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We make a geometric study of the phases acquired by a general, pure bipartite two-level system after a
cyclic unitary evolution. The geometric representation of the two particle Hilbert space makes use of Hopf
fibrations. It allows for a simple description of the dynamics of the entangled state’s phase during the whole
evolution. The global phase after a cyclic evolution is always an entire multiple of � for all bipartite states, a
result that does not depend on the degree of entanglement. There are three different types of phases combining
themselves so as to result in the n� global phase. They can be identified as dynamical, geometrical, and
topological. Each one of them can be easily identified using the presented geometric description. The interplay
between them depends on the initial state and on its trajectory, and the results obtained are shown to be in
connection to those on mixed state phases.
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I. INTRODUCTION

Quantum phases are a peculiarity of quantum physics,
giving it some of its intriguing and unusual effects, such as
interference. While relative phases are extremely important
for any measurable property of a given quantum system, glo-
bal phases are, in general, irrelevant and play no major part.
Nevertheless, they can be measured using conditional dy-
namics. Suppose one has an initial state described by
1/�2���1��0�2+ �1�2�, where the subscripts refer to two dif-
ferent subspaces. Suppose now that if particle 2 is in state
�1�2, ���1 gains a phase of �. By rotating the second particle
so that �1�→ 1

�2
��1�+ �0�� and �0�→ 1

�2
��0�− �1��, our state be-

comes 1
2 ��ei�+1�����1�0�2�+ �ei�−1�����1�1�2��. Detecting

the probability of finding the second particle in state �1�2
gives us P2�1−cos �, allowing for the determination of �.

Based on this discussion, we can now define the total
phase gained by a system after its evolution. The definition
used here is the same as proposed by Pancharatnam �1�. In
his seminal work, he defined the phase of a quantum state
��� relative to another state ��� as

�t = arg����� . �1�

This definition is called from now on the total phase. The
total global phase gain may originate from a combination of
phase effects of different types. One possible origin of the
global phase gain is of dynamical nature. This phase is given
by the eigenvalues of the Hamiltonian, determining the time
evolution of its eigenstates. However, dynamical phases are
not the only type of phase appearing during a state’s evolu-
tion. In order to be more precise, let us restrict ourselves to a
two level system, or a qubit. The Hilbert space of such a
system has a certain geometry that can be described by the
Bloch sphere. This geometry accounts for geometric phase
gains. Such phases were first introduced in quantum me-
chanical systems by Berry �2,3� and can lead to some amaz-

ing and counterintuitive effects associated to particles and
their trajectories. One of the most famous of such effects is
the Aharanov-Bohm effect, in which a measurable meaning
is given to the vector potential. The geometric phase depends
on the trajectory realized by the qubit under the action of an
evolution operator. For cyclic evolutions, it is given by half
the solid angle of the closed path traced in the Bloch sphere,
i.e., the area of the surface enclosed by the trajectory.

The development of quantum mechanics motivated new
questions and problems concerning geometric phases. These
problems involve the study of geometric phases in many
particle entangled systems �4�, such as twin photons �5� and
Bose-Einstein condensates �6�. Local and nonlocal aspects of
the geometric phase have also been studied �7�, as well as its
behavior in dissipative systems �8�. More recently, it was
found that geometric phases can also be useful in quantum
information theory. It was shown that conditional quantum
logics, a fundamental part to realize universal quantum com-
putation, can be done using geometric phases �9�, a result
already demonstrated experimentally �10�. The interest of
these so-called topological gates is that they are more robust
and naturally fault tolerant �9�.

These recent results, together with the fundamental inter-
est of the subject, are a motivation for the present work: we
study here the geometric representation of the phase dynam-
ics of pure two-level bipartite systems with an arbitrary de-
gree of entanglement. For this kind of system, a third pos-
sible type of global phase gain can be identified: a
topological phase, which is a consequence of the geometry
of the entangled two-level system. This phase has been stud-
ied in �11� for maximally entangled states �MES� and it is at
the origin of singularities appearing in the phase of MES
during a cyclic evolution �4�. The topological origin of this
phase can be made clear by applying the geometric represen-
tation of pure entangled qubits presented in �12�. As shown
in the present paper, the use of the same representation al-
lows for a clear geometric picture showing the origin and
interplay between the three mentioned different types of
phases during the state’s evolution. It is shown that after a
cyclic evolution, the combination of the phases presented
above always lead to a global phase gain of an entire mul-*Electronic address: Perola.Milman@ppm.u-psud.fr
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tiple of �. This result, already known and verified experi-
mentally �13� for a single qubit, is recovered here for en-
tangled qubits with an arbitrary degree of entanglement.

