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Most investigations devoted to the conditions for adiabatic quantum computing are based on the first-order

correction ��ground�t� � Ḣ�t� ��excited�t�� /�E2�t��1. However, it is demonstrated that this first-order correction
does not yield a good estimate for the computational error. Therefore, a more general criterion is proposed,
which includes higher-order corrections as well, and shows that the computational error can be made expo-
nentially small—which facilitates significantly shorter evolution times than the above first-order estimate in
certain situations. Based on this criterion and rather general arguments and assumptions, it can be demonstrated
that a run-time T of order of the inverse minimum energy gap �Emin is sufficient and necessary, i.e., T
=O��Emin

−1 �. For some examples, these analytical investigations are confirmed by numerical simulations.
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I. INTRODUCTION

With the emergence of the first quantum algorithms, it
turned out that quantum computers are, in principle, much
better suited for solving certain classes of problems than
classical computers. Prominent examples are Shor’s algo-
rithm �1� for the factorization of large numbers into their
prime factors in polynomial time, and Grover’s algorithm �2�
for searching an unsorted database with N items reducing the
computational complexity from the classical value O�N� to
O��N� on a quantum computer.

Unfortunately, the actual realization of usual sequential
quantum algorithms �where a sequence of quantum gates is
applied to some initial quantum state, see, e.g., �3�� goes
along with the problem that errors accumulate over many
operations and the resulting decoherence tends to destroy the
fragile quantum features needed for the computation. There-
fore, an alternative scheme has been suggested �4�, where the
solution to a problem is encoded in the �unknown� ground
state of a �known� Hamiltonian. By starting with an initial
Hamiltonian Hi with a known ground state and slowly evolv-
ing to the final Hamiltonian Hf with the unknown ground
state, e.g., H�t�= �1−s�t��Hi+s�t�Hf, adiabatic quantum com-
puting makes use of the adiabatic theorem which states that a
system will remain near its ground state if the evolution s�t�
is slow enough. Since there is evidence that the ground state
is more robust against decoherence �5–7�, this scheme offers
fundamental advantages compared to sequential quantum al-
gorithms.

However, determining the achievable speedup of adia-
batic quantum algorithms �compared to classical methods�
for many problems is still a matter of investigation and de-
bate, see, e.g., �8–14�. For example, it has been argued in
�10� that all conventional �sequential� quantum algorithms
can be realized as adiabatic quantum computation schemes
with polynomial overhead via the history interpolation �poly-
nomial equivalence�. For an adiabatic version of Grover’s
algorithm, a constant velocity ṡ implies a linear scaling of the
run-time T=O�N�, whereas a suitably adapted time depen-

dence s�t� yields the known quadratic speedup T=O��N�, cf.
�13,14�. Whether adiabatic algorithms of NP complete prob-
lems �3�, such as 3-SAT, can be even more efficient than this
quadratic speed-up is still not clear, see, e.g., �8,9�.

In this paper, we derive a general error estimate as a func-
tion of the run-time T �the main measure for the computa-
tional complexity of adiabatic quantum algorithms� for very
general gap structures �E�s� and interpolation velocities s�t�.

II. ADIABATIC EXPANSION

The evolution of a system state ���t�� subject to a time-
dependent Hamiltonian H�t� is described by the Schrödinger
equation ��=1�

i��̇�t�� = H�t����t�� . �1�

Using the instantaneous energy eigenbasis defined by
H�t��n�t��=En�t��n�t��, the system state ���t�� can be ex-
panded to yield

���t�� = 	
n

an�t�exp
− i�
0

t

En�t��dt���n�t�� . �2�

Insertion into the Schrödinger equation yields—after some
algebra—the evolution equations for the coefficients

