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We study the preparation and distribution of high-fidelity multiparty entangled states via noisy channels and
operations. In the particular case of Greenberger-Horne-Zeilinger and cluster states, we study different strate-
gies using bipartite or multipartite purification protocols. The most efficient strategy depends on the target
fidelity one wishes to achieve and on the quality of transmission channel and local operations. We show the
existence of a crossing point beyond which the strategy making use of the purification of the state as a whole
is more efficient than a strategy in which pairs are purified before they are connected to the final state. We also
study the efficiency of intermediate strategies, including sequences of purification and connection. We show
that a multipartite strategy is to be used if one wishes to achieve high fidelity, whereas a bipartite strategy gives
a better yield for low target fidelity.
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I. INTRODUCTION

In the past, �multipartite� entanglement has been mainly
considered as a puzzling artifact of quantum mechanics.
More recently, however, the focus on entanglement has
shifted, as it was realized that entanglement also constitutes a
valuable resource for quantum information processing. Pos-
sible applications of multipartite entanglement include cer-
tain security tasks in distributed communication scenarios
�1,2� and the improvement of frequency standards �3�, as
well as measurement-based quantum computation schemes
�4�.

In this context, the problem of generating multipartite en-
tanglement of high fidelity arises. If entangled states are to
be distributed among spatially separated parties, as is, e.g.,
required in distributed communication scenarios, the main
obstacle comes from channel noise. Possible ways to over-
come channel noise and hence to successfully generate high-
fidelity multipartite entangled states have been developed.
These methods are based on �i� quantum error correction and
make use of �concatenated� quantum error correction codes
�5� or �ii� entanglement purification �6–9�. While �i� is appli-
cable to directly distribute arbitrary states, �ii� concentrates
on the generation of specific, maximally entangled pure
states. The generation of maximally entangled pairs of par-
ticles allows one in turn to distribute arbitrary states by
means of teleportation. In both cases, a substantial overhead
is required to guarantee successful, high-fidelity generation
of the desired states. In �i� this overhead arises from redun-
dant encoding, enabling one to perform error correction,
while for �ii� several identical copies need to be prepared and
locally processed to generate high-fidelity entangled states.
The quantification of this overhead, or the quantum commu-
nication cost, which we shall define more precisely, is the
main concern of this article.

To be specific, we will concentrate on schemes based on
entanglement purification. These schemes are specially

suited to generate entangled states of a specific form and are
hence expected to perform better than general-purpose
schemes such as �i�. In fact, a remarkable robustness of en-
tanglement purification protocols against noise in local
operations—which we consider in addition to channel
noise—has been found �8,9�. That is, errors of the order of
several percent in local control operations can be tolerated,
still allowing for the generation of high-fidelity entangled
states, even in the presence of very noisy quantum channels
and with only a moderate overhead. For perfect local opera-
tions, the required overhead in resources is solely determined
by the noisy quantum channels. In this case, the channel
capacity �10,11� provides a suitable measure for this over-
head. In a bipartite communication scenario, the channel ca-
pacity gives the optimal rate of quantum communication—
i.e., the amount of quantum information transmitted per
actual channel usage. While one might think that the abstract
notion of channel capacity may also be employed to our
problem—the generation of certain high-fidelity entangled
pure states—one actually faces a number of difficulties.
First, channel capacities are asymptotic quantities which are
very complicated to calculate; second, the definition of chan-
nel capacity is not suitable to account for imperfect local
operations �e.g., noise in local coding and decoding proce-
dures�; and third, we are actually considering a restricted
problem—namely, the generation of specific multipartite en-
tangled states, rather than the successful transmission of ar-
bitrary quantum information.

We thus introduce a quantity closely related to quantum
channel capacity: namely, the quantum communication cost
CF,G. Here CF,G denotes a family of quantities which specify
the number of uses of the noisy quantum channel required to
prepare a specific �multipartite� entangled state �G� with fi-

delity F̃�F. In this paper, we will focus on target states �G�
which are so-called two-colorable graph states. These states
include, for instance, Greenberger-Horne-Zeilinger �GHZ�
states and cluster states—a universal resource for
measurement-based quantum computation �4�—and they are
locally equivalent to code words of Calderbank-Shor-Steane
error-correcting codes �12,13�. We establish upper bounds on*Electronic address: caroline.kruszynski@uibk.ac.at
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CF,G by optimizing over a large class of different strategies
that generate these multipartite-entangled states. These strat-
egies include, as extremal cases, �i� the generation and puri-
fication of pairwise entanglement, from which, by suitable
connection processes �or, alternatively, teleportation� the de-
sired multipartite states are generated, and �ii� the generation
and direct multipartite purification of the desired target
states. Intermediate strategies—e.g., the purification of
smaller states to high fidelity and their subsequent connec-
tion to the desired larger state—will also be investigated.
Depending on the actual noise parameters for channels and
local control operations and on the desired target fidelity F,
the optimal strategy varies. For high target fidelities, multi-
partite strategies turn out to be favorable.

This article is organized as follows: In Sec. II we present
the concepts we will use: We start with a review of the
graph-state formalism in order to introduce notation and the
two types of states we wish to distribute: namely, GHZ states
and one-dimensional �1D� cluster states. We shall also intro-
duce a technique to connect two smaller graph states to ob-
tain a larger one. Then, we give details for our noise models
and review the employed purification protocols. Readers fa-
miliar with these concepts may skip this section. Section III
explains the different strategies for employing the protocols
that we wish to compare. The actual comparison is done
using extensive numerical Monte Carlo simulations and re-
sults are presented in Sec. IV. In order to corroborate these
results we have done analytical studies for certain restricted
noise models �Sec. V�. We conclude with a summary
�Sec. VI�.

II. BASIC CONCEPTS

A. Graph-state formalism

A graph G= �V ,E� is a collection V= �a ,b ,c , . . . � of
N= �V� vertices connected by edges E� �V�2. The description
of the edges is given by the adjacency matrix �G associated
with the graph

��G�ab = 	1, if a and b are connected by an edge,

i.e.,�a,b� � E ,

0, otherwise.



The neighborhood Na�V of vertex a is defined as the set of
vertices connected with it by an edge, Na= �b : �a ,b��E�.

With each graph G we associate a pure quantum state. If
the graph’s vertex set can be separated into two sets A and B
such that no edges exist between vertices of the same set, we
call it a two-colorable graph �14�. The vertices are qubits and
the edges represent interactions.

There are three equivalent descriptions of graph states
which are reviewed in the following sections �for a detailed
treatment see �15��.

1. Graph states in the stabilizer formalism

Associated with a graph G is a set of N operators

KG
�a� = �x

�a� �
b�Na

�z
�b�. �1�

They form a complete set of commuting observables for the
system of qubits associated with the graph and therefore pos-
sess a set of common eigenstates which form a basis of the
Hilbert space. These eigenstates are called graph states and
are here written as �G ,�� where the ath component of vector
�� �0,1�N is equal to 0 if KG

�a��G ,��= �G ,�� and 1 if
KG

�a��G ,��=−�G ,��. We abbreviate �G�ª �G ,0�. We also
sometimes suppress the letter “G” and write just ���, if the
context makes clear which graph G is meant.

2. Graph states in the interaction picture

A graph state with �=0 can be written in the computa-
tional basis in the following manner:

�G� = � �
�a,b��E

�Z�ab�
� + �� �V�, �2�

where �Z is the controlled phase gate,

�Z�a,b� = �00�ab�00� + �01�ab�01� + �10�ab�10� − �11�ab�11� ,
�3�

which corresponds to an Ising-type interaction,
�Z�ab�=e−i�H�ab�

, with interaction Hamiltonian H�ab� given by

H�ab� =
1

2
�1 − �z

�a�� �
1

2
�1 − �z

�b�� = �11�ab�11� .

That is, �G� is generated from a pure product state by apply-
ing interactions between all pairs of particles connected by
edges.