The paper is organized as follows: we start by studying
the case of one qubit and analogous systems, investigating
their geometric representation and phases acquired during a
cyclic evolution. We do so to set notations and notions for
the geometric representation and phase dynamics of two qu-
bit systems, presented in Sec. III. Finally, Sec. IV is devoted
to the study of some examples of evolutions leading to dif-
ferent types of phase gains for entangled systems. We finish
the paper with some concluding remarks and a brief discus-
sion on how the presented ideas could be tested experimen-
tally.

II. ONE QUBIT: GEOMETRY AND PHASES

A. Pure states

A general pure one qubit system can be represented by a

S3 sphere in R4. S3 Hopf fibrations define a map S3→
S1

S2,
“decomposing” the S3 sphere into a S2 base and a fiber. It has
been shown �12,14� that this way of representing the space of
one qubit is analogous to the Bloch sphere; the base can be
identified to the Bloch sphere while the fiber represents the
global phase indetermination of such a representation. Tak-
ing the general pure state ���0��=��0�+��1�, where � and �
are complex coefficients, its representation in the Bloch
sphere is shown in Fig. 1. The state’s coordinates can be
obtained as follows:

X = ��x�� = 2 Re��*�� ,

Y = ��y�� = 2 Im��*�� ,

Z = ��z�� = ���2 − ���2. �2�

As a consequence of the normalization condition, the radius
of the Bloch sphere is equal to one. Rotations around axes in
an arbitrary direction displace the state vector on the Bloch
sphere. We can study, for example, the effect of a rotation

around the z axis, produced by the Hamiltonian Ĥ=	
�̂z /2.
Physically, this may correspond to a magnetic field applied
along the z axis in the case where our qubits are spin 1/2
particles. At time t, the state reads ���t��=e�−i
t/2���0�
+e�i
t/2���1�, where 
 is the frequency of the applied field. In
the Bloch sphere, this means that the state actually makes a
precession around the z axis, reaching again the initial state
for t=2� /
. This evolution leads to a phase gain. To com-
pute the global phase gain of the state at any time t and any
point of the trajectory, one can use Pancharatnam’s definition
�1�. We see that after the 2� rotation the global phase gain is
equal to �, irrespective of the choice of the initial state.
Nevertheless, the nature of this phase depends on the initial
state and on the Hamiltonian acting on it. Taking, for ex-
ample, ���=cos�� /2� and ���=sin�� /2�, one can identify, in
this simple one qubit case, a dynamical phase �d, defined as

�d = 	
0

t

�Û†Û
˙ �dt , �3�

where Û is the evolution operator associated with the Hamil-

tonian Ĥ. For the particular example studied, we have �d=
−� cos �. As can be seen, there is a dependence on the angle
� that characterizes our initial state. We can also see that the
dynamical phase does not account for the total phase gain. In
order to get a complete description of the total phase gain,
one should also consider the geometric phase �g, which is a
property of the space of states. In the case of qubits describ-
ing trajectories in the Bloch sphere, the cyclic geometric
phase corresponds to the area enclosed by the trajectory re-
alized by the state vector on this same sphere. It assumes the
value of �g=−��1−cos �� in our simple example. As can be
easily checked, we have �t=�g+�d=−� after a cyclic evo-
lution, and this result is state independent. The initial state
determines only the proportion of the geometrical and dy-
namical phases.

B. Mixed states

One qubit mixed states are described by a density matrix
of the form

�̂ = a00�0��0� + a01�0��1� + a10
* �1��0� + a11�1��1� . �4�

They can be geometrically represented in the Bloch ball, a
generalization of the Bloch sphere. The Bloch ball has a
radius smaller than one. It is, in fact, a function of the purity
P=1−Tr �2 of the system, as follows: r= �1−2P�1/2. P as-
sumes the value of 1 /2 for completely mixed states and 1 for
pure states. The coordinates of �4� on the Bloch ball are
given by

X = ��x�� = 2 Re�a01� ,

Y = ��y�� = 2 Im�a01� ,

Z = ��z�� = a00 − a11. �5�

It is important to notice that the representation of a mixed
state in the Bloch ball is different from the pure case. A point