�

�t
�ame−i�m� = − 	

n�m

an

�m�Ḣ�n�
�Enm

e−i�m

�exp
− i�
0

t

�Enm�t��dt�� �3�

with the energy gap �Enm�t�=En�t�−Em�t� and the Berry
phase �15�

�n�t� = i�
0

t

dt��n�t���ṅ�t��� . �4�

If the external time-dependence Ḣ is slow �adiabatic evolu-
tion�, the right-hand side of Eq. �3� is small and the solution
can be obtained perturbatively. After an integration by parts,
the first-order contribution yields*Electronic mail: schuetz@theory.phy.tu-dresden.de
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am�t�  am
0 ei�m�t� − i� 	

n�m

an
0 �m�Ḣ�n�

�Enm
2 ei�nm�

0

t

, �5�

where �nm�R denotes a pure phase. Consequently, if the
local adiabatic condition

�m�Ḣ�n�
�Enm

2 = � � 1 �6�

is fulfilled for all times, the system approximately stays in its
instantaneous eigen �e.g., ground� state throughout the �adia-
batic� evolution. This above constraint has frequently been
used as a condition for adiabatic quantum computation
�4,12�. However, since the solution to a problem is encoded
in the ground state of the final Hamiltonian in adiabatic
quantum computation schemes, it is not really necessary to
be in the instantaneous ground state during the dynamics—
the essential point is to obtain the desired ground state after

the evolution. Since the external time-dependence Ḣ could
realistically be extremely small �or even practically vanish�
at the end of the computation t=T, the first-order result �5�
does not always provide a good error estimate. Similar to the
theory of quantum fields in curved space times �16�, the dif-
ference between the adiabatic and the instantaneous vacuum
should not be confused with real excitations �particle cre-
ation�. Therefore, it is necessary to go beyond the first-order
result above and to estimate the higher-order contributions.

III. ANALYTIC CONTINUATION

Evidently, the Schrödinger equation is covariant under si-
multaneous transformations of time and energy, such that the
runtime of any adiabatic algorithm can be reduced to con-
stant if the energy of the system is modified accordingly
�13�. Here, we want to exclude a mixing of these effects and
will therefore assume

Tr�H„s�t�…� = const . " s � �0,1� , �7�

where 0	s�t�	1 is an interpolation function which will be
specified below. In practice, the above condition can even be
relaxed to the demand that the trace should not vary by or-
ders of magnitude �during 0	s	1�. With suitable initial and
final Hamiltonians Hi and Hf, the above condition can be
satisfied for all s by using the linear interpolation scheme

H�t� = �1 − s�t��Hi + s�t�Hf , �8�

but other schemes are also possible �see Sec. V�. For sim-
plicity, we restrict our considerations in this section to a non-
degenerate �instantaneous� ground state n=0 and one single
first-exited state m=1 with �E=�E10. �Multiple excited
states will be discussed in Sec. V.� Similarly, all energies will
be normalized in units of a typical energy scale correspond-
ing to the initial/final gap, i.e., �E�0�=O�1� and �E�1�
=O�1�. We classify the dynamics of s�t� via a function h�s�

0

ds

dt
= �E�s�h�s� , �9�

where the function h�s�
0 is constrained by the conditions
s�0�=0 and s�T�=1. Insertion of this ansatz into Eq. �3�
yields the exact formal expression for the nonadiabatic cor-
rections to a system starting in the ground state, i.e., with
a1�0�=0 one obtains after time T

a1�1�e−i�1�1� = − �
0

1

dsa0�s�e−i�1�s�F01�s�
�E�s�

�exp
− i�
0

s ds�

h�s��� , �10�

with the matrix elements Fnm�s�= �m�s� �H��s� �n�s�� which
simplify in the case �8� of linear interpolation to Fnm�s�
= �m�s� � �Hf−Hi� �n�s��. The advantage of the form in Eqs.
�9� and �10� lies in the fact that different time-dependences
s�t� and hence different choices for h�s� solely modify the
exponent.

We assume that all involved functions can be analytically
continued into the complex s plane and are well-behaved
near the real s axis. Given this assumption, we may estimate
the integral in Eq. �10� via deforming the integration contour
into the lower complex half-plane �to obtain a negative
exponent—which is the usual procedure in such estimates�
until we hit a saddle point, a singularity, or a branch cut, see
Fig. 1. Deforming the integration contour into the upper
complex half-plane would of course not change the result,
but there the integrand is exponentially large and strongly
oscillating such that the integral is hard to estimate. Since the
gap �E�s� usually has a pronounced minimum at smin

� �0,1�, the first obstacle we encounter �17� will be a singu-
larity at s̃ close to the real axis, i.e., �Im�s̃� � �1 and Re�s̃�
smin, where �E�s̃�=0.