We list some useful relations for later reference: The 2N

common eigenstates of the operators K�a� can be generated
from �G� by applying all possible products of �z

�a�,
a�1,2 , . . . ,N. This can be seen from

�4�

which means that �z
�a��G ,0�= �G ,0 . . .01

↓
a

0. . .0�. From this re-
lation, together with the fact that �y

�a�= i�x
�a��z

�a�, one can de-
duce the effect of �x

�a� and �y
�a� �see Refs. �15,9� for proofs�:

Splitting the index vector � into �a, �Na
�neighborhood of

vertex a�, and �Ra
�remaining vertices�, we write

�z
�a��G,�a�Na

�Ra
� = �G,�a�Na

�Ra
� , �5�

�x
�a��G,�a�Na

�Ra
� = �− 1��a�G,�a�Na

�Ra
� , �6�

�y
�a��G,�a�Na

�Ra
� = i�− 1��a�G,�a�Na

�Ra
� , �7�

where the overbar means bit complementation.
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3. Graph states in the valence bond solid picture

Another description of graph states was introduced in Ref.
�16�. In this picture, every edge is replaced by a pair in a
maximally entangled state, usually ��00�+ �01�+ �10�
− �11�� /2. Each qubit a gets replaced by da virtual qubits,
where da= �Na� is the degree of vertex a. The physical qubit
is recovered by projecting the virtual qubits onto the two-
dimensional subspace of the physical one �see Fig. 1� using
as projector

Pd = �0̃��0 . . . 0� + �1̃��1 . . . 1� . �8�

4. Cluster states and GHZ states

In this article, we study the purification of graph states
using two important representatives from this class as ex-
amples. By “cluster states,” we mean graph states associated
with a regular lattice as a graph, in this article always a line
as in Fig. 2�a�, and with �=0. The term “GHZ state” will in
this article be used for a graph state �again with �=0� asso-
ciated with a star-shaped graph G* as in Fig. 2�b�. Such a
state can be written as

�G*� =
1
�2

��0� � � + ���N−1� + �1� � �− ���N−1��

and is hence in its entanglement properties equivalent to an
“ordinary” GHZ state 1

�2
��0��N+ �1��N�= �1 � Had��N−1���G*�,

where �± �= 1
�2

��0�± �1�� and Had is the Hadamard operation:

Had =
1
�2

�1 1

1 − 1

 .

5. Bell pairs and graph-state formalism

In order to keep a certain homogeneity, we will employ a
new notation for the states of the Bell basis, usually written
as

��±� =
1
�2

��00� ± �11�� ,

��±� =
1
�2

��01� ± �10�� .

Applying a Hadamard operation on the second qubit, one
obtains a new basis formed by the graph states �G2 ,00�,
�G2 ,01�, �G2 ,10�, and �G2 ,11�, where G2 denotes the graph
composed of two vertices and one edge. Our new notation
shows directly the relation between this two bases:

��+� ¬ �B;00� = Had�2��G2,00� ,

��+� ¬ �B;01� = Had�2��G2,01� ,

��−� ¬ �B;10� = Had�2��G2,10� ,

��−� ¬ �B;11� = Had�2��G2,11� . �9�

6. Connection of graph states

In this section, we define a procedure to connect two
graph states, �G1� with N1 qubits and �G2� with N2 qubits,
“fusing” together their respective vertices a1 and a2, yielding
a state �G� with N1+N2−1 qubits. This process is depicted in
Fig. 3. To realize this action, one applies a projective mea-
surement on a1 and a2, given by P2= �0��00�+ �1��11� and
P2

�= �0��01�+ �1��10� �with outcomes 0 and 1�. P2 is defined
like in the VBS picture. By similarity with this picture, if the
result of the measurement is 0, the final state is the graph
state resulting from the connection of G1 and G2. If one
obtains 1, a correction has to be done. As shown below, it is
sufficient to apply �b�Na2

�z
�b� to the resulting state. Recalling

that KG
�a��G�= �G� with KG

�a�=�x
�a��b�Na

�z
�b�, one sees that any

graph state can be decomposed as �G�= �0�a � �	�+ �1�a

� �b�Na
�z

�b��	�. Applying �b�Na2
�z

�b� to the state resulting

from P2
� one obtains

FIG. 1. Producing a graph state in the valence bond solid �VBS�
picture.

FIG. 2. Graphs for �a� cluster and �b� GHZ states.

FIG. 3. �Color online� How to use the connection procedure of
Sec. II A 6 to assemble large �a� cluster and �b� GHZ states from
smaller cluster or GHZ states.
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�
b�Na2

�z
�b�P2

��G1��G2� = �
b�Na2

�z
�b���z

�d��0� � �	1� � �
d�Na2

�	2�

+ �1� � �
c�Na1

�z
�c��	1��	2�
 = �0�

� �	1� � �	2� + �
b��Na1

+Na2
�
�z

�b��1�

� �	1� � �	2� = �G1 + G2� . �10�

Figure 3 shows how to use this technique to assemble
cluster and GHZ states from �G2� states.

B. Noise model

1. Channel noise

In any realistic setting, channels will be noisy. We study
the influence of channel noise by considering restricted noise
models, where the Kraus representation of the superoperators
is diagonal in the Pauli basis. This is a common and usually
sufficiently general model �17� �in particular, any noisy chan-
nel can be brought to such a form by means of �probabilistic�
local operations�. This allows for an efficient and convenient
simulation by Monte Carlo techniques �see Sec. IV A�. We
consider the following channels: phase-flip channel


 � Ez
�a��
� = q
 + �1 − q��z

�a�
�z
�a�, �11�

bit-flip channel


 � Ex
�a��
� = q
 + �1 − q��x

�a�
�x
�a�, �12�

depolarizing channel


 � E�a��
� = q
 +
1 − q

3
��x

�a�
�x
�a� + �y

�a�
�y
�a� + �z

�a�
�z
�a�� .

�13�

In the case of the depolarizing channel, we define

p = �4q − 1�/3

which allow us to rewrite Eq. �13� as


 � E�a��
� = p
 +
1 − p

4
�
 + �x

�a�
�x
�a� + �y

�a�
�y
�a�

+ �z
�a�
�z

�a�� . �14�

�1−q� will be called the alteration probability and p the
reliability.

2. Local noise

As part of the purification protocols, local one- and
two-qubit unitary operations are employed which may be
noisy. An imperfect operation is modeled by preceding the
perfect operation U�ab� with application of one of the noise
superoperators E from Eqs. �11�–�13�; i.e., the state is
transformed as


 � U�ab��Ea
„Eb�
�…�U†�ab�.

We assume that the protocols are executed with the least
possible number of operations to keep accumulated
noise low. Hence, if a two-qubit gate U12

�ab� is preceded
by one-qubit gates U1

�a� and U2
�b� we apply one combined

unitary U�ab�=U1
�a�U2

�b�U12
�ab� which is subjected to noise

only once.

3. Commutation between connection and noise

We now state an observation that will later �in Sec. V B�
be of use.

For any graph states �G1� and �G2� which are connected by
the procedure described in Sec. II A 6, one can show that the
noise processes commute with the connection procedure, if
they are expressed by a superoperator by only �z Pauli op-
erators. This comes from the fact that the neighborhood of
the connected vertices a1 and a2 changes with the connection
and hence, �x and �y Pauli operators will affect different
vertices �see Eqs. �5�–�7��.

The commutation rules between projector P2 �see Eq. �8��
and �z can be deduced from the following expression of the
connected graph state:

P2�G1��G2� = P2��0�a1
�0�a2

�	�1�	�2 + �
c�Na2

�z
�c�

��0�a1
�1�a2

�	�1�	�2 + �
b�Na1

�z
�b��1�a1

�0�a2
�	�1�	�2

+ �
b�Na1

�z
�b� �

c�Na2

�z
�c��1�a1

�1�a2
�	�1�	�2
 .

Recalling that �z�0�= �0�, �z�1�=−�1� one can show that

P2�z
�a1��G1��G2� = �z

�a�P2�G1��G2� , �15�

P2�z
�a2��G1��G2� = �z

�a�P2�G1��G2� . �16�

C. Local noise equivalent

To judge how close state 
 is to the desired state ���, one
usually employs the fidelity Fª���
���. However, it may be
advantageous to regauge the fidelity by introducing the fol-
lowing derived measure: We define the local noise equivalent
�LNE� as the level of local depolarizing noise �in terms of
the alteration probability �1−q� of Eq. �13�� that
one has to apply to each qubit of the perfect state ��� to
deteriorate it to the same fidelity F as 
 has. The advantage
of this measure is twofold: �i� It is more natural for uses
of states in quantum error correction schemes, as it can
be compared directly to the fault-tolerance threshold in
case of uncorrelated-noise models. �ii� It does not fall off
exponentially with the size of a state for constant-noise
levels, as the fidelity does. On the other hand, it often cannot
be calculated analytically in a straightforward way. We
hence used a numerical Monte Carlo simulation of the state
deterioration �which is why the LNE scale in the figures has
error bars�.
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D. Purification protocols

The purpose of entanglement purification is the following:
One is given an ensemble of multiparty states, which all are
distributed over two �or more� sites and exhibit entanglement
between the sites. These states are only an approximation to
the desired state ������ with an insufficient fidelity, which
one wishes to improve. As the sites are spatially separated,
one cannot apply joint operation on the distributed parts of a
state. Instead, one compares �in the case of the so-called
recurrence protocols, which are considered here solely� pairs
of entangled states, makes joint operations on them, and then
measures one of the states in order to gain information about
the other. Only for specific measurement outcomes is the
other state kept. After iterating this procedure, one is left
with an ensemble of smaller number of particles but higher
fidelity.