FIG. 1. Bloch sphere representation of a one qubit state.
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in the Bloch ball determines the density matrix with no glo-
bal phase ambiguity. Also, the phases involved in a cyclic
evolution of a mixed state deserves more attention. The glo-
bal phase, analogous to the Pancharatnam’s phase, is given

by �t
M =arg Tr�Û��0�� �15�. For the geometric phase, there

are different definitions in the literature �15–17�. The choice
made here presents a clear advantage for our purposes, as
will become clear in the following. In order to calculate the
geometric phase, one should purify the mixed state appearing
in the Bloch ball. This is done, geometrically, by prolonga-
tion of the density matrix vector until it reaches the unitary
Bloch sphere. As a consequence, one gets two pure states,
pointing in opposite directions �see Fig. 2�. The geometric
phase is given by the weighted sum of each pure state’s
geometric phase. The weights appearing in this sum can be
obtained from the density matrix as follows: one should di-
agonalize �4� and express it in terms of the two weighted
orthogonal components, i.e., �̂=cm�m��m�+cn�n��n�, with
�m �n�=0. Coefficients cm and cm are the weights of the con-
tribution of each state �m�, �n� to the geometric phase �see
Fig. 3�. One possible interpretation of this writing of the
density matrix is to suppose it comes from the trace of an

entangled state written in the Schmidt’s decomposition with
respect to one of the qubits �17�.

As a general rule, the total phase for mixed states is still a
combination of a dynamical and a geometrical phase. As will
be seen in more detail in the following discussion �Sec. IV�,
taking as an example a 2� cyclic evolution around a fixed
axis, the sum of the geometrical and dynamical phases al-
ways leads to a total phase gain of �, as in the pure state
case.

Rotations around one fixed axis studied above can lead to
some ambiguous conclusions, as pointed out in �11�: is the
effect of � dephasing a property of the two-dimensional ro-
tation group SU�2� or a property of general three-
dimensional rotations performed by the group SO�3�? Would
the results of the experiment change if the evolution operator
acting on the qubits evolves in time? This corresponds to
changing the magnetic field direction during the evolution in
such a way that one always have a cyclic evolution at the
end. In order to answer these questions one has to make use
of MES. This was done in �11� where a particular geometric
picture of the MES Hilbert space is used. More recently,
some extensions to this study were made, always with the
help of MES �18�. In �11� we made use of the geometric
tools developed in �12� to explain the origin of the phase
obtained by a MES in a cyclic evolution. An interesting
property of MES is that, as will become clear in the follow-
ing, it does not gain, in a cyclic evolution, neither a geomet-
ric nor a dynamical phase. However, one can still observe a
� dephasing for some evolutions, identified as being from
topological origin. In the following, a more complete geo-
metric picture of the space of two entangled qubits is pre-
sented, and it is shown how different types of phases can
appear for non-MES.

III. GEOMETRIC REPRESENTATION OF TWO QUBITS

In this section, we summarize the results presented in �12�
where a geometric representation of the space of pure two
qubit states is presented. This is done with the help of Hopf
fibrations, as in the case of one qubit states. The main idea is
to find a way which is analogous �or at least connected� to
the Bloch sphere representation presented above.

A. Two qubits representation

Consider a general pure entangled state with arbitrary co-
efficients � ,� ,, and �:

��0� = ��00� + ��01� + �10� + ��11� . �6�

State �6� is normalized, and can be represented by a S7

sphere in R8. A tempting but insufficient way to represent �6�
geometrically is to make a partial trace of one of the qubits
and study the properties of the resulting density matrix. This
density matrix can be, as seen before, represented in the
Bloch ball. This naive method, even if dependent on the
degree of entanglement of the initial state, lacks information:
the resulting mixed density matrix could originate from an
infinite number of entangled states with the same degree of
entanglement. However, with the help of a map defining a

FIG. 2. Bloch ball representation of an one qubit density matrix
and purification procedure.

FIG. 3. Geometric picture of the weighted sum of the trajecto-
ries corresponding to the extension of the density matrix vector to
two pure states lying on the unitary Bloch ball. The areas consid-
ered are the marked ones. Coefficients cm and cn are the weights of
each dashed area.
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Hopf fibration, one can combine to this reduced density ma-
trix another space where the rest of the needed information
can be found. This other space is the fiber space, defined as
S3 /Z2=SO�3�. The fiber space can be represented as another
S3 sphere of radius � with opposite points �points differing
by a global phase� identified. The combination of the Bloch
ball and the fiber completes the Hopf map, where S7 is de-

scribed by a basis S4 and a fiber S3 via the relation S7→
S3

S4

�see Fig. 4�. It is the S4 sphere’s coordinates �base� which are
related to the Bloch ball. They are given by

X = ��x�� = 2 Re��* + �*�� ,

Y = ��y�� = 2 Im��* + �*�� ,

Z = ��z�� = ���2 + ���2 − ���2 − ��2,

Cr = 2 Re��� − �� ,

Ci = 2 Im��� − �� . �7�

The first three coordinates can be identified to the Bloch ball
coordinates. The last two also appear in a way in the Bloch
ball: they are connected to its radius as r=�1−Cr

2−Ci
2.

