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We investigate the effect of a spin bath on the spin-transfer functions of a permanently coupled spin system.
When each spin is coupled to a separate environment, the effect on the transfer functions in the first excitation
sector is amazingly simple: the group velocity is slowed down by a factor of 2, and the fidelity is destabilized
by a modulation of �cos Gt � , where G is the mean square coupling to the environment.
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I. INTRODUCTION

Recently suggested protocols �1–3� give a new perspec-
tive to the physics of strongly coupled spin systems. They
demonstrate that the coherent transfer of spin flips can be
used to transfer unknown quantum states and entanglement,
a task of paramount importance in any quantum-information
application �4�. Generally, the relevant quantities determin-
ing the performance of the mentioned protocols are the time-
dependent transition amplitudes of local spin flips in a ferro-
magnetic ground state. We will refer to these amplitudes as
“spin-transfer functions.” The same functions also occur in
the charge- and energy-transfer dynamics in molecular sys-
tems �5� and in continuous-time random walks �6� to which
our results equally apply.

It is both important and interesting to ask how these trans-
fer functions change if the intended couplings between the
spins are accompanied by unwanted couplings to environ-
mental spins which do not take part in the transport. It is well
known from the theory of open quantum systems �7� that this
can lead to dissipation and decoherence, which also means
that quantum information is lost. Here we consider a model
where the system is coupled to a spin environment through
an exchange interaction because the same type of coupling is
also responsible for the transport of the information through
the system. Moreover, this coupling offers the unique oppor-
tunity of an analytic solution of our problem without any
approximations regrading the strength of system-
environment coupling �in most treatments of the effect of an
environment on the evolution of a quantum system, the
system-environment coupling is assumed to be weak� and
allows us to include inhomogeneous interactions of the bath
spins with the system. For such coupling, decoherence is
possible for mixed �thermal� initial bath states �8�. However
if the system and bath are both initially cooled to their
ground states, is there still a nontrivial effect of the environ-
ment on the spin-transfer functions? In this paper we find
that there are two important effects: the spin-transfer func-
tions are slowed and destabilized due to the environment.
This has both positive and negative implications for the use
of strongly coupled spin systems as quantum-communication
channels.

II. MODEL

We choose to start with a specific spin system, i.e., an
open spin chain of arbitrary length N, with a Hamiltonian
given by

HS = −
1

2 �
�=1

N−1

J��X�X�+1 + Y�Y�+1� , �1�

where J� are some arbitrary couplings and X� and Y� are the
Pauli- X and Y matrices for the �th spin. Toward the end of
the paper we will, however, show that our results hold for
any system where the number of excitations is conserved
during dynamical evolution. In addition to the chain Hamil-
tonian, each spin � of the chain interacts with an independent
bath of M� environmental spins �see Fig. 1� via an inhomo-
geneous Hamiltonian,

HI
��� = −

1

2�
k=1

M�

gk
����X�Xk

��� + Y�Yk
���� . �2�

In the above expression, the Pauli matrices X� and Y� act
on the �th spin of the chain, whereas Xk

��� and Yk
��� act on the

kth environmental spin attached to the �th spin of the chain.
We denote the total interaction Hamiltonian by

HI � �
�=1

N

HI
���. �3�

The total Hamiltonian is given by H=HS+HI, where it is
important to note that �HS ,HI��0. We assume that a homo-
geneous magnetic field along the z axis is applied. The
ground state of the system is then given by the fully polar-
ized state �0,0�, with all chain and bath spins aligned along
the z axis. The above Hamiltonian describes an extremely
complex and disordered system with a Hilbert space of di-
mension 2N+NM. In the context of state transfer, however,
only the dynamics of the first excitation sector is relevant.
We proceed by mapping this sector to a much simpler system
�9,10�. For �=1,2 , . . . ,N we define the states

� � ,0� � ��
+�0,0� �4�

and

�0, � � �
1

G�
�
k=1

M�

gk
����k

+����0,0� �5�

with
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G� =	�
k=1

M�

�gk
����2. �6�

It is easily verified that �setting J0=JN=0�

HS� � ,0� = − J�−1� � − 1,0� − J�� � + 1,0� ,

HS�0, � � = 0, �7�

and

HI� � ,0� = − G��0, � � , �8�

HI�0, � � = − G�� � ,0� . �9�

Hence these states define a 2N-dimensional subspace that is
invariant under the action of H. This subspace is equivalent
to the first excitation sector of a system of 2N spin-1 /2 par-
ticles, coupled as is shown in Fig. 2.

Our main assumption is that the bath couplings are in
effect the same, i.e., G�=G for all �. Note, however, that the
individual numbers of bath spins M� and bath couplings gk

���

may still depend on � and k as long as their mean square
average is the same. Also, our analytic solution given in the
next section relies on this assumption, but numerics show
that our main result �Eq. �25�� remains a good approximation
if the G� slightly vary and we take G�
G��.

III. RESULTS

In this section, we solve the Schrödinger equation for the
model outlined above and discuss the spin-transfer functions.
First, let us denote the orthonormal eigenstates of HS alone
by

HS��k� = �k��k� �k = 1,2, . . . ,N� �10�

with

��k� = �
�=1

N

ak�� � ,0� . �11�

For what follows, it is not important whether analytic expres-
sions for the eigensystem of HS can be found. Our result
holds even for models that are not analytically solvable, such
as the randomly coupled chains considered in �2�. We now
make an ansatz for the eigenstates of the full Hamiltonian,
motivated by the fact that the states

���
n� �

1
	2

�� � ,0� + �− 1�n�0, � �� �n = 1,2� �12�

are eigenstates of HI
��� with the corresponding eigenvalues

±G �this follows directly from Eqs. �8� and �9��. Define the
vectors

��k
n� � �

�=1

N

ak����
n� �13�

with k=1,2 , . . . ,N and n=0,1. The ��k
n� form an orthonor-

mal basis in which we express the matrix elements of the
Hamiltonian. We can easily see that

HI��k
n� = − �− 1�nG��k

n� �14�

and

HS��k
n� =

�k

	2
�
�=1

N

ak�� � ,0� =
�k

2
���k

0� + ��k
1�� . �15�

Therefore the matrix elements of the full Hamiltonian H
=HS+HI are given by


�k�
n��H��k

n� = �kk��− �− 1�nG�nn� +
�k

2
� . �16�

The Hamiltonian is not diagonal in the states of Eq. �13�. But
H is now block diagonal, consisting of N blocks of size 2,
which can be easily diagonalized analytically. The orthonor-
mal eigenstates of the Hamiltonian are given by

�Ek
n� = ckn

−1
��− 1�n�k − 2G���k
0� + �k��k

1�� �17�

with the eigenvalues

Ek
n =

1

2
��k + �− 1�n�k� �18�

and the normalization

ckn � 	��− 1�n�k − 2G�2 + �k
2, �19�

where

�k = 	4G2 + �k
2. �20�

Note that the ansatz of Eq. �13� that put H in block-diagonal
form did not depend on the details of HS and HI

���. The meth-
ods presented here can be applied to a much larger class of
systems, including the generalized spin star systems �which
include an interaction within the bath� discussed in �10�.

After solving the Schrödinger equation, let us now turn to
quantum state transfer. The relevant quantity �1–3� is given
by the transfer function

FIG. 1. �Color online� A spin
chain of length N=5 coupled to
independent baths of spins.

FIG. 2. �Color online� In the first excitation sector, the system
can be mapped into an effective spin model where the bath spins are
replaced by a single effective spin, as indicated here for N=5.
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fN,1�t� � 
N,0�exp
− iHt��1,0�

= �
k,n

exp
− iEk
nt�
Ek

n�1,0�
N,0�Ek
n� .

The modulus of fN,1�t� is between 0 �no transfer� and 1 �per-
fect transfer� and fully determines the fidelity of state trans-
fer. Since


� ,0�Ek
n� = ckn

−1
��− 1�n�k − 2G�
� ,0��k
0� + �k
� ,0��k

1��

=
ckn

−1

	2
��− 1�n�k − 2G + �k�ak�,

we get

fN,1�t� =
1

2�
k,n

e�−it/2���k+�− 1�n�k� ��− 1�n�k − 2G + �k�2

��− 1�n�k − 2G�2 + �k
2ak1akN

* .