1. Bipartite purification

Several protocols have been proposed to purify bipartite
entangled states �6,7,18�. To test the different strategies, we
used the most efficient which can be used to purify an en-
semble of ��+� states: namely, the one described in Ref. �7�.
We present here a modified version of this bipartite entangle-
ment purification protocol �BEPP� which allows for the pu-
rification of the connected graph-state pair. As we are con-
cerned only with this graph in this section, we simply write
��
� for the different basis states �G2 ,�
�. Recall that
�00�=1/�2��0��+ �+ �1��−�� �see Eq. �9��.

Alice and Bob want to share entangled pairs with high
fidelity. At the beginning they are given an ensemble of noisy
�0, 0� states, each of them owning one part of the pairs. We
consider a state diagonal in the graph-state basis,


 = x00�00��00� + x01�01��01� + x10�10��10� + x11�11��11� .
�17�

We remark that such a standard form can always be achieved
by means of depolarization—i.e., applying certain �random�
local unitary operations. Each step of the protocol consists of
the following operations: �i� Alice and Bob perform unitary
operations on their particles, with Alice’s and Bob’s unitaries
given by

SA =
1
�2

� 1 − i

− i 1

, SB =

1
�2

Had�1 i

i 1

Had†.

�ii� Alice performs a controlled-NOT �CNOT� operation from
the first state to the second and Bob from the second state to
the first. �iii� Alice and Bob measure the second state in
different bases. To see the effect of this procedure, we cal-
culate the fidelity and yield obtained after one step with two
initial states given by Eq. �17�.

In �i�, Alice and Bob apply SA and SB, respectively, in
order to swap �11� and �10�. Then, in step �ii�, they apply the
bilateral CNOT operation. One can check that the effect of
this operation on the graph-state basis is given by the follow-
ing map:

��A�B��
A
B� � ��A � 
A,�B��
A,
B � �B� . �18�

�Here, � indicates bitwise AND—i.e., addition modulo 2.�
Last �iii�, Alice and Bob measure the qubits of the target
state. This is done in the eigenbasis ��0�x , �1�x� of �x for Alice
and in the computational basis ��0�z , �1�z� for Bob. By this
they obtain the eigenvalue of the correlation operator K2 de-
fined in Eq. �1� and determine the value of the second bit
describing the state. If it is 0, they keep the first state. They
discard it otherwise.

After the measurement, they keep the control state with
success probability k= �x00+x11�2+ �x01+x10�2 and the new
coefficients are given by

x00� = �x00
2 + x11

2 �/k ,

x01� = �x01
2 + x10

2 �/k ,

x10� = �2x00x11�/k ,

x11� = �2x01x10�/k . �19�

Hence, the fidelity is F=x00� = �x00
2 +x11

2 � /k. The yield of the
step, defined as the number of remaining states divided by
the number of states before the step, is given by k /2 as half
of the states �the targets� are measured and discarded.

The unitary operations performed at the beginning of the
protocol �step �i�� are required for its convergence. It guar-
antees that fidelity 1 is a fix point of the protocol which is
approached when iterating the procedure. The CNOT opera-
tion is a means of transferring information from the first
qubit to the second. The measurement allows us to distin-
guish between ��0, 0�, �1, 0�� and ��0, 1�, �1, 1�� and, hence,
determines the second bit of the index vector.

2. Multipartite purification

Multipartite purification protocols �MEPP� have been in-
troduced in Ref. �19� for GHZ states, were further developed
in Ref. �20�, and extended to all two-colorable graph states in
Refs. �8,9�. Recall that a two-colorable graph state is a graph
state in which the vertices can be separated into two sets VA
and VB such that no edges exist between vertices of the same
set. Using the procedure described in Ref. �9�, one can de-
polarize any mixed state 
 to the form


 = �
�A,�B

��A,�B
�G,�A,�B��G,�A,�B� �20�

without changing the diagonal coefficients �where �A, �B
are binary vectors corresponding to sets VA, VB, respec-
tively�. Hence we will restrict our attention to input states of
this form. The protocol is composed of two subprotocols P1
and P2 which we will describe here.

QUANTUM COMMUNICATION COST OF PREPARING¼ PHYSICAL REVIEW A 73, 062328 �2006�

062328-5



a. Subprotocol P1. The states composing the ensemble of
two-colorable graph states are processed pairwise. All parties
belonging to set VA perform a CNOT operation from the sec-
ond state of a pair of states to the first one while the parties
belonging to set VB perform a CNOT from the first one to the
second one. This leads to the transformation

�G,�A,�B��G,�A,�B� � �G,�A,�B � �B��G,�A � �A,�B� .

�21�

As in the bipartite protocol, the last step consists of measur-
ing the second state of the pair. The parties belonging to set
VA measure their qubit a in the eigenbasis ��0�x , �1�x� of �x,
obtaining results �a� �0,1�, while the ones belonging to set
VB make their measurement in the computational basis, ob-
taining results �b� �0,1�. From this, we can calculate the
part of the index vector of the measured state �second state of
the right-hand side �RHS� of Eq. �21�� corresponding to set
VA:

�A� = �A � �A = ��a � �
b�Na

�b�a�Va
.

If this is 0, it is most likely that �A=0, and hence, the first
state is kept �and otherwise discarded�. As consequence, in
the expansion �20� of the ensemble density matrix, elements
of the form �0,�B

are increased. One finds that the new ma-
trix elements are given by

��A,�B
� =

1

�
�

���B,�B���B��B=�B�
��A,�B

��A,�B
, �22�

where � is a normalization constant such that tr�
̃�=1.
b. Subprotocol P2. As explained above, subprotocol P1

is employed to purify with respect to the eigenvalues �A

associated with set VA. The second subprotocol leads to the
purification with respect to the eigenvalues of set VB. It is
obtained from P1 by exchanging the roles of set VA and VB.
The protocol’s action is described by the following map:

�G,�A,�B��G,�A,�B� � �G,�A � �A,�B��G,�A,�B � �B� .

�23�

One measures the second state. The measurements on set VB

are done in the eigenbasis ��0�x , �1�x� of �x while they are
done in the computational basis in set VA. This leads to the
determination of part �B of the index vector. As in subpro-
tocol P1, one keeps the state if �B=0. The new coefficients
are given by

��A,�B
� =

1

�
�

���A,�A���A��A=�A�
��A,�B

��A,�B
, �24�

where � is a normalization constant such that tr�
̃�=1, as
before.

III. STRATEGIES

A. Quantum communication cost CF,G

We now define our figure of merit, the quantum commu-
nication cost. We consider N spatially separated parties Ak,

k=1,2 , . . . ,N, which are pairwise connected by noisy quan-
tum channels Ekl, described by completely positive maps act-
ing on density operators for qubits. We will quantify the
quantum communication through these quantum channels
using the quantum communication cost Ckl—i.e., the number
of usages of the quantum channel Ekl—while classical com-
munication between pairs of parties will be considered to be
for free. Sending a single qubit through the quantum channel
Ekl costs 1 unit—i.e., Ckl=1—while the transmission of an
arbitrary state of M qubits costs Ckl=M. We will be inter-
ested in the total quantum communication cost C, where

C = �
k�l

Ckl. �25�

We consider the generation of multipartite entangled states
�graph states, to be specific� �G� distributed among the par-

ties Ak. The goal is to generate states �= � i�1
L


i, where the
fidelity of each 
i, Fi= �G�
i�G�, fulfills Fi�F. That is, each
of the states has a fidelity larger than a threshold value F,
which we call the “desired target fidelity.” We remark that
we demand that the ensemble of output states be in a tensor
product form. In principle, weaker requirements such as that
only the reduced density operators of � have fidelity larger
than F are conceivable; however, one faces certain difficul-
ties in this case. For instance, it is not clear whether each of
the copies of the state can be independently used for further
quantum-information-processing tasks due to possible classi-
cal correlations among the copies. Hence, we deliberately
demand the tensor product structure. We will be interested in
the total quantum communication cost C required to generate

�= � i�1
L


i with Fi�F. In particular, we consider the quan-
tum communication cost per copy,

CF,G =
C

L
, �26�

where one optimizes over all possible strategies to generate
�. Due to this optimization, the quantity CF,G is very diffi-
cult to calculate. Hence we restrict ourselves to establish
upper bounds on CF,G by considering explicit strategies to
generate high-fidelity multipartite entangled states.

Multiple variations of this problem are conceivable. For
simplicity we will assume that all parties are pairwise con-
nected by identical quantum channels, E=Ekl. Inhomoge-
neous situations where only some pairs of parties are con-
nected by quantum channels �a restricted communication
web�, where the classical communication is limited, or where
quantum channels between different pairs of parties are dif-
ferent �i.e., different noise parameter� will not be considered
here.

We will look mainly at two scenarios depicted in Fig. 4,
which we describe now.

B. Bipartite purification strategy

In the BEPP strategy, the parties Ak, k=1,2 , . . . ,N, wish
to create a shared ensemble of N-qubit graph states of high
fidelity using a BEPP, where party Ak holds the qubit corre-
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sponding to vertex ak. For each edge of the graph, one of the
two parties connected by this edge prepares a connected
graph-state pair �G2 ,00� �equivalent to a Bell pair up to a
local unitary� and sends one qubit of the pair to the other
party through a noisy channel. �Alternatively, one could use
a teleportation-based strategy: Alice distributes Bell pairs to
the N−1 other parties. The pairs are purified and then used to
distribute the multipartite state that Alice has prepared lo-
cally.� The effect of the channels is given by Eq. �13� leading
to states of fidelity F=q+ �1−q /4� and diagonal in the graph-
state basis. The parties repeat the operation M times so that
at the end M�E� entangled pairs are distributed between the
different partners, where �E� is the number of edges in the
graph. The BEPP �reviewed in Sec. II D 1� is then applied.
This leads to a smaller ensemble of states given by a density
matrix of the same form but with higher fidelity. Finally, the
connection procedure described in Sec. II A 6 is applied:
Each party Ak merges together the �Nak

� qubits which will
connect vertex ak with its neighbors leading to the desired
graph state. We call

Y�F� =
No. final states

No. initial states
=

No. final states

M

the yield of the production of final states with fidelity F. To
build up the desired multipartite state �G�, we need one �G2�
pair for each edge of G. The number of edges for 1D cluster
and GHZ states is �as for any tree graph� �E�=N−1. Hence,
the quantum communication cost is related to the yield by

CF,G =
N − 1

Y�F�
. �27�

The numerator is the number of channel uses �i.e., number
of transmitted qubits� required to distribute one state.
This dependence on the size of the state properly reflects
that for larger states, already the preparation of the raw
states is more costly. To allow for easier comparison with the
yield, a figure that may feel more familiar to the reader, we
have plotted in all graphs the inverse communication cost
CF,G

−1 =Y�F� / �N−1� which is proportional to the yield.

C. Multipartite purification strategy

Alternatively, in the MEPP strategy, a central party, called
Alice, creates M N-qubit graph states locally. For each graph
state, she keeps one qubit and sends the other N−1 qubits
through the channels to the N−1 other parties. The resulting
states are then purified using direct multipartite entanglement
purification—i.e., the MEPP reviewed in Sec. II D 2. Hence,
to distribute one state, we need N−1 channel uses, the same
as in the BEPP case. Thus, Eq. �27� holds for MEPP, as well.

D. Mixing of strategies

Assume that the application of, say, m steps of one of the
protocols mentioned above reaches a final fidelity F1 with a
communication cost of C1 and application of m+1 steps
achieves fidelity F2�F1 with communication cost C2�C1
�i.e., Y2�Y1�. For a certain application, a fidelity of F with
F1�F�F2 is required; i.e., m steps are insufficient, but
m+1 steps achieve a higher fidelity than desired at the cost
of lower yield. In this case, one can find a compromise be-
tween the two strategies by mixing ensembles:

Choosing an �� �0,1�, one prepares M raw states and
then uses the first strategy on �M of them in order to gain
�MY1 states of fidelity F1 and the second strategy on the
remaining �1−��M states to obtain �1−��MY2 states of fi-
delity F2. Mixing these states gives an ensemble of fidelity

F =
�Y1F1 + �1 − ��Y2F2

�Y1 + �1 − ��Y2
, �28�

with a yield Y =�Y1+ �1−��Y2. This method allows one to
obtain intermediate fidelities with a better yield. The commu-
nication cost mixes according to

1

C
=

�

C1
+

1 − �

C2
. �29�

E. Intermediate strategies

As a “compromise” between BEPP and MEPP, we shall
also consider the following set of strategies: Assemble small
states of N1 qubits, send them through the channels, purify
them, and then use the connection scheme described in Sec.

FIG. 4. �Color online� Distribution of N-qubit
GHZ states over noisy channels. �a� Bipartite en-
tanglement purification strategy: Bell pairs are
sent over the channels and purified using a BEPP.
The purified pairs are then connected �using the
procedure of Fig. 3� to the desired GHZ state. �b�
Multipartite entanglement purification strategy:
Alice prepares the GHZ state locally and sends
all but one of the particles through the channels.
Then, the MEPP protocol is used.
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II A 6 to connect L of the N1-qubit states to one state with
N=LN1−L+1 qubits.

IV. NUMERICAL SIMULATIONS

A. Technique

In generic cases, an explicit numerical simulation of a
quantum systems is intractable due to the exponential growth
of the Hilbert space with the number of involved particles or
qubits. In our case, however, an efficient simulation is pos-
sible for two reasons: �i� All gates that are employed by the
protocols are elements of the so-called Clifford group, and
hence, the Gottesman-Knill theorem applies, which allows
for efficient simulations of pure-state evolutions. �ii� The
considered noise channels have Kraus representations that
are diagonal in the Pauli basis.

To explain �i�, we start by reviewing the Gottesman-Knill
theorem �21,22�. It says that it is possible to simulate so-
called stabilizer circuits efficiently on a classical computer.
These are quantum circuits containing only the preparation
of computational basis states, operations from the Clifford
group, and measurements in the computational basis. The
N-qubit Clifford group CN is the group of those unitary op-
erations that map Pauli operators onto Pauli operators under
conjugation—i.e.,

CN ª �U � SU�2N��UPU† � PN " P � PN� , �30�

PN ª �±1, ± i� · �1,�x,�y,�z��N.

It happens to contain all the operations that we need for
purifying, and hence, we can simulate the execution of the
purification protocols described in Sec. II D.

Aaronson and Gottesman have given a fast algorithm
which can perform such a simulation and also supplied an
implementation in the C programming language �23�. We
have used this software at the beginning of our studies, but
after realizing that its performance is not sufficient for our
purposes, developed a new, faster algorithm, which is de-
scribed elsewhere �24�.

The state represented in our simulator is always a pure
state �25�. However, in entanglement purification, one usu-
ally deals with mixed states, represented as density matrices.
Nevertheless, due to the fulfillment of condition �ii�, we can
get around this problem using a Monte Carlo technique,
which we describe now.

To represent the ensembles of states we start with a high
number Ni of qubits, typically several thousand times the
number of qubits in the states to be purified. The qubits are
initialized to a tensor product of �G ,0� states. Note that all
these qubits can potentially get entangled and hence have to
be part of the same simulated quantum register. This would
be prohibitive without a very efficient algorithms for the sta-
bilizer simulation.

We then simulate all steps that are required to prepare
Bell pairs or graph states, to purify them, and to measure
them. Depending on the measurement results, states are
kept or discarded. Several iterations of the protocols are
simulated.

The transmission through the perfect channels amount to
a simple relabeling: The program remembers the new site,
where the qubit resides, as this indicates which qubits can be
subject of joint operations.

Simulating the channel noise is done by randomizing over
many simulation runs as follows. The three noisy channels
that we have considered, Eqs. �11�–�13�, are simulated using
a pseudo-random-number generator �RNG�. Whenever noise
is to be applied onto a qubit, a random number between 0
and 1 is generated, and if it is smaller than �1−q� �the noise
level�, �x��z� is applied for bit-flip �phase-flip� noise. For
depolarizing noise, the RNG is used again to obtain an inte-
ger between 1 and 4 which determines which of the operators
1, �x, �y, and �z to apply.