Moreover, Cr and Ci are related to the concurrence C defined
by Wooters �19� by the relation C =�Cr+ iCi � =2 ���−��.
The concurrence is a measurement of the degree of entangle-
ment for this system. It assumes the value of 1 for MES and
0 for separable states.

Some particularities of this representation that can be di-
rectly verified are worth being mentioned. For MES �C=1�,
the Bloch ball reduces to a point. MES are thus completely
characterized by SO�3�. This result is related to the fact that

all maximally entangled states are connected by a local rota-
tion. The reduction of MES to SO�3� is also the reason why
one cannot have geometric phases for MES. The global
phase in this case should come only from the properties of
SO�3�. For separable states �C=0�, the Bloch ball is the
Bloch sphere, and the same happens to the fiber, so that one
ends up with two independent Bloch spheres, one for each
qubit, as expected. In the intermediate case, i.e., for states
with 0�C�1, as mentioned before, one needs SO�3� and
the Bloch ball to completely represent the entangled state. In
this case, to each point in the Bloch ball is associated a fiber
SO�3�.

Now we should gain some insight into how arbitrary en-
tangled states are represented in SO�3�. This can be done
with the help of Fig. 5, where SO�3� is represented as a
sphere of radius � with opposite points identified. Each point
of the SO�3� sphere appearing in Fig. 5 is an entangled state.
Choosing the origin to be state ���0��=� �00�+� �11�, it is
our initial state. Applying a rotation to one of the qubits
about a given axis displaces it in the sphere in the following
way: the state performs a trajectory in the direction of the
applied rotation. The angle of rotation is the distance of the
final state to the center of the sphere �initial state�. In this
way, a rotation about the z axis performed in the first qubit,
for example, creates a displacement along the z axis of the

sphere, leading to state R�z ,�� � Î ���0��. When �=�, the
state produced can be represented in the north pole of the
sphere, i.e., i� �00�− i� �11�. Analogously, by applying such
local rotations, all the other entangled states with the same
degree of entanglement can be generated and represented, as
depicted in Fig. 5.

For the purposes of this paper, the geometric representa-
tion described above is quite useful. We are interested in
state evolutions that do not change the degree of entangle-
ment of the initial state and are applied to one of the qubits.
Such evolutions can thus be geometrically represented in two
equivalent ways. Defining, in a general pure two qubit sys-
tem 
i,jcij � i1j2�, the first and second qubits by the subscripts
1, 2, let us consider that the evolution operator acts on the

FIG. 4. Geometric representation of a pure two qubit system as
a Bloch ball obtained from the trace with respect to one of the
qubits and a sphere representing SO�3�. This representation is a
function of the concurrence C of the system. In the limit cases of
MES �C=1� and product states �C=0�, this representation reduces to
SO�3� or a product of two Bloch spheres, respectively. For a general
non-MES state �0�C�1�, the pure qubit state is represented by the
Bloch ball and SO�3�.

FIG. 5. A possible representation of SO�3�: a ball of radius �
with opposite points identified. Entangled states are points in this
ball, and displacements on it correspond to rotations applied to the
entangled states. States in the border of the sphere are obtained by
rotation of one of the qubits of the initial state �placed in the center
of the sphere� of �.
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first qubit only. By tracing with respect to the second �fixed�
qubit, the density matrix vector relative to the first �evolved�
qubit describes a trajectory in the Bloch ball. This trajectory
leads to a geometric and a dynamical phase. At the same
time, one cannot gain information from the fiber space since,
as noted above, to each point in the Bloch ball corresponds a
different fiber space. Alternatively, one can choose to make a
trace with respect to the evolved qubit. In this case, the den-
sity matrix vector of the reduced density matrix of the fixed
qubit does not move in the Bloch ball. There is no geometric
nor dynamic phases. However, the fiber space is always the
same, and the entangled state performs an evolution in this
space. This evolution leads to a total global phase of topo-
logical nature that depends on the trajectory described by the
entangled state on SO�3�. In the next section, we study the
details of these different phase dynamics during an entangled
state evolution. In order to do so, we first set notations to see
more clearly the reduced density matrix vector state evolu-
tion in the Bloch ball.

