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We introduce the concept of a physical process that purifies a mixed quantum state, taken from a set of
states, and investigate the conditions under which such a purification map exists. Here, a purification of a
mixed quantum state is a pure state in a higher-dimensional Hilbert space, the reduced density matrix of which
is identical to the original state. We characterize all sets of mixed quantum states, for which perfect purification
is possible. Surprisingly, some sets of two noncommuting states are among them. Furthermore, we investigate
the possibility of performing an imperfect purification.
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I. INTRODUCTION

A fundamental entity in quantum mechanics and quantum
information is a mixed quantum state. A mixed quantum
state can be either understood as a statistical mixture of pure
quantum states, or as being part of a higher-dimensional,
pure state—a purification of the mixed state. Formally, given
the decomposition �=�ipi��i���i�, where pi�0 and �ipi=1,
an example for a purification of � is given by ���
=�i

�pi��i��ai�, with the auxiliary states �ai� being mutually
orthogonal. This abstract point of view was, so far, the main
impetus for discussing purifications of a single, known quan-
tum state �1,2	.

In this paper, we consider the purification of an unknown
quantum state. More precisely, we introduce the fundamental
question whether there exists a physical process �i.e., a com-
pletely positive map� that takes any state of a given set to
one of its purifications. �We remind the reader for clarity that
there exists a different notion of “purification” in the litera-
ture, referring to the process of performing operations on
several identical copies of a given state, such that the purity
of some of them is increased; a typical application is en-
tanglement distillation.� Our aim is to characterize all sets of
states for which a purifying map exists. The existence of
such a process implies a nontrivial physical equivalence be-
tween certain sets of mixed and pure quantum states.

Let us introduce our concepts and outline the structure of
this paper. As already pointed out above, a purification of a
mixed state has to satisfy two characteristic properties: first,
it has to be pure, and second, tracing out the auxiliary system
has to yield back the original state. We call the second prop-
erty faithfulness and name a process a perfect purifier for a
mixed state, when the output achieves both properties. It is
straightforward to prove that the linearity of quantum me-
chanics does not allow the existence of a perfect purifier for
a completely unknown quantum state, i.e., a state taken from
the set of all states. However, will dropping the condition of
faithfulness or the one of purity allow nontrivial purification
processes for an unknown quantum state? It will be shown in
Theorem 1 that this is not the case. Consequently, in Sec. III
we will restrict the set of possible input states, and investi-

gate the properties of purifying maps acting on the most
simple nontrivial set, namely a set of only two mixed states.
While keeping the condition of purity, we will find that the
deviation from perfect faithfulness depends on a purely geo-
metric quantity of the two inputs. This result will allow us to
derive lower and upper bounds on the achievable faithful-
ness. Since these bounds do not exclude perfect faithfulness
for certain pairs of states, we then, in Sec. IV proceed to
investigate the existence of a perfect purifier in general.
Theorem 2 completely characterizes all sets of states that can
be purified perfectly. Finally, we will provide an operational
test for a given pair of states that allows to check whether a
physical purification is possible.

II. THE GENERAL PURIFICATION TASK

In the following we will denote by M a given set of
mixed states, represented by density operators that act on a
finite-dimensional Hilbert space H. The elements �i�M are
allowed to have unbalanced a priori probabilities �i�0, sat-
isfying �i�i=1. We consider deterministic physical pro-
cesses represented by completely positive and trace preserv-
ing �14	 linear maps � that take any density operator acting
on H to a density operator acting on H � Haux, where Haux
denotes an auxiliary space of unspecified dimension. We re-
fer to such a physical process as a perfect purifier if for each
�i�M, the output ���i	 is pure as well as faithful, i.e.,
traux���i	=�i. If these conditions are not met, we will mea-
sure the average output purity by p=�i�i tr ���i	2 and the
average faithfulness by f =1−�i�i
�i−traux ���i	
. Here,

�−	
= 1

2 tr��−	� denotes the trace distance, where �A�
=�A†A. The trace distance is a good measure for the distin-
guishability of two states as it vanishes for identical states
and is equal to one for orthogonal states. In particular, the
success probability for the minimum error discrimination
procedure �3,4	 of two states having equal a priori probabil-
ity depends linearly on the trace distance of the states. We
call any deterministic process a purifier of M, if it does not
decrease the average purity of M.