After the preparation of M initial states and m iterations
of the protocol and for the BEPP case, the connection of the
purified pairs, Nf final states remain. The yield is then given

by Ỹ =Nf /M. This is, however, not a good estimate for the
asymptotic yield in the limit of infinite ensembles for the
following reason: If the number Ni−1 of states at the begin-
ning of purification step i is odd, we have to discard one
state, because we can only deal with pairs of states. Hence,
we better estimate the yield by

Y =
N1

��M �� �
N2

��N1 �� � ¯ �
Nf

��Nm−1 �� , �31�

with M �N0, Nf �Nm, and ��N��=N for even N and
��N��=N−1 for odd N.

The fidelity can be determined by measuring the final
states in the graph basis. This is because all the intended
operations and the random noise operations map graph states
onto graph states, so that all Nf final states are of the form
�G ,��. The index � can be determined as follows: For each
state, the graph state creation operation of Eq. �2�,
��a,b��E�Z�ab� �which is Hermitian� is applied again onto the
state. If one then applies Hadamard gates on all qubits and
measures in the �z basis, the measurement results spell out
the index vector �. As we intended to create �G ,0� states, we
call the number of states for which we measured 0 the num-
ber Ng of “good” states and hence estimate the fidelity as

F =
Ng

tot

Nf
tot ±�Ng

tot�Nf
tot − Ng

tot�
�Nf

tot�3 .

The superscript “tot” indicates that many runs of the simula-
tions are made and that the numbers are the sums of the
numbers in the individual runs. The uncertainty term follows
from the expectation that, given a true fidelity FT, the num-
ber of good states Fg

tot output by the Monte Carlo simulations
after many runs is distributed according to a binomial distri-
bution with length Nf

tot, hit probability FT, and hence stan-
dard deviation Nf

tot�FT�1−FT�. Thus, Ng /Nf is the estimate
for FT with the given statistical uncertainty at 1� level.
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In the same way, the yield can be assigned an uncertainty
�26�

Y =
Nf

tot

Mtot ±�Nf
tot�Mtot − Nf

tot�
�Mtot�3 .

The 1� uncertainties are indicated by error bars in the plots.

B. Extremal strategies

We now present the results obtained for the two extremal
strategies described in Secs. III B and III C with the follow-
ing parameters: The distribution of the qubits is done through
noisy channels and each step of protocol requires imperfect
two-qubit operations. The noise considered is depolarizing
noise as defined in Eq. �13� with reliability p=0.9 �10%
noise� for the channels and pl=0.99 �1% noise� for the local
operations. We used the Monte Carlo simulation method de-
scribed in Sec. IV A to reach a precision on the fidelity vary-
ing from 0.1% to 1% depending on the size of the states and
the number of iterations.

For the MEPP case, one has to decide which sequence of
the subprotocols P1 and P2 to use. The alternating sequence
P1-P2-P1-¯ turns out to be not optimal in terms of yield
and fidelity, neither for GHZ nor for cluster states. To find
the optimum, one might hence consider to simulate, after
each step, both subprotocols and then continue with the bet-
ter one. Somewhat surprisingly, this leads to worse results
�see Fig. 5�. Thus, to find the optimal sequence of m protocol
steps, one would need to try all 2m possibilities. As this is not
practical, we decided to stick with the alternating sequence,
which turned out, though it is not optimal, to give very de-
scent performance. For GHZ states, there is also a difference
between the alternating sequences P1-P2-P1-¯ and
P2-P1-P2-¯, due to the asymmetry of the sets VA �contain-
ing only Alice’s qubit� and VB �containing the rest�. Starting

with P1 works better, and this is what we use in all plots
discussed in this section.

1. GHZ states

We start with the results obtained for GHZ states. We
made our simulations for states of 3 to 10 qubits and a maxi-
mum number of steps varying from 5 to 7. As an example,
Fig. 6 shows the quantum communication cost as a function
of desired fidelity for 5-qubit GHZ states. The data points are
the outputs for 1 to 6 steps of the protocol. This plots allow
us to determine, for a given fidelity, the strategy which will
give the best yield �lowest communication cost�.

After 6 iterations, the increase in fidelity obtained by an
additional step is smaller than the chosen precision of 1%.
We therefore take this value as estimate of the maximum
reachable fidelity. A comparison of the maximal reachable
fidelity for both strategies as a function of the number of
parties �Fig. 7�a�� shows that the maximal reachable fidelity
is higher in the MEPP case for a number of parties strictly
smaller than 10. In this case, there is a transition value of
target fidelity from which on the MEPP strategy gives a bet-
ter yield. We will refer to the value pair of fidelity and com-
munication cost, where this transition happens, as the cross-
over point. Figure 8 presents the yield as function of fidelity
for N=3 and N=10 as well as the crossover points for an
intermediate number of parties. N=9 is the highest number
of qubits for which there is a crossover point. For a higher
number of parties, the BEPP strategy is always better. This is
because of the fragility against noise of GHZ states for large
particle numbers �27,28�. The communication cost and fidel-

FIG. 5. �Color online� Comparison of the values of inverse of
communication cost and fidelity obtained after a number of steps
varying from 1 to 5 for 3-qubit GHZ states. The red solid line
stands for the BEPP strategy, the green dashed line for the alternat-
ing sequence of MEPP subprotocols beginning with P1, and the
blue short-dashed line for the alternating sequence beginning with
P2.

FIG. 6. �Color online� Inverse of communication cost for differ-
ent target fidelities for 5-qubit GHZ states and with p=0.9 and
pl=0.99 �where p is the reliability defined in Eq. �14��. The data
points are the outputs for 1,2,¼,6 iterations of the protocol. The
connecting lines are obtained by mixing ensembles of different fi-
delities according to Eq. �29�. The red solid line gives the obtained
value in the MEPP and the green dashed line for the BEPP. The gain
on fidelity from one step to the other becomes smaller at each step.
From 6 to 7 steps, the gain in fidelity is smaller than the uncertainty
both in the BEPP and in the MEPP strategy. We consider this value
as the maximal reachable fidelity.
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ity of the crossover points as function of the number of par-
ties are presented in Fig. 9�a�.

2. Cluster states

Next, we did simulations cluster states using the
same parameter as for the GHZ states. The results are quite
different.

We made our simulations for states of three to fifteen
qubits. In this range, as one can see in Fig. 10, there is

always a crossover point. This is in stark contrast with the
GHZ case. This main difference in behavior between this
two kind of states is due to the much higher robustness of
cluster states against noise �27,28�. Moreover, the range of
target fidelity for which the multipartite strategy is the only
one available increases with the number of parties as shown
in Fig. 7�b�. In Fig. 9�b�, we present the fidelity and commu-
nication cost of the crossover point. Both values decrease
with the number of parties. This is due to the increasing cost
of producing bigger and bigger states and also to the fact that
we consider here the global fidelity and not the LNE pre-
sented in Sec. II C.

C. Intermediate strategies

Since switching from BEPP to MEPP can result in such
striking differences in yield, one might expect that, espe-
cially near the break-even point, certain intermediate strate-
gies, mixing characteristics of BEPP and MEPP, might per-
form even better. After all, in the BEPP case, one purifies
small states �with only 2 qubits� and then connects them,
while in the MEPP scenario, the states are first connected to
large units, which are then purified. One can also connect
pairs to states of intermediate size, purify these, connect
them to the desired full size, and perhaps purify again. This
can be seen, e.g., in Fig. 11. In this figure, we have simulated
many different strategies which are described in short by
instruction strings which are processed from left to right and
tell the software in which order which preparations, trans-
missions, connections, or purifications should be simulated
�cf. Table I�.

FIG. 7. �Color online� Maximal reachable fidelity as function of
N for �a� GHZ and �b� cluster states for the bipartite �green �� and
multipartite �red bars� strategies with reliabilities �cf. Eq. �14�� p
=0.9 for channel transmission and pl=0.99 for local operations. The
final fidelity is estimated as follows: For a given number of parties,
we iterated the protocol as long as we obtained an increase of fi-
delity larger than the uncertainty �typically 1%�. We took the last
value as maximal fidelity and assigned its uncertainty to the maxi-
mal reachable fidelity. The green crosses give the values in the
bipartite case while the red bars give it for the multipartite case.
One sees here the main difference in behavior between GHZ and
cluster states. In the first case, there is a range where the multipar-
tite strategy is better than the bipartite one for a number of parties
strictly smaller than 10. For more parties, the multipartite protocol
fails because of the fragility of GHZ states against noise. On the
other hand, the robustness of cluster states allow us to purify them
even for a large number of parties. The range of fidelity where
MEPP is superior increases with the number of parties.