B. The reduced density matrix in the Bloch ball

Let us take as an example state

���� = ��0cos
�

2
�0102� − ��1sin

�

2
�0112� + ��0sin

�

2
�1102�

+ ��1cos
�

2
�1112� . �8�

The subscripts define the first and the second qubit, and they
will be omitted in the following. The concurrence of �8� is
2��0�1. The angle � has here a geometric interpretation: co-
ordinates X, Y, and Z of the state vector in the Bloch ball are
given, using the results of the previous section, by

X = �1 − 2�0�sin � ,

Y = 0,

Z = �2�0 − 1�cos � . �9�

The radius of the Bloch ball is r= �2�0−1�, and all states
lying on its surface have the same degree of purity �and
come from two qubit states having the same amount of en-
tanglement�. The angle � is the angle the density matrix vec-
tor, represented in Fig. 2, makes with the z axis. In order to
gain some geometric insight, we can start by writing the
general reduced density matrix and studying some specific
cases. The reduced density matrix, after tracing with respect
to the second qubit, is given by

�̂� = ��0 cos2 �

2
+ �1 sin2 �

2
��0��0� + ��1 cos2 �

2
+ �0 sin2 �

2
�

��1��1� � ��0 − �1�sin ���1��0� + �0��1�� . �10�

For �=0, we have the entangled state ��0�=��0 �00�
+�1−�0 �11�. The one qubit density matrix corresponding to
this state is �̂0=�0 �0��0 � + �1−�0� �1��1�. The density matrix
vector is thus parallel to the z axis. If �=� /2, we have

���/2�= 1
�2

���0 �00�+�1−�0 �01�−��0 �10�+�1−�0 �11��.
The reduced density matrix in this case is ��/2=1/2��0��0 �

+ �1��1�+
��0−�1�

2 ��0��1+ �1��0�, and the vector representing it
in the Bloch ball lies in the equator. We can see that writing
�8� as a function of � makes the geometric representation of
the Bloch vector more direct. Let us consider now rotations
performed in the first qubit of the entangled state. Such ro-
tations also rotate the reduced density matrix vector exactly
as it happens to pure states. Taking once again as the initial
state ���=��0 �00�+�1−�0 �11� ��=0�, its density matrix
vector lies in the z direction. Rotations of the first qubit of an
angle � /2 with respect to the x axis via the transformation

R�� /2� � Î ��� lead to a vector making an angle � with the z
axis. Rotations around other directions in space can be done
in an analogous way.

IV. CYCLIC PHASES FOR PURE TWO QUBIT STATES

We can now investigate the possible origins of the phase
gained by a general, pure two qubit entangled state after a
cyclic evolution. We again choose, for simplicity, to consider
evolution operators acting on one qubit only, for example,
the first one, as defined in �8�. After a time interval T the final
state is brought to the initial one, apart from a phase factor.
The initial state of the system is of the form of �6�. This state,
as seen in the previous section, can be represented geometri-
cally with the help of a Bloch ball of radius proportional to C
and of SO�3�. The general matrix form of the evolution op-
erator is

Û = e−iĤt =cos
t

2
− inz sin

t

2
− in− sin

t

2

− in+ sin
t

2
cos

t

2
+ inz sin

t

2
� ,

�11�

where Ĥ= n̂�̂, with �̂= �̂xx̂+ �̂yŷ+ �̂zẑ. �̂i are the Pauli matri-
ces, n̂ is the unitary vector with coordinates n̂=nxx̂+nyŷ
+nzẑ, and n̂±= n̂x± in̂y. Equation �11� above represents a ro-
tation around an axis n̂ in space. The evolution operator de-
scribed in �11� acts only on one qubit, and the total evolution

operator acting on both qubits is given by the product Û � Î

or Î � Û. The total evolution is given by a sequence of op-
erators of the type �11� acting on one qubit of the initial state
�6�, each one of them for a fixed time interval t.

In the following sections, we study the particular case of
MES and then generalize our results to states with a variable
degree of entanglement. The case of MES has already been
studied in �11�, and is of particular interest because only in
this case the origin of the cyclic phase is purely topological.
For non-MES, we will see that geometric and dynamical
effects can harmonize themselves so as to create a cyclic
phase of n�, equal to the topological phase.

A. Maximally entangled states

MES, as stated before, is a very particular case in what
concerns the global cyclic phase. Since the degree of en-
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tanglement is maximal, its reduced Bloch ball is of null ra-
dius. It is completely represented by SO�3�. For this reason,
there is no geometric phase. We can also easily check that,
using the definition for the dynamical phase �d �3�, there is
no dynamical phase associated to a MES in a cyclic evolu-
tion if one uses a sequence of operators of the form �11�.
Nevertheless, depending on the choice of the set of operators
applied to the initial state, one can either have a cyclic evo-
lution leading to no global phase change �“plus� trajectory�
or another one where a global phase of � appears �“minus�
trajectory�. The existence of these two types of trajectories of
MES in SO�3� comes from the biconnected nature of this
group �18�. The plus and minus trajectories belong to two
different homotopy classes. The difference between both
classes of trajectories can be seen geometrically from the
spherical representation of SO�3�: if one places the initial
state at the origin of the SO�3� sphere, the border of this
sphere represents the space of states orthogonal to the initial

one. They are mathematically represented by Û ���0��
=R�� , n̂� � Î ���0��. Whenever the initial state reaches this
space, there is a discontinuity in the total phase. If the
evolved state crosses this space an odd number of times, a
total global phase of � appears after the cyclic evolution,
defining the minus type trajectories. In the plus type, it
crosses the same space an even number of times. The parity
of the number of times the evolved states crosses the space
of states orthogonal to the initial one is responsible for the
topological difference between trajectories and for the differ-
ent phase gain. An example of a plus and a minus trajectory
was studied in �11�. They correspond to two distinct se-
quences of rotations applied to one of the qubits. The plus
trajectory is performed by a sequence of operators of the
form �11� generating the trajectory represented by the se-
quence A→B→F→D→A and the minus by the sequence

of operators generating A→B→F→ Ē→ Ā, where Ā=−A

and Ē=−E. A ,B ,D ,E ,F are points in SO�3�, and both tra-
jectories are depicted in Fig. 6. Recall that rotations in SO�3�
are represented as displacements in the direction of n̂ of a
distance given by the angle of rotation �. Notice that for the
minus type of trajectory, represented pictorially by the solid
line, after crossing the border of the sphere in F, the state
reappears in the opposite side of the sphere and continues its

trajectory from F̄. For each part of the trajectories mentioned
above, the rotation operator acts for a time t=2� /3, and the
only difference between the evolution operators �11� per-
forming each part of the trajectory is the direction to which n̂
points. These orientations �nx ,ny ,nz� read

A→B �1/3�−1,−1,−1�
B→F �1/3�1,−1,−1�
F→D �1/3�−1,−1,1�
D→A �1/3�−1,1 ,1�

F→ Ē �1/3�−1,−1,−1�

Ē→ Ā �1/3�1,−1,−1�

As can be seen, the axis of rotation varies in each one of the
trajectories, lifting the ambiguity on the origin of the �

phase: it is manifestly a property of SO�3�. The case of MES
subjected to a sequence of unitary evolutions of the type of
Eq. �11� is an example where there is no geometric nor dy-
namical phase. The only possible origin of the global phase
gain is thus topological. We see now how these results are
affected by the degree of entanglement.

B. States with an arbitrary degree of entanglement

We study now the most general case of two qubits with an
arbitrary degree of entanglement. The limit case of a product
state �that should reproduce the results obtained for two in-
dependent qubits precessing in their Bloch sphere� appears
naturally from the general results.

Consider an arbitrary initial state of the form of �6� where
the first qubit only evolves, under the action of a given
Hamiltonian. In principle, one should expect, when tracing
with respect to the second �fixed� qubit, to have a geometric
phase, since the resulting Bloch ball corresponding to the
reduced density matrix has a non-null radius and the qubit
describes a trajectory on it. This trajectory leads to the ap-
pearance of the expected geometric phase. At the same time,
there should be a dynamical phase, and some natural ques-
tions are: what is the total phase of the non-MES after one
cyclic evolution? What are the contributions of the dynami-
cal, geometrical, and topological phases to this total phase?
How does it depend on entanglement? A way to start to
answer this question is to apply to the non-MES the two
sequences of transformations that were performed to the
MES in the previous section and calculate the total phase
with the help of �1�. Taking as initial state, for example,

���0�� = ��0�00� + �1 − �0�11� , �12�

there are two equivalent scenarios that must lead to the same
final result since they depend on the pure entangled state

FIG. 6. Two possible trajectories belonging to two different ho-
motopy groups in SO�3�. Sequence A→B→F→D→A is a plus
type trajectory that does not cross the space of states orthogonal to

the initