertainty �1� level� for the �z component of the Hamil-
tonian and the decoherence rate of the example system, as a
function of the number of measurements. Similar to the case
for no decoherence, the frequency uncertainty is predomi-
nantly controlled by the time resolution and is typically
much smaller than the other uncertainties. Using a constant
number of time points �Nt=1�106� and increasing the num-
ber of ensemble measurements �Ne� we find that the frac-

tional uncertainty scales proportional to 1/�NT. The frac-
tional uncertainty is approximately a factor of 7 larger than
for no decoherence, which is equal to 1/�NT �5�. This rep-
resents the penalty for fitting including the decoherence
terms. The uncertainty does not change appreciably when the
decoherence rate changes, with the curves for 	 /d=0.1,
	 /d=0.01, and 	 /d=0.001 giving identical behavior.

The limiting factor in both the fitting procedure and the
uncertainty analysis is, “how appropriate is the decoherence
model?” If the model used is not suitable, this will be appar-
ent as the fitting procedure will not satisfactorily converge,
even after many iterations. This can be most easily deter-
mined by inspection of the Fourier spectrum shape, when
compared to that of the closest fitting parameters. If the
model is found to be the limiting factor in the parameter
estimation, then a more sophisticated model is required,
which may require additional experiments. An example of
this type of additional experiment is the process discussed
earlier for determining spontaneous absorption and emission
terms independently from the effects of dephasing. In situa-
tions where the Born and/or Markov approximations break
down, it may not be possible to model the decoherences
using a closed-form expression for the time evolution, such
as Eq. �5�. In this case, a more sophisticated analysis would
be required to determine the exact decoherence processes.

VI. CONCLUSION

Mapping the time domain evolution of a two state system
has previously been shown to provide a systematic method
for characterizing the system Hamiltonian for quantum-
information processing applications. The major drawback

FIG. 5. �Color online� Simulated data for evolution due to the
example Hamiltonian, H=0.93�x+0.38�z. �a� The time series data
for Ne=50 �points� which approximates the ensemble average of the
evolution �solid line�. �b� The Fourier transform of the time domain
data �points� plotted with the fitted function �solid line� using the
estimated parameters in Table I.

TABLE I. Example values from a simulated run of the fitting
procedure discussed above, using the data shown in Fig. 5. The true
value �x�, its estimate �x̂�, the uncertainty ��x�, and the fractional
uncertainty ��x / x̂� are given for the three system parameters d, �,
and 	z with Nt=1000 and Ne=50.

x x̂ �x �x / x̂

d 1.000 0.996 0.020 0.020

� 1.000 1.007 0.030 0.030

	z 0.100 0.102 0.010 0.098

FIG. 6. �Color online� The uncertainty estimate as a function of
number measurements for an example Hamiltonian H=0.93�x

+0.38�z undergoing pure dephasing in the bare qubit basis. The
fractional uncertainty for the 1� confidence interval is plotted for
both the �z component of the Hamiltonian and the dephasing rate
	z. The scaling is approximately proportional to 1/�NT and the
absolute fractional uncertainty is independent of the decoherence
rate.
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being the long decoherence times required to accurately map
the system evolution. In this paper, we have shown how this
technique can be extended to include the case where the
coherent oscillations are damped due to the effects of deco-
herence.

The effects of relaxation and dephasing are considered
and a procedure developed to incorporate general decoher-
ence models. This provides an “after the fact” analysis tech-
nique which also allows for arbitrary accuracy characteriza-
tion given enough measurement data. The technique can be
applied to two-state experiments other than those required
for quantum computing applications and the achievable pre-
cision is only limited by the validity of the decoherence
model used.

The procedure requires deriving a fitting function based
on a model for the decoherence processes affecting the sys-
tem. We derive the result for a simple model including
dephasing and spontaneous absorption and emission, acting
in the measurement basis of the physical qubit. Other, more
complex models can be included, as long as the model can
be written down as a closed form master equation. In cases
whether the decoherence cannot be written in this form, the
procedure can be used with an effective model and the con-
vergence of the parameter estimates provides an indication of
the validity of this effective model.

The complexity of the decoherence model that can be
employed is restricted by the need to fit the resulting mea-
surement data. If too many degrees of freedom are intro-
duced into the model, the fitting procedure will not converge
sufficiently to provide usable parameter estimates. In this
situation, we find that using the physics of the system and
performing other auxiliary experiments can provide addi-
tional constraints on the parameters and therefore reduce the
uncertainties. This technique is ultimately limited by the ac-
curacy of the decoherence model, the stability of the Hamil-
tonian, and the number of measurements taken.
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APPENDIX A: DETERMINATION OF AN INITIALIZATION
OR MEASUREMENT ERROR

First we show that the initial state of the system, z�0�, can
be determined from the Fourier transform of the data. The

definition of the discrete Fourier transform is given by

F�z�k�� = �
k=0

N−1

z�k�t�ei�kn/N, �A1�

where N is the number of time or frequency channels, k
denotes the channel number of the time series, n denotes the
frequency channel number, and both n and k are integers. If
we compute the sum of the discrete Fourier spectrum over all
frequency channels, this gives

�
n=0

N−1

F�z�t�� = �
n=0

N−1

�
k=0

N−1

z�k�t�ei�kn/N. �A2�

Interchanging the order of the summations gives

�
n=0

N−1

F�z�t�� = �
k=0

N−1

z�k�t��
n=0

N−1

ei�kn/N, �A3�

as z�k�t� is independent of n. If we consider the inner sum-
mation term, evaluating the real and imaginary parts sepa-
rately gives

�
n=0

N−1

ei�kn/N = �
n=0

N−1

cos��kn/N� + i�
n=0

N−1

sin��kn/N� . �A4�

When k=0, the cosine term is


�
n=0

N−1

cos��kn/N�

k=0

= N , �A5�

whereas, when k�0 the summation over an entire period
cancels out for suitable values of N, giving


�
n=0

N−1

cos��kn/N�

k�0

= 0. �A6�

Similarly, the imaginary sine term is equal to zero for all
values of k. Putting this together we find that the inner sum-
mation is equal to

�
n=0

N−1

ei�kn/N = N�k,0, �A7�

i.e., the Kronecker � function. This then gives us

�
n=0

N−1

F�z�k�t�� = N�
k=0

N−1

z�k�t��k,0 = Nz�0� , �A8�

so the initial state of the system is given by the sum over the
discrete Fourier transform of the evolution, divided by the
number of time points. If the system is undergoing decoher-
ence, the result is the same as long as the boundary condi-
tions are still satisfied. If z����0 then the variable substitu-
tion discussed in Sec. IV can be used and the sum computed
over the Fourier transform of z��t�.

If we consider some probability � that the system is ini-
tialized in the incorrect state �modeled by a “bit-flip” error
immediately after initialization�, ���0� ���0�
= �1−���0 �0

+��1 �1
, then the initial state becomes z�0�=1−2�. There-
fore the sum over all frequencies
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�
n=0

N−1

F�z�k�t�� = 1 − 2� , �A9�

gives the initialization error.
For some system evolution given by U=exp�−iHt�, where

H is given by Eq. �1�, the evolution of the z projection is
given by

z�t� = Tr��zU��0�U†� , �A10�

where ��0�= �0
�0� is the starting state, z�0�=1. If we model
an initialization error as a bit flip before the evolution, this
gives the evolution of the “system+error” as

zerr
pre�t� = Tr��zU�x

†��0��xU
†� = − z�t� . �A11�

Similarly we find that applying the bit flip error after the
evolution gives

zerr
post�t� = Tr��z�x

†U��0�U†�x� = − z�t� . �A12�

The two error locations are therefore equivalent to the
Hamiltonian given in Eq. �1�, and the resulting system evo-
lution with an error probability � is given by

z��t� = �1 − ��z�t� + �zerr�t� = �1 − 2��z�t� , �A13�

which is the measurement error model used previously �5�.
This means that the sum over the Fourier transform gives the
probability of a measurement or initialization error or the
cumulative effect if both are present.
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