FIG. 8. �Color online� Inverse of communication cost for differ-
ent target fidelities of GHZ states of 3 to 10 qubits with alteration
probabilities �as in Fig. 7� 1− p=0.1 and 1− pl=0.01. The dashed
green line stands for 3-qubit GHZ states and BEPP strategy, the red
solid line for 3-qubit GHZ states and MEPP strategy, the blue short-
dashed line for 10-qubit GHZ states and BEPP strategy, and the
pink dotted line for 10-qubit GHZ states and MEPP strategy. The
blue squares give the crossover points—i.e., the fidelity where
MEPP becomes more efficient than BEPP, for N=3, 5, 6, 7, 8, and
9. For N=3 and N=10, the purification curves are plotted as well.
For N=3, they cross at the corresponding blue square.
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It can be seen that for low fidelities and high yields
�left side of the plots�, the BEPP case is best, as already seen
above, and for high fidelities and low yields �right margin of
the plots�, MEPP catches up. In the middle region, one
may indeed increase the performance by first preparing
small states of, say, 4, 5, or 7 qubits, purifying them, and
then connecting them to the desired 13-qubit state. �Do not
get confused by the appearance of “M13-S” at the left
margin. This looks like MEPP, but is not, as it contains no
purification at all. Also note that there is a subtle difference
between using the BEPP protocol �denoted “B2-S-Pb-¯”�
and using the MEPP protocol on the �G2� state �denoted “
M2-S-P1-¯” or “M2-S-P2-¯”�, with the former perform-
ing better.�

Of course, only discrete ways of assembling the desired
states from equal smaller states are available. Recall that
connecting L states of n qubits will give a state of

N = Ln − �L − 1� �32�

qubits because �L−1� qubits have to be measured in the con-
nection process. In the plots, we have taken all possible val-
ues of L for the given state size n and calculated data points
for the corresponding strategies with up to four purification
steps. The blue curve in the plot marks the optimum that can
be achieved using theses strategies and mixing them as de-
scribed in Sec. III D.

To demonstrate the efficiency of our procedure, we also
considered purification of cluster states of 31 qubits �Fig.
12�. In order to allow for easier comparison, Fig. 12, as well
as Fig. 11, show a regauging of the fidelity axis to the LNE
described in Sec. II C.

V. ANALYTICAL TREATMENT FOR A SIMPLIFIED
MODEL

For a better understanding of the numerical results, we
now develop an analytical treatment for both BEPP and
MEPP. To make this task feasible we have to restrict our-
selves to a simplified noise model. We only consider GHZ
states.

As before, we define two sets VA and VB corresponding to
the bicoloration of the graph. VA is the set containing only
one qubit—namely, the central vertex which is connected to
all the others—and VB contains the rest.

In the toy models presented below, the central party,
called Alice, wants to share an N-qubit GHZ state with

FIG. 9. �Color online� Inverse of communication cost �green ��
and fidelity �red �� of the crossover depending on the number of
parties for �a� GHZ and �b� cluster states. These values are obtained
by using the Monte Carlo method and are therefore submitted to
errors. The crossover indicates the range of target fidelity from
which up the MEPP strategy is more efficient than the BEPP strat-
egy. Note the logarithmic scale for the inverse of communication
cost. In the GHZ case, there is no crossover for more than nine
parties.

FIG. 10. �Color online� Inverse of communication cost for
different target fidelities for 3 �red solid line for MEPP and green
dashed line for BEPP� and 15 �pink dotted line for MEPP and
blue short-dashed line for BEPP� qubit cluster states. The data
points are the outputs for 1,2,3,¼ iterations of the protocol. The
intermediate points are obtained by mixing ensembles of different
fidelities. For more than six steps, the difference between the
reached fidelity and the maximum reachable fidelity is smaller
than the uncertainty. For any number of parties, the curves repre-
senting the two strategies crossover. The disks give this crossover
for N=3,4 ,5 ,6 ,7 ,8 ,9 ,10,15. �That one curve seems to “go back”
is just an artifact of the statistical inaccuracies of the Monte Carlo
method.�
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�N−1� partners. Depending on the strategy, the initial states
are either Bell pairs or GHZ states, which are noisy due to
the transmission through the channels. First, in Sec. V A, we
consider local operations to be perfect. We will see that this
fails to reproduce features seen in the numerical results.
Hence, we extend our model, in Sec. V B, such that it incor-
porates local noise.

A. Perfect local operations

To start, we assume to local operations to be perfect. Of
the channels we considered in Eqs. �11�–�13�, only bit-flip

FIG. 11. �Color online� Examples for the use
of intermediate purification strategies, here for
13-qubit �a� cluster and �b� GHZ states. Plotted is
the inverse of communication cost as function of
final fidelity. See Table I for the meaning of the
instruction strings. The red solid curve marks the
maximal achievable yield for a given desired fi-
delity and is obtained by connecting the optimal
strategies with curves according to Eqs. �28� and
�29�. Noise levels are �1−q�=0.1 for the channels
and �1−ql�=0.01 for local operations. In �a�, one
can -following the red line- see well, how for
small target fidelity BEEP �“M2–S–¯”� gives the
best yield, while for high fidelities �F�0.9�, dis-
tributing larger and larger states becomes advan-
tageous. �For even higher fidelities, one expects
the full MEPP strategy, i.e., “M13–S–¯”�, to ap-
pear on the red curve. However, this will happen
at communication costs larger than the scales
shown on the plot, which ends with “M13–S-P1–
P2–P1”, i.e., MEPP with only three purification
steps.� In �b�, the picture is not as clear, at the
GHZ states already start to deteriorate under the
given level of local noise.

TABLE I. Legend for the instruction strings in Figs. 11 and
12.

Mn prepare an n-qubit cluster or GHZ state

B2 prepare a Bell pair

S send the states through the channels

P1 apply multipartite purification protocol P1

P2 apply multipartite purification protocol P2

Pb apply bipartite protocol

C� connect � states to a larger one
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channels and phase-flip channels allow for a simple analyti-
cal treatment. We present the calculation for phase-flip chan-
nels. The calculation and results for bit-flip channels are very
similar. We have hence not included them in the paper.

1. BEPP strategy

Following the BEPP scenario described in Sec. III B,
Alice sends one qubit of each entangled pair

= �G2 ;0 ,0��G2 ;0 ,0� of her initial ensemble through the
channel to party Bk, obtaining


 = q�G2;0,0��G2;0,0� + �1 − q��G2;0,1��G2;0,1� .

She then applies the BEPP. The state of the pairs that are
kept after one step is given by �see Eq. �19��


 =
q2

q2 + �1 − q�2 �G2;0,0��G2;0,0� +
�1 − q�2

q2 + �1 − q�2 �G2;0,1�

��G2;0,1� . �33�

In this step, the probability of keeping the source state
after the measurement of the other state is given by
kBEPP�q ,1�=q2+ �1−q�2 �probability of having same mea-
surement outcomes�. We denote by fBEPP�q ,m� the fidelity
after m steps. The quantity k�q ,m� is called success probabil-
ity in step m. Note that the ratios of the ensemble sizes after
and before the step is given by k�q ,m� /2 as one half of the
states are measured and discarded. One obtains the total yield
YBEPP after m steps by multiplying these ratios for the indi-
vidual steps. By iterating the protocol over m steps one finds

fBEPP�q,m� =
q2m

q2m
+ �1 − q�2m , �34�

kBEPP�q,m� =
q2m

+ �1 − q�2m

�q2m−1
+ �1 − q�2m−1

�2
, �35�

YBEPP�q,m� = �
i=1

m
k�q,i�

2
=

q2m
+ �1 − q�2m

2m�
i=1

m−1

�q2i
+ �1 − q�2i

� .

�36�

After the bipartite purification, Alice connects �N−1� pairs to
produce an N-qubit GHZ state. To connect two pairs, she
applies a controlled phase gate �Eq. �3�� followed by a �y
measurement on one of the two qubits just connected �cf.
Fig. 3�. This procedure is repeated �N−1� times between
different pairs of parties �A ,Bk�, k=1, . . . ,N−1, in order to
obtain the N-qubit GHZ state.

Note that the qubits that Alice connects have not been sent
through channels and are hence unaffected by channel noise.
Thus, it does not matter whether we first apply the superop-
erator for the channel noise and then the one for the local
noise due to the connection process or vice versa. This
means that the final state is obtained by applying noise on all
qubits of the GHZ state that do not belong to Alice. This
leads to a fidelity

FBEPP�N,q,m� = fBEPP�q,m�N−1

and �as the channels are used N−1 times to create one
N-qubit GHZ state� a quantum communication cost

CBEPP =
N − 1

YBEPP�q,m�
.

FIG. 12. �Color online� Production of 31
-qubit cluster states, using intermediate strategies.
The “instruction strings” are explained in Table I.
Data points with the same number of purification
steps are plotted in the same color. Note how the
distribution of initially larger states becomes ad-
vantageous for higher target fidelities. Noise lev-
els are �1−q�=0.1 for the channels and �1−ql�
=0.01 for local operations. �Note also that the
data points at the low end of the plot have few
purification steps: Those steps beginning with
“M16” or “M31” that should appear on the curve
of optimal strategies are again, as in Fig. 11, be-
yond the range of the plot.�
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2. MEPP strategy

In the MEPP setting, Alice prepares an N-qubit GHZ state
locally and distributes it through depolarizing channels to her
�N−1� partners. We then have the state


�0� = ��
a=2

N

Ez
�a�
�G*;0,0��G*;0,0� , �37�

where Ez
�a� is the phase-flip channel defined in Eq. �11�. We

shall from now on suppress the symbol G* which indicates
the N-vertice star graph of Fig. 2.

We shall see that all states that we encounter have the
form


�m� = r0
�m��0��0� + r1

�m��
i1=2

N

�0, . . . 01

i1
↓

0 . . . 0��0, . . . 01

i1
↓

0 . . . 0�

+ r2
�m� �

i1,i2=2

i1�i2

N

�0, . . . 01

i1
↓

0 . . . 01

i2
↓

0 . . . �

��0, . . . 01

i1
↓

0 . . . 01

i2
↓

0 . . . � + . . . + rN−1
�m� �0,11 . . . 1�

��0,11 . . . 1� , �38�

where rj
�m� denotes the coefficient in front of the terms with j

entries “1” after the mth step of the purification protocol.
These states are diagonal in the graph-state basis and sym-
metric with respect to permutations of the qubits in set VB.
They are hence characterized by only N coefficients
r0

�m� , . . . ,rN−1
�m� .

We start by carrying out the application of the superop-
erator in Eq. �37�. Indeed, one obtains a mixture of the form
�38� with coefficients

rj
�0� = qN−1−j�1 − q� j . �39�

As only set VB is affected by the noise, subprotocol P2 is
sufficient to purify the state. Following �9�, one sees that
after each step of the subprotocol, the state is changed such
that each coefficient becomes proportional to the square of
its former value—i.e.,

rj
�m� =

�rj
�m−1��2

�
i=0

N−1 �N − 1

i

�ri

�m−1��2

. �40�

Inserting Eq. �39�, one gets, for the first step �using the bi-
nomial theorem�,

rj
�1� =

q2�N−1−j��1 − q�2j

�q2 + �1 − q�2�N−1 ,

and iterating the formula, one finds

rj
�m� =

q2m�N−1−j��1 − q�2mj

�q2m
+ �1 − q�2m

�N−1
.

The fidelity of the state at step m can now be read off:

FMEPP�N,q,m� = r0
�m� = � q2m

q2m
+ �1 − q�2m�N−1

.

Note that this is the same expression as we got before for the
BEPP: FMEPP�N ,q ,m�=FBEPP�N ,q ,m�.

To calculate the yield, we need the success probability
kMEPP�N ,q ,m� that a state is kept. Using a similar argument
as we did for Eq. �40� we find

kMEPP�N,q,m� = �
i=0

N−1 �N − 1

i

�ri

�m−1��2

= � q2m
+ �1 − q�2m

�q2m−1
+ �1 − q�2m−1

�2
N−1

.

From this, we can find the yield as before:

YMEPP�N,q,m� = �
i=1

m
kMEPP�N,q,i�

2

= 2−m� q2m
+ �1 − q�2m

�
i=1

m−1

�q2i
+ �1 − q�2i

��
N−1

. �41�

Comparing to the BEPP case, one sees that

YMEPP�N,q,m� = 2m�N−2��YBEPP�N,q,m��N−1. �42�

3. Conclusion

In the particular case of dephasing channels and perfect
local operations, both strategies lead to the same fidelity
after iterating the protocol the same number of steps. How-
ever, they differ in the communication cost. As one sees from
Eq. �42�, the yield of the MEPP strategy is always lower �and
the communication cost hence larger�. This fact can be ex-
plained from the higher probability of throwing away states
at each step, which even increases further with the number of
parties.

We have also done analytical calculations for bit-flip
channels �Eq. �11�� and numerical simulations for depolariz-
ing channels �Eq. �13�� �always in case of perfect local op-
erations� and found a similar behavior.

In order to see regions where MEPP is superior as we
did with the Monte Carlo simulations, it is hence necessary
to give up the simplification of assuming noiseless local
operations.

B. Imperfect local operations

If local operations are not assumed to be perfect, results
are quite different. We again consider GHZ states of arbitrary
size, to be purified with the BEPP or MEPP strategy.
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For the noise, we define a model which is simple enough
to allow for analytical calculations but still shows the general
features obtained numerically �especially it shows crossover
points�: The channel through which Alice sends qubit to the
other parties is the phase-flip channel of Eq. �11� with alter-
ation probability �1−q�. The imperfection of the local gates
are modeled by bit-flip noise �Eq. �12�� for Alice’s operations
and phase-flip noise for all other parties, always with alter-
ation probability �1−ql�.

1. MEPP strategy

As before, Alice prepares perfect N-qubit GHZ state and
distributes them using the channels. We get the same initial
state 
�0� as before, again of the form �38� with coefficients
as in Eq. �39�. We shall see that, again, the form �38� is
preserved by the purification steps even though they are now
assumed to be noisy.

The values of the ri are changed according to a linear
map:

rj
�m� = �

k=0

N−1

� jkrk
�m−1�.

We shall construct this map in two steps. First, we see,
how the phase-flip noise of the local gates acting on the
qubits in VB,

�
i=2

N

Ez
�i��ql� , �43�

changes the coefficients and denote the map corresponding
to this action by �:

rj� = �
k=0

N−1

� jkrk
�m−1�.

Then, we consider the action of the bit-flip noise on Alice’s
qubit get the full map �.

For the first step, we call a state �G* ,�� a k state if �
starts with a 0 �for the central qubit in VA� and contains,
within the indices corresponding to VB, k entries “1” and
�N−1−k� entries “0.” We can now calculate the probability
pj←k that the superoperator �43� changes a pure k state to any
j state: Say, s of the k entries “1” are flipped to “0.” Then
s̄= j−k+s of the �N−1−k� entries “0” have to be flipped to
“1.” Hence,

pj←k = �
s=0

k �k

s

�1 − ql�sql

k−s�N − 1 − k

s̄

�1 − ql�s̄ql

N−1−k−s̄.

�44�

There are � N−1
j

� j states and � N−1
k

� k states, and so

� jk =
�N − 1

k



�N − 1

j

 pj←k,

which can also be written in terms of Gauss’ hypergeometric
function F as

� jk =
j!

k!�j + k�!
F� �1 − ql�2

ql
2 ;− k, j − N + 1, j + k + 1


��1 − ql� j−kql
N−1−j+k. �45�

Now, we can do the second step and apply the noise for
the imperfection of Alice’s local gates, modeled by Ex

�1��ql�.
We get, due to Eq. �6�,

rj
�m� = qlrj� + �1 − ql�rÑ−j

� = �
k=0

N−1

� jkrk,

where

� jk =
�N − 1

k



�N − 1

j

�

s=0

k �k

s

��N − 1 − k

j − k + s

ql

N−1−j+k−2s+1

��1 − ql� j−k+2s + �N − 1 − k

j − s

ql

N−1−j−k+2s

��1 − ql� j+k−2s+1� . �46�

The fidelity and yield corresponding to one step of proto-
col can then be calculated:

f�N,q,ql,m� =
�r0

�m��2

�
k=0

N−1 �N − 1

k

�rk

�m��2

=

��
j=0

N−1

�0jrj
�m−1�
2

�
k=0

N−1 �N − 1

k

��

j=0

N−1

�kjrj
�m−1�
2 .