Let us first consider a constant function h�s�=h: Assum-
ing h�1 �i.e., slow evolution�, the exponent in Eq. �10� ac-
quires a large negative real part for Im�s��0 and thus the
absolute value of the integrand decays rapidly if we depart
from the real s axis in the lower complex half-plane. Impos-
ing the even stronger constraint h� �Im�s̃� � �1, the decay of

FIG. 1. �Color online� The original integration contour �black
line along real axis� of Eq. �10� is shifted to the complex plane
�curved line�. The gap structure �E�s� leads to singularities near the
real axis �green hollow circles, here displayed for 2a=4 in Eq.
�17��, which limit the deformation of the integration contour. The
integral in the exponent �dashed line� in Eq. �10� ranges from 0 to
s�, which gives rise to a real contribution to the exponent off the
real axis only.
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the exponent dominates all the other s dependences ��1�s�,
F01�s�, and �E�s�� since their typical �minimum �17�� scale
of variation is �Im�s̃� � �1. In view of the complex continua-
tion of Eq. �3�, the same applies to the amplitude a0�s�. As a
result, the above integral �10� will be exponentially sup-
pressed �exp�−O��Im�s̃� � /h�� if h� �Im�s̃� � �1 holds,
which �as one would expect� implies a large evolution time T
via the side condition s�T�=1.

The general situation with varying h�s� can be treated in
complete analogy—the integral in Eq. �10� is suppressed
provided that the condition

h�0� + h�1� � 1 Ù Re�i�
0

Re�s̃�+iIm�s̃�/2 ds

h�s�� � 1 �11�

holds for all singularities s̃ �and saddle points etc.� in the
lower complex half-plane �which determine the deformation
of the integration contour�. Together with

T = �
0

1 ds

�E�s�h�s�
, �12�

this determines an upper bound for the necessary runtime T
of the quantum adiabatic algorithm.

Note that the constraint ṡ� �Im�s̃� ��E derived from h
� �Im�s̃�� is not necessarily equivalent to ṡ��E2, which one
would naively deduce from Eq. �6�.

IV. EVOLUTION TIME

The general criterion in Eq. �11� can now be used to es-
timate the necessary run time via Eq. �12�. Typically, the
inverse energy gap 1/�E�s� is strongly peaked �along the
real axis� around Re�s̃� with a width �17� of order �Im�s̃��.
Therefore, assuming h�s� to be roughly constant across the
peak and respecting h�peak� �Im�s̃��, yields the following es-
timate of the integral in Eq. �12�:

T = O��Emin
−1 � , �13�

where �Emin denotes the minimum energy gap. Note that this
estimate is only valid for one �or a few� relevant excited
state�s�—multiple excited states will be discussed in Sec. V.

Intuitively, the same order of magnitude estimate for the
evolution time can also be derived from the local adiabatic
condition �6�: Inverting this condition, we find the relation-
ship

T =
1

�
�

0

1

ds
F01�s�
�E2�s�

. �14�

Assuming that F01�s� does not oscillate strongly, e.g., that the
ground state of H�s� travels on a reasonably direct path from
the initial to the final state, we can make the following esti-
mate

T =
O��Emin

−1 �
�

�
0

1

ds
F01�s�
�E�s�

. �15�

Now we may exploit the advantage of the representation in
Eq. �10�, which is valid for general dynamics s�t� corre-

sponding to different functions h�s� and hence for arbitrary
evolution times T. In the limit of very fast evolution T→0
�which implies h→�, we have large excitations a1�T�
=O�1� and thus the remaining integral in the above equation
can be estimated via inserting this limit into Eq. �10�:

�
0

1

ds
F01�s�
�E�s�

= O�1� . �16�

By comparing Eqs. �16� and �14�, we again obtain the esti-
mate �13�. Note that the quantities F01�s� and �E�s� appear-
ing in the integrals in Eqs. �14�–�16� do not depend on the
dynamics s�t� which allows us to perform the integration
independently of s�t�.