For the universal case where the set M contains all pos-
sible density operators acting on a given Hilbert space, nei-
ther relaxing the condition of purity nor relaxing the condi-
tion of faithfulness allows nontrivial purifiers.

Theorem 1. �i� Any universal purifier with perfect output*Electronic address: kleinmann@thphy.uni-duesseldorf.de
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purity is a constant map. �ii� A universal purifier with perfect
faithfulness does not increase the purity of any state.

Proof. We prove �i� by contradiction. Suppose there exists
a purifier � such that ���	 is pure for any state �, and with
the property that at least for two states �1 and �2, ���1	
����2	 holds. But for the state �3= ��1+�2� /2, the purity of
���3	= ����1	+���2	� /2 requires ���1	=���2	.

Proof of statement �ii�: perfect faithfulness of a universal
purifier requires that any pure state �
��
� is mapped onto
the state �
��
� � 	
 for some state 	
 acting on Haux. For
any state � we find with the spectral decomposition �
=�pi��i���i� that due to linearity tr ���	2=tr��ipi��i���i�
� 	�i

�2=�ipi
2tr 	�i

2 ��ipi
2=tr �2, i.e., no state can become

purer by the action of �. �
Let us mention that there is some similarity of the argu-

ments given in the proof above with the no-cloning theorem
�5–7	. In both scenarios, linearity of quantum mechanics for-
bids the existence of some physical process, when the input
set contains all states. Even when the set of input states is
restricted to two pure states, perfect quantum cloning is im-
possible, as follows from unitarity. It was furthermore shown
that broadcasting �a natural generalization of quantum clon-
ing to mixed input states� is possible for a set of two mixed
states, if and only if the states commute �8	. The same crite-
rion does not apply for purification maps: a pair of orthogo-
nal or identical states can, of course, be purified perfectly—
but in any other case of commuting states we will show that
perfect purification is impossible. Yet for some noncommut-
ing states, a perfect purification process exists.

III. TWO-STATE PURIFIERS WITH PURE OUTPUT

In this section we will focus on the case of two input
states and perfect output purity, i.e., a deterministic process
which takes any state from the set M= �� ,��� to a pure state.
A characteristic quantity for purification will turn out to be
the worst-case distinguishability D�� ,���, which denotes the
trace distance of the two closest states that may appear physi-
cally in the ensembles of � and ��, i.e.,

D��,��� = min
���,����


������ − ��������
 , �1�

where ��� and ���� are normalized vectors in the range of �
and ��, respectively. �We point out that this quantity can be
calculated by taking the sine of the smallest canonical angle
�9	 between the range of � and the range of ��.� The notion
of distinguishability here refers to the success probability of
a minimum error discrimination, as explained above.

Although at first sight the worst-case distinguishability
resembles a distance, mathematically speaking it is none:
The triangular inequality does not hold, and D�� ,���=0 is
true for some ����. Note that any two states with overlap-
ping ranges have, in fact, a vanishing worst-case distinguish-
ability. On the other hand, D�� ,���=1 is equivalent to � and
�� being orthogonal, i.e., 
�−��
=1. Thus commuting states
are either orthogonal or have a vanishing worst-case distin-
guishability.

A. Characterization of two-state purifiers

We are now in the position to study the general conse-
quences of perfect output purity. Suppose that � is a purifier
of � and �� with perfect output purity. As a defining property
of any normalized vector ��� in the range of � one can write
�=
������+��̃ with positive numbers 
 and �, and positive
semidefinite �̃. Using the same convexity argument as in the
proof of Theorem 1 �i�, it follows that ��������	=���	. An
analogous argument holds for all vectors ���� in the range of
��. Thus we have 
���	−����	
= 
��������	−����������	

� 
������− ��������
, where in the inequality we used that a
deterministic physical process � cannot increase the trace
distance between two states �10	. By choosing for ������ and
�������� the states with minimal distance �cf. definition in Eq.
�1�	, we have shown that for maps � where ���	 as well as
����	 are pure,

D��,��� � 
���	 − ����	
 �2�

must hold.
It is important that there always exists a map which

reaches equality in Eq. �2�. In order to see this, one con-
structs a canonical basis �9	 of the ranges of both states, i.e.,
an orthonormal basis ���i�� of the range of � and ���i��� of the
range of ��, such that in addition ��i �� j��=0 holds for all i
� j. One can show that there always exists a map, which
decreases the distance of two pure states by an arbitrary
value. Such a map is now applied in each of the orthogonal
subspaces spanned by ���i� , ��i���, such that the distance

��i���i�− ��i����i��
 decreases to be D�� ,���. The composed
map has the property, that if applied to � and ��, an ortho-
normal eigenbasis for both output states exists, such that all
nonorthogonal eigenvectors �one of the output of � and one
of ��� have a distance D�� ,���. Now a map can readily be
found, which maps the output states to pure states having a
distance D�� ,���. The fact that one can always reach the
equality in Eq. �2� completes the characterization of the out-
put of a general process, which maps two input states � and
�� to two pure states.

B. Bounds on two-state purifiers

As an application of the result in Sec. III A we now esti-
mate the faithfulness of a purifier with perfect output in the
case of two input states. For this purpose we assume that the
state � ���� occurs with a priori probability � ����, where
���� without loss of generality. We denote the deviation
from perfect faithfulness by �, i.e.,

� = �
� − traux���	
 + ��
�� − traux����	
 . �3�

Using the triangular inequality for the trace distance,


� − ��
 � 
� − traux���	
 + 
traux���	 − traux����	


+ 
traux����	 − ��


holds, and we obtain due to Eq. �2� the lower bound

� � ��
� − ��
 − D��,���	 . �4�

A straightforward upper bound on � for the optimal pro-
cess �i.e., minimal �� can be obtained by considering a con-
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stant purifier that produces a perfect purification of ��. This
leads to the first upper bound

�opt � �
� − ��
 . �5�

A more sophisticated upper bound on � is given by using the
map which reaches the equality in Eq. �2�. One chooses the
output of �� to be a purification of �� and the output of � to
be a pure state, which is as close as possible—according to
Eq. �2�—to a purification of �. Since the maximal overlap of
all purifications for two states � and �� is given by the Uhl-
mann fidelity F�� ,���=tr������� �11,12	, we find with
sin 
=D�� ,��� and cos �=F�� ,��� the second upper bound

�opt � � sin�� − 
� . �6�

Let us give an explicit example for these bounds. We
consider the states �= 1

2 ��0��0�+ �1��1�� � �0��0� and ��
= 2

3 �0 � �0 � � � + � �+ � + 1
3 �1 � �1 � � �� � �� � , which appear with

equal a priori probability, where ���=cos ��0�+sin ��1� and
�+ �= ��0�+ �1�� /�2. In Fig. 1 the bounds for the optimal de-
viation from faithfulness � are shown: the lower bound as
given in Eq. �4�, the first �dashed line� and second upper
bound, cf. Eq. �5� and �6�. At �=0 the ranges of both states
share the vector �1� � �0� and thus the worst-case distinguish-
ability vanishes and the optimal faithfulness is given by the
upper bound in Eq. �5�. The second upper bound and the
lower bound almost coincide at �=� /4 with 0.0050��
�0.0072. Note that the upper bounds cross each other, i.e.,
depending on the input state, either the first or the second
upper bound is tighter.

An interesting question in this context is the following:
given two quantum states, does a better distinguishability �in
the sense of minimum error discrimination� imply a better
faithfulness? The surprising answer is no: in the example
given above, the trace distance of the two states monotoni-
cally increases from �=0 to �=� /2, while the deviation
from faithfulness has its minimum at �=� /4. The examples
illustrates that the worst-case distinguishability is indeed an
important quantity for purifying processes. This is remark-
able, as the worst-case distinguishability is purely deter-
mined by the geometric features of the states, whereas the

statistical weights in the ensembles do not play any role.
Note that a related, but not purely geometric quantity
F1

+�� ,��� was introduced in �13	.

IV. SETS THAT CAN BE PURIFIED PERFECTLY

Finally, our focus turns to the general analysis of perfect
purifiers. The existence of a perfect purifier for a set M has
far-reaching implications, as it is possible to convert all
states in M to pure states in a reversible way. An investiga-
tion of the property of reversibility indeed turns out to be the
key for understanding perfect purification: Suppose that we
have a purifier � of a set M with perfect output purity �but
not necessarily perfect faithfulness�, and some completely
positive and trace preserving map ��, such that for any �i
�M this map is the reverse map of �, i.e., ������i		=�i.
The action of any completely positive and trace preserving
map can always be formulated as appending a �pure� ancilla
state, performing a unitary rotation and finally tracing out an
appropriate subsystem. We write �� in this manner and apply
everything, apart from tracing out, to the output of �. For

this composed map we write the shorthand notation �̃. The

output of �̃ is still pure for any state in M and the remaining
step of the map ��, namely the trace over the subsystem,

yields back the original state, thus �̃ is a perfect purifier of
M.

In order to further approach the characterization of sets
that can be purified perfectly, we call a set of states essen-
tially pure, if every state from the set can be globally rotated
into a tensor product of a pure state and a common mixed
contribution, or in more technical terms: A set of states M is
called essentially pure, if one can find states �aux and 	B, a
unitary transformation U, and a set of pure states PA, such
that for all �i�M there is a corresponding pure state
�
i��
i��PA with

�i � �aux = U��
i��
i� � 	B�U†. �7�

Note that the tensor product symbol on the two sides of this
equation, in general, denotes different splits of the composite
system: on the left-hand side one sees the composition of the
original system and an auxiliary system, while on the right-
hand side the composition refers to some system A and some
system B. Essentially pure sets can be purified perfectly: A
process which appends �aux to �i, performs U† and traces out
system B produces a pure state for any state in M. On the
other hand a process, which appends 	B to �
i��
i�, performs
U and traces out the auxiliary system, undoes the action of
the purifying map. Thus, a perfect purifier of M exists. Of
course, a union of essentially pure sets, where any two states
taken from different sets are orthogonal, can also be purified
perfectly. We call such a union an orthogonal union of es-
sentially pure sets.

Theorem 2. For a set of states M, the following state-
ments are equivalent: �i� A perfect purifier of M exists. �ii�
There exists a completely positive and trace preserving map,
which maps any state in M to a pure state and does not
change the trace distance of any two states in M. �iii� M is
an orthogonal union of essentially pure sets.

FIG. 1. Example for lower and upper bounds on the optimal
deviation from perfect faithfulness � of a two-state purifier with
pure output. See main text for explanation.
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Proof. Our motivation for the definition of orthogonal
unions of essentially pure sets was indeed that this property
implies the existence of a perfect purifier. Thus, we have
already shown that �iii� implies �i�. Furthermore, from the
fact that no process can increase the trace distance, together
with the existence of a reversible map, �ii� is a direct conse-
quence of �i�. Thus it only remains to show that �ii� implies
�iii�: If �ii� holds for an M that is a union of mutually or-
thogonal subsets, there exist maps that satisfy �ii� for each
subset. Therefore, we can assume without loss of generality
that one cannot split the set M into orthogonal parts.
With �a��a� being a pure auxiliary state and U† a
unitary transformation, we can write the action of �
as �� trBU†�� � �a��a��U, where B denotes an appropriate

subsystem. Since the output of � for a state �i�M is a
pure state �represented by a projector �i�, we have
U†��i � �a��a��U=�i � 	i, with 	i a state in subsystem B.
The final step is now to show that 	i=	 j holds. For any two
states �i ,� j �M, due to the assumption �ii�,


�i − � j
 = 
�i − � j
 = 
�i � 	i − � j � 	 j
 �8�

holds. A minimum error discrimination �3,4	 in subsystem B
on the right-hand side can be written as 	i→qi�0��0�+ �1
−qi��1��1� and 	 j→ �1−qj��0��0�+qj�1��1�, where �qi+qj� /2
= �1+ 
	i−	 j
� /2 is the success probability for the optimal
discrimination measurement. We find


�i � 	i − � j � 	 j
2 � �
qi�i − �1 − qj�� j
 + 
�1 − qi��i − qj� j
	2 � 
�i − � j
2 + 
	i − 	 j
2tr��i� j� , �9�

where in the first step we used, that the discrimination pro-
cedure cannot increase the trace distance. The second in-
equality follows from a lengthy but straightforward calcula-
tion. From a comparison with Eq. �8� either 	i=	 j or
tr��i� j�=0 �or both� must hold. The latter case implies �i to
be orthogonal to � j, i.e., if 	i�	 j for two states, then one
can split M into two orthogonal sets, in contrast to our as-
sumption. �

This Theorem completely characterizes all sets of states
that can be purified perfectly, cf. also Eq. �7�. It is surprising
that one can even purify a set of continuous states, meaning
that the set may contain infinitesimally close neighbors. It is
also worth mentioning that all states in an essentially pure set
share the same spectrum and pairwise have a completely
degenerate set of canonical angles �9	. What is the lowest
dimension, in which perfect purification is possible for non-
orthogonal mixed states? This cannot happen unless the di-
mension of the Hilbert space is at least four: In two and three
dimensions, only pure states can have identical spectra with-
out having an overlapping range.

Although essentially pure sets can be characterized in a
explicit manner and have a lot of straightforward features,
there is no obvious method to verify whether a given set is of
the structure as specified in Eq. �7�. However, for the case,
where M consists of only two states, there exists a comput-
able test: From the lower bound on � derived in Eq. �4� it
follows that 
�−��
=D�� ,��� is a necessary condition for
the existence of a perfect two-state purifier. It is also a suf-
ficient condition: For any two states � and �� there is a map
� such that 
���	−����	
=D�� ,���, thus if 
�−��

=D�� ,���, this map satisfies part �ii� of Theorem 2, i.e., �
and �� can be purified perfectly. Note, that it is also straight-
forward to prove that the upper bound on �opt in Eq. �6�
vanishes if and only if there is a perfect purifier of � and ��.

V. CONCLUSIONS

In summary, we have introduced the concept of purifica-
tion as a physical map, and studied its properties: without
any prior knowledge of the input state a perfect purifier can-
not exist. Relaxing one of the two characteristic properties of
a purifier, purity and faithfulness, does not lead to a non-
trivial universal process either. We have investigated the case
when the input set contains only two states and found a
characterization of the output of any map, which takes both
states to a pure state. Using this tool, we derived bounds on
the deviation from perfect faithfulness �i.e., the distance of
the partial trace of the output state and the original state�. We
also completely characterized all sets of states that can be
purified perfectly. Roughly speaking, any such set can be
globally rotated into a set of pure states, tensored with a
common mixed contribution. Surprisingly, we found that
some sets of noncommuting states can be purified, in con-
trast to the situation of broadcasting. For the case of sets with
only two states, we provided an operational test to check
whether perfect purification is possible.

In this paper we have presented some of the basic prop-
erties of purifying completely positive maps. Several ques-
tions remain open. One direction of future work is to con-
sider the maximal possible purity of a purifier in the case of
perfect faithfulness. Furthermore, the analysis of purifiers for
sets with more than two states will be the subject of further
research.
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