�21�

Equation �21� is the main result of this paper, fully determin-
ing the transfer of quantum information and entanglement in
the presence of the environment. In the limit G→0, we have
�k��k, and fN,1�t� approaches the usual result �1–3� without
an environment,

fN,1
0 �t� � �

k

exp
− it�k�ak1akN
* . �22�

In fact, a series expansion of Eq. �21� yields that the first
modification of the transfer function is of the order of G2,

G2�
k

ak1akN
* �exp
− it�k��−

1

�k
2 −

it

�k
� +

1

�k
2� . �23�

Hence the effect is small for very weakly coupled baths.
However, as the chains get longer, the lowest-lying energy �1
usually approaches zero, so the changes become more sig-
nificant �scaling as 1/�k�. For intermediate G, we evaluated
Eq. �21� numerically and found that the first peak of the
transfer function generally becomes slightly lower, and gets
shifted to higher times �Figs. 3 and 4�. A numeric search in
the coupling space 
J� , � =1, . . . ,N−1�, however, also re-
vealed some rare examples where an environment can also
slightly improve the peak of the transfer function �Fig. 5�.

In the strong-coupling regime G��k /2, we can approxi-
mate Eq. �20� by �k�2G. Inserting it in Eq. �21� then gives

fN,1�t� �
1

2
e−iGt�

k

exp�− it�k
1

2
�ak1akN

*

+
1

2
eGt�

k

exp�− it�k
1

2
�ak1akN

*

= cos�Gt�fN,1
0 � t

2
� . �24�

This surprisingly simple result consists of the normal transfer
function, slowed down by a factor of 1 /2, and modulated by
a quickly oscillating term �Figs. 3 and 4�. Our derivation
actually did not depend on the indices of f�t� and we get for
the transfer from the nth to the mth spin of the chain that

fn,m�t� � cos�Gt�fn,m
0 � t

2
� . �25�

It may look surprising that the matrix fn,m is no longer uni-
tary. This is because we are considering the dynamics of the
chain only, which is an open quantum system �7�. A heuristic
interpretation of Eq. �25� is that the excitation oscillates back
and forth between the chain and the bath �hence the modu-
lation�, and spends half of the time trapped in the bath �hence
the slowing�. If the time of the maximum of the transfer
function �fn,m

0 �t�� for G=0 is a multiple of 	 /2G, then this
maximum is also reached in the presence of the bath.

Finally, we want to stress that Eq. �25� is universal for any

FIG. 3. �Color online� The absolute value of the transport func-
tion fN,1�t� of a uniform spin chain �i.e., J�=1� with length N=10
for three different values of the bath coupling G. The dashed line is
the envelope of the limiting function for G��k /2 given by
�f0�t /2��. We can see that Eq. �25� becomes a good approximation
already at G=4.

FIG. 4. �Color online� The same as Fig. 3, but now for an
engineered spin chain �i.e., J�=	��N− � �� as in �3�. For compari-
son, we have rescaled the couplings such that ��J� is the same as in
the uniform coupling case.
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spin Hamiltonian that conserves the number of excitations,
i.e., with �HS ,��Z��=0. Thus our restriction to chainlike
topology and exchange couplings for HS is not necessary. In
fact the only difference in the whole derivation of Eq. �25�
for a more general Hamiltonian is that Eq. �7� is replaced by

HS� � ,0� = �
��

h�����,0� . �26�

The Hamiltonian can still be formally diagonalized in the
first excitation sector as in Eq. �11�, and the states of Eq. �17�

will still diagonalize the total Hamiltonian HS+HI. Also,
rather than considering an exchange Hamiltonian for the in-
teraction with the bath, we could have considered a Heisen-
berg interaction �11�, but only for the special case where all
bath couplings gk

��� are all the same �12�. Up to some irrel-
evant phases, this leads to the same results as for the ex-
change interaction.

IV. CONCLUSION

We found a surprisingly simple and universal scaling law
for the spin-transfer functions in the presence of spin envi-
ronments. In the context of quantum state transfer �1–3� this
result is double edged: on one hand, it shows that even for
very strongly coupled baths quantum state transfer is pos-
sible, with the same fidelity and only reasonable slowing. On
the other hand, it also shows that the fidelity as a function of
time becomes destabilized with a quickly oscillating modu-
lation factor. In practice, this factor will restrict the time
scale in which one has to be able read the state from the
system. This demonstrates that even though a bath coupling
need not introduce decoherence or dissipation to the system,
it may cause other dynamical processes such as destabiliza-
tion that can be problematic for quantum-information pro-
cessing.
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