As before, the denominator of the previous expression is
the success probability k�N ,q ,ql ,m� of the step m �29�, and
we get the total yield YMEPP�N ,q ,ql ,m� by multiplying up
the factors k /2 of all m steps:

YMEPP�N,q,ql,m� = �
i=1

m
k�N,q,ql,i�

2
.

�For the corresponding quantum communication cost, Eq.
�27� has to be used.�
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2. BEPP strategy

Next, we find an analytical treatment for the BEPP strat-
egy. In order to facilitate the calculation, we will consider the
BEPP as a special case of the MEPP. We first show why this
is possible without changing the results:

Considering the restricted noise model presented in this
section, the state can always be written as a contribution of
�G2 ;0 ,0��G2 ;0 ,0� and �G2 ;0 ,1��G2 ;0 ,1� only. It can hence
be purified using only subprotocol P2. In addition, the only
difference between the BEPP protocol as described in Sec.
II D 1 and subprotocol P2 is the exchange of the states
�G2 ;1 ,0� and �G2 ;1 ,1� in the former, and not in the latter. As
these states have no contribution in the present model, the
two protocols give identical results.

The results obtained in the last section can be used to
calculate the fidelity f�q ,ql ,m� and the yield YBEPP�q ,ql ,m�
before connection. After purification, Alice connects qubits
a1 , . . . ,aN−1 of �N−1� pairs described by the states

k=q�G2�k�G2�+ �1−q��z

�bk��G2�k�G2��z
�bk�, respectively. The

joint state of the pairs is given by


 = qN−1� �
k=1

N−1

�G2�k�G2�
 + �1 − q�qN−2�
i=1

N−1

�z
�bi�

�� �
k=1

N−1

�G2�k�G2�
�z
�bi� + ¯ + �1 − q�N−1��

i=1

N−1

�z
�bi�


�� �
k=1

N−1

�G2�k�G2�
��
i=1

N−1

�z
�bi�
 .

The connection is performed using the procedure described
in Sec. II A 6. As the noise contains only �z operators, it
commutes with the projectors and correction operators that

are used in this procedure. The state after projection is given
by

P2
 = qN−1�G*��G*� + �1 − q�qN−2�
b=2

N

�z
�b��G*��G*��z

�b� + ¯

+ �1 − q�N−1��
b=2

N

�z
�b�
�G*��G*���

b=2

N

az
�b�
 .

It follows that after the connection, the fidelity is given
by

FBEPP = f�q,ql,m�N−1

and the quantum communication cost by

FIG. 13. �Color online� Inverse of communication cost as
function of final fidelity for the simplified noise model used in
Sec. V B. Analytical calculation for GHZ states of different number
of qubits N varying from 5 to 70, with alteration probability for
the channel and local noise of �1−q�=0.1 and �1−ql�=0.05,
respectively. The green dashed lines stand for MEPP strategy
while the red solid lines stand for BEPP strategy. The blue circles
give the crossing points for all number of parties between 5
and 70.

FIG. 14. �Color online� Analytical results for different number
of parties and different amount of local noise. Each curve gives the
yield as function of fidelity for the crossover for a given alteration
probability �1−ql� �see Eqs. �11� and �12��. This parameter varies
from ql=0.93 �left curve� to ql=0.99 �right curve�.

FIG. 15. �Color online� Maximal reachable fidelity Fmax

plotted against the number of parties for the simplified model
described in Sec. V B applied to GHZ states. The alteration prob-
abilities for the channels and local noise are given by �1−q�=0.1
and �1−ql�=0.01, respectively. The results were obtained
analytically.
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CBEPP =
N − 1

YMEPP�2,q,ql,m�
.

3. Discussion

The results obtained the way just explained are presented
in Figs. 13–15 always for MEPP and BEPP.

The crossover points—i.e., the fidelity values �and corre-
sponding costs� above which MEPP performs better than
BEPP—are plotted as blue squarees in Fig. 13 for up to 70
parties. We have also plotted the fidelity-cost function for
selected numbers N of parties, which cross in their respective
blue squares. The other cross points were determined in the
same way by observing where the MEPP and BEPP curve
intersect. Compare this figure with Fig. 8: Our analytical toy
model could reproduce the appearance of cross points which
we had already discussed in Sec. IV B 1, an essential feature
observed for the more general noise model. It does not, how-
ever, reproduce the fact that a crossover ceases to appear
above a certain number �here 9� of parties. This fact is due to
the particular kind of noise of our toy model under which
GHZ states appear less fragile than under depolarizing noise
so that the breakdown of MEPP for large states does not
happen.

We can use our analytic model to explore the parameter
space more thoroughly. For instance, one might be interested
how the positions of the cross points change if the local noise
is increased. This is shown in Fig. 14 where the rightmost
curve is the same as the disks in Fig. 13 and the others
are for higher local noise levels. Observe how the effect of
local noise depends more and more on the state size as its
level approaches the order of magnitude of the channel
noise.

The vertical tails of the curves in Fig. 13 already allow
one to easily read off the maximum reachable fidelity, which
is plotted in Fig. 15. There, the advantage of MEPP over
BEPP increases with the number of parties. This effect can
also be seen in the numerical calculations for depolarizing
noise �Fig. 7�a��. In the latter case, it is, however, soon over-
come by the competing effect of the breakdown of MEPP
under realistic �depolarizing� noise.

C. Testing the numerics

The analytical formulas are also very useful for verifying
the code of our numerical calculations. Switching the
programs from depolarizing noise to the simplified noise
considered here is a trivial alteration. We find that the nu-
merical results agree well with the analytics; see Figs. 16 and
17. This fact makes us confident in the correctness of our
codes.

VI. SUMMARY AND CONCLUSIONS

In this article, we have investigated the quantum commu-
nication cost of preparing a class of multipartite entangled
states with high fidelity. The presence of noisy quantum
channels and imperfect local control operations requires the
usage of error correction or—in our case—entanglement pu-
rification schemes to achieve this aim. We have considered
various strategies to generate these high-fidelity states and
have established in this way upper bounds on the quantum
communication cost. The optimal strategy strongly depends
on the error parameters for channels and local control opera-
tions and on the desired target fidelity. For a simple error
model and the generation of GHZ states based on various
strategies, we have obtained analytic results that allow us to
compare these strategies. Numerical simulations for generic
error models, based on Monte Carlo simulations, show es-

FIG. 16. �Color online� Testing the numerics: We switched the
programs that were used to calculate the results of Sec. IV B �pro-
gram C� and Sec. IV C �program S� to the simplified noise model of
Sec. V B. The plot shows the inverse of communication cost as
function of the final fidelity. The red symbols ��� stand for the
analytical results while the green ��� and the blue ��� symbols
stand for the output of program C and program S, respectively.
The error bars stand for 1� errors. A comparison with the derived
analytical formulas shows satisfactory agreement. The calculation
was done for MEPP of GHZ states with 10 qubits �b� at noise levels
q=0.9 and ql=0.95.

FIG. 17. �Color online� Testing the numerics obtained for the
BEPP strategy. Noisy entangled pairs, arising from sending one of
the qubits through a depolarizing channel, are purified using the
BEPP. The plot shows the inverse of communication cost as func-
tion of final fidelity. The black crosses give the exact values while
the red bars give the numerical results of the Monte Carlo
simulation.
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sentially the same features as observed in the simplified
model. The simulation makes use of a recently developed
method that allows one to efficiently simulate the evolution
of stabilizer states �or graph states� under Clifford operations
on a classical computer �23,24�. We have also applied this
method to investigate not only the generation of GHZ states
but also of other types of multipartite entangled states—e.g.,
cluster states.

We find that for high target fidelities, strategies based
on multipartite entanglement purification generally perform
better than strategies based on bipartite purification. For
low target fidelities, strategies based on bipartite purification
have a higher efficiency, leading to smaller communication
cost.

We believe that the generation of high-fidelity multipartite
entangled states is of significant importance in the context of
�distributed� quantum information processing. Such
multipartite-entangled states represent resources—e.g., for
measurement-based quantum computation, conference

key agreement, and secret sharing schemes—and may be
used for other security tasks. Our investigation takes
both channel noise and noisy apparatus into account. We
could show that the choice of a proper strategy not only
allows one to significantly reduce the quantum communica-
tion cost, but to reach fidelity of target state that are not
accessible otherwise.
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