A. Gap structure

Let us illustrate the above considerations by means of the
rather general ansatz for the behavior of the gap

�E�s� = ��s − smin�2a + �Emin
b �1/b, �17�

with the minimal gap 0��Emin�1 at smin� �0,1�, b�0,
and a�N+. An avoided level crossing in an effectively two-
dimensional subspace corresponds to 2a=b=2. This is the
typical situation if the commutator of the initial and the final
Hamiltonian �Hi ,Hf� is small, since, in this case, the two
operators can almost be diagonalized independently, and thus
the energy levels are nearly straight lines except at the
avoided level crossing�s�, where �Hi ,Hf� becomes important.
In the continuum limit, such an �Landau-Zener-type� avoided
level crossing corresponds to a second-order quantum phase
transition. The finite-size analog of a third-order phase tran-
sition corresponds to a=b �and, accordingly, for even higher
orders�, which may occur if �Hi ,Hf� is not small or if the
interpolation is not linear, i.e., H�s�� �1−s�Hi+sHf.

The inverse gap 1/�E�s� has singularities around smin at
Im�s̃�=O��Emin

b/2a�, compare Fig. 1. The total running time T
for different choices of h�s�=�d�Ed�s� satisfying criterion
�11� can be obtained from Eq. �12�. Here, the exponent d
determines the scaling of the interpolation dynamics,
whereas the coefficient �d is adapted such that s�T�=1, cf.
Eqs. �9� and �12�.

For 2a�d+1� /b�1, one easily shows that 1 /�d

=O�T�Emin
d+1−b/2a� satisfies criterion �11� with the evolution

time obeying T=O��Emin
−1 �. If d is smaller, the necessary evo-

lution time will be larger. In Table I, the scaling of the run-

TABLE I. Scaling of the runtime T necessary to obtain a fixed
fidelity for different gap structures �top row� and varying interpola-
tion velocities �first column�. The best improvement possible scales
as the inverse of the minimum gap �Emin

−1 .

�E�s�= ��s−1/2�2+�Emin
2 ��s−1/2�4+�Emin

2

d=−1 �Emin
−2 �Emin

−3/2

d=0 �Emin
−1 ln �Emin

−2 �Emin
−1

d
1 �Emin
−1 �Emin

−1
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time �for two examples of the gap structure� is derived for
three cases:

�1� Constant velocity ṡ=�−1, i.e., d=−1,
�2� Constant function h�s�=�0, i.e., d=0, and
�3� The local adiabatic evolution with h�s�=�1�E�s�, i.e.,

d= +1, investigated in �14�.

B. Grover’s algorithm

In the frequently studied adiabatic realization of Grover’s
algorithm �see, e.g., �12–14��, the initial Hamiltonian reads
Hi=1− �in��in� with the initial superposition state �in�
=	x=0

N−1�x� /�N, and the final Hamiltonian is given by Hf =1
− �w��w�, where �w� denotes the marked state. In this case, the
commutator is very small �Hi ,Hf�= ��in��w�− �w��in�� /�N and
one obtains for the time-dependent gap �14�

�E�s� =�1 − 4�1 −
1

N
�s�1 − s� �4�s −

1

2
�2

+
1

N
.

�18�

Comparing with Eq. �17�, we identify �Emin1/�N and
2a=b=2 �the prefactor does not affect the scaling behavior�.
Consequently, our analytical estimate implies T=O�N� for
d=−1, T=O��N ln 4N� for d=0, and T=O��N� for d�0.

We have solved the Schrödinger equation numerically by
using a fourth-order Runge-Kutta integration scheme with an
adaptive step-size �18�. By restarting the code with different
T until the agreement with desired fidelity was sufficient, we
could confirm these runtime scaling predictions numerically,
see Fig. 2. The dependence of the final error on the run-time
T for fixed N=100 and constant h is depicted in Fig. 3, where
the exponential decay becomes evident. The evolution of the

instantaneous ground-state occupation is plotted in Fig. 4 for
the three different dynamics.

V. FURTHER GENERALIZATIONS

A. Adiabatic switching

From an experimental point of view, the time dependence
of the Hamiltonian will most certainly vanish asymptotically

Ḣ�t�0�= Ḣ�t�T�=0 or at least be negligible—which auto-
matically implies h�0�=h�1�=0. Furthermore, realistic
Hamiltonians should be described by C-interpolations
�Natura non facit saltus�.

By using a C-test function, which was matched at t1
=0.1T and t2=0.9T to the usual dynamics s�t� �compare dot-
ted lines in Fig. 4 bottom panel�, we have implemented an
interpolation scheme with such an adiabatic switching on
and off ṡ�0�= ṡ�T�=0. For the investigated adiabatic imple-
mentation of the Grover search routine, this scheme does not
considerably affect the final result. The reason for this ro-
bustness lies in the fact that the matrix element Fnm is peaked
around s=1/2, and h�0� and h�1� are small enough already
without the adiabatic switching on and off. Therefore, one
can expect the dominant nonadiabatic corrections to arise
from the behavior around the minimum gap, which was un-
affected by the test function. This is also confirmed by the
scaling of the runtime versus the system size, see the hollow
circle symbols in Fig. 2, which is basically unchanged.

However, the situation is completely different for the ex-
ample considered in Sec. V C below. There, the exponential
suppression of the final error as a function of the runtime
requires a smooth C-interpolation—with other dynamics,
such as C0 �just continuous� or C1 �differentiable once�, the
final error is merely polynomially small, cf. Fig. 5.

B. Nonlinear interpolation

Although we have chosen a linear interpolation scheme
�8� in order to satisfy the trace constraint �7�, the presented

FIG. 2. �Color online� Runtime scaling of the adiabatic Grover
search for different interpolation functions s�t� and a target fidelity
of 3 /4. Solid lines represent fits to full symbol data for N
100 and
shaded regions correspond to fit uncertainties �99% confidence
level�. These uncertainties arise from the finite resolution when de-
termining the necessary runtime. Hollow circles represent calcula-
tions with smoothed C-interpolations �compare dotted lines in Fig.
4 and Sec. V�, whereas hollow boxes correspond to the nonlinear
interpolation example in Sec. V.

FIG. 3. �Color online� Final error probability �a1�T�2� as a func-
tion of run-time T for Grover’s algorithm with N=100 and h
=const. The oscillations stem from the time dependence of a0 in Eq.
�10�. The solid �blue� line represents the second-order perturbative
solution of Eq. �10�.
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analysis can be generalized easily to more general nonlinear
interpolations. �Note that, linear refers to the straight con-
nection line between initial and final Hamiltonian in Eq. �8�
and should not be confused with the different velocities s�t�
at which this line is traversed.� The argumentation based on
the analytic continuation works in the same way provided
that the functional dependence Hnl�s�= f�Hi ,Hf ,s� does not
involve extremely large or small numbers.

As an illustrative example, we consider the Grover search
with the same initial and final Hamiltonians but with a qua-
dratic interpolation scheme

Hnl�s� = ��1 − s�Hi + sHf�2 + s�1 − s�
2N − 2

N2 1,

= �1 − s�2Hi + s2Hf + s�1 − s���Hi,Hf� +
2N − 2

N2 1� ,

�19�

where �· , · � denotes the anticommutator. The identity opera-
tor 1 has been added in order to ensure Tr�Hnl�=N−1, cf. Eq.
�7�. Although the spectrum of this nonlinear interpolation is
slightly distorted compared to the linear one, the fundamen-
tal gap is the same as in Eq. �18�, and hence same interpo-
lation functions s�t�, applied to the above Hamiltonian,
should reproduce the aforementioned scaling predictions.
This is confirmed by the numerical analysis of the scaling
behavior—the results of the nonlinear interpolation are basi-
cally indistinguishable from those of the previous example
�linear interpolation�, compare the hollow box symbols in
Fig. 2.

C. Degeneracy

So far, we have restricted our considerations to the instan-
taneous ground state and a single first-excited state. Let us
now consider a very simple example �see also �9�� in which
there is still a unique ground state, but many degenerate first
excited states: In terms of single-qubit Pauli matrices �x and
�z, the M-qubit Hamiltonian reads

FIG. 4. �Color online� Evolution of the interpolation function
s�t� �bottom panel�, the spectrum ��s�t�� �middle panel�, and the
occupation of the instantaneous ground state �top panel� versus the
rescaled time �= t /T for an adiabatic Grover search problem with
N=100 states. For each interpolation �different line styles�, T was
adapted to reach 99% of final fidelity. Thin dotted lines represent
C-interpolations smoothed with a test function.

FIG. 5. �Color online� Evolution of the final and the maximum
intermediate �red line� excitations with the run-time T for the ex-
ample �20�. The exponential falloff in the final excitations is only
visible, if a smooth C-interpolation �black circles� is used, whereas
the scaling of the intermediary excitations �red line� is always poly-
nomial. The suppression of the final error for C0 or
C1-interpolations �blue squares and green crosses� is also merely
polynomial.
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H�s� =
1

2	
j=1

M

�1 − s�z − �1 − s��x��j�, �20�

where we have used linear interpolation �8� for simplicity. In
this example, the Hamiltonian can be decomposed com-
pletely into independent and equal single-qubit contributions
and, hence, the time-evolution operator factorizes; i.e., it is
sufficient to solve the dynamics of a single qubit. Further-
more, the Hamiltonian is invariant under any permutation of
the qubits. The instantaneous ground states for all values of s
are symmetric under this permutation group and hence
unique, but the first-excited states are not—leading to a
M-fold degeneracy �i.e., there are M equivalent first excited
states�. Hence, the fundamental gap between the ground state
and each one of these first-excited states is the same as for
one qubit and, thus, independent of the number of qubits
�E�s�=�1−2s�1−s�.

In some sense, this simple example represents a limiting
case opposite to Grover’s algorithm: The energy gap �E�s�
and the matrix elements Fnm�s� do not scale with the number
M of qubits, and the Fnm are neither small initially nor fi-
nally. Instead, the scaling with system size manifests itself in
the M-fold degeneracy of the first-excited states. As a result
of the M-independent gap structure, the adiabatic switching
is crucial for achieving the exponential suppression of the
final error. Figure 5 displays the final error probabilities for a
smooth C-interpolation and for C0 and C1-interpolations for
comparison. These numerical simulations confirm that the
falloff is exponential in the C-case, but merely polynomial
for C0 and C1.

Another interesting point of this simple example is the
difference between the intermediate and the final occupation
of the ground state, see Figs. 6 and 5. According to the first-
order result in Eq. �5� and the aforementioned factorization
of the time-evolution operator, the intermediate excitation
probability scales as

pint = 	
m�0

�am�2 = O� M

T2�E4� = O�M

T2� , �21�

since the gap �E is independent of M. On the other hand, the
final error probability �assuming a C-interpolation� is expo-
nentially suppressed

pfin = O�M exp�− T�E�� = O�M exp�− T�� , �22�

and hence the two error probabilities can be vastly different
pint� pfin, cf. Fig. 6. In fact, by increasing the number of
qubits, the occupancy of the instantaneous ground state can
be made arbitrarily small. Moreover, the run-time condition
derived from the first-order result in Eqs. �5� and �21�

T0 = O��M� , �23�

yields a scaling which is far too pessimistic compared with
the correct final error probability assuming a
C-interpolation

T = O�ln M� . �24�

Note that nonsmooth interpolations �e.g., C0 or C1� would
also yield a polynomial scaling T=O�Mx� similar to Eq. �23�.

On the other hand, the scaling behavior in Eqs. �22� and �24�
is just what one would obtain by immersing the system in
Eq. �20� into a zero-temperature environment, and letting it
decay toward its ground state. Therefore, using nonsmooth
interpolations �e.g., C0 or C1� or naively demanding the first-
order estimate in Eq. �5�, the adiabatic algorithm would be
even slower than this simple decay mechanism.

VI. SUMMARY

The instantaneous occupation of the first-excited state
during the adiabatic evolution in Eqs. �5� and �6� does not
provide a good error estimate. Instead, a better estimate is
given by the remaining real excitations after the dynamics.
For the example plotted in Fig. 4, the instantaneous excita-
tion probability exceeds 10% at intermediate times—
whereas the final value is 1%. This is even more drastic for
the example in Sec. V C, see Fig. 6, where the two values
and, hence, the inferred run-times can differ by orders of
magnitude.

Moreover, the final error can be made extremely
small—in fact, with h�0�+h�1�≪1, exponentially:

a1�T� = O�h�0� + h�1� + exp
−
�Im�s̃��
h�smin�

�� , �25�

cf. Fig. 3. For the Grover example, the last term was domi-
nant; whereas in the general case, the smallness of the first
two terms can be ensured by using smoothed
C-interpolations, i.e., adiabatic switching—which is a more
realistic ansatz anyway.

Based on general arguments, the optimal run-time �in the
absence of degeneracy, cf. Sec. V C� scales as T=O��Emin

−1 �
contrary to what one might expect from the Landau-Zener
�19� formula �with T��Emin

−2 �. In view of the fact that the
minimum energy gap �Emin is a measure of the coupling
between the known initial state and the unknown final state,
this result is very natural.

FIG. 6. �Color online� Occupation of the instantaneous ground
state and some selected computational basis states for the Hamil-
tonian in �20� for an M =8 qubit system. Temporarily, the system
leaves the instantaneous ground state, but the run-time T has been
adjusted such that the final fidelity is 99%.
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For the Grover algorithm, it is known that the �N-scaling
is optimal �14�. This optimal scaling T=O��Emin

−1 � can al-
ready be achieved with interpolation functions s�t� which
vary less strongly �e.g., d=0� than demanded by locally �14�
adiabatic evolution �d=1�–and, hence, should be easier to
realize experimentally.

Unfortunately, a constant velocity with d=−1 does not
produce the optimal result, in general. The Grover example
has the advantage that the spectrum can be determined ana-
lytically; which is, for example, not the case for the more
involved satisfiability problems �4�. Therefore, some knowl-
edge of the spectral properties �E�s� is necessary for achiev-
ing the optimal result T=O��Emin

−1 � also in the general case of
adiabatic quantum computing. For systems with an analyti-
cally unknown gap structure, some knowledge about the
spectrum can be obtained by extrapolating the scaling behav-
ior of small systems.

A related interesting point is the impact of the gap struc-
ture �corresponding to second- or third-order transition, etc.�
in Eq. �17�. The derived constraint for the velocity at the
transition, ṡ� �Im�s̃� ��E is only for second-order transitions
equivalent to ṡ��E2, which one would naively deduce from
Eq. �6�.

Note that the improvement T=O��Emin
−1 � compared with

the conventional run-time estimate T=O��Emin
−2 � is merely

polynomial �same complexity class�. Though this is not as
impressive as an exponential speedup, in practice, a polyno-
mial improvement may be useful. For time-dependent
Hamiltonians where the inverse of the minimum gap scales

exponentially with the size of the problem, we would still
expect an exponential scaling of the run-time T required to
reach a fixed fidelity �as in Sec. IV B�. On the other hand, the
exponential suppression of the final error in Eq. �25� may
become important in certain cases, such as in the presence of
degeneracy, and may well yield an exponential speedup in
comparison with the conventional estimate, see Sec. V C.

In some sense, the two examples in Secs. IV B and V C
represent two simple extremal examples for adiabatic quan-
tum computing regarding the scaling of the gap and the de-
generacy. For more complicated situations, such as satisfi-
ability problems �4�, both properties have to be taken into
account simultaneously.

Note added. Recently, two of the main results of this ar-
ticle, i.e., the optimal run-time scaling T=O��Emin

−1 � and the
faster-than-polynomial decrease of the final error a1�T�, have
been demonstrated rigorously for a class of Hamiltonians
using methods of spectral analysis �20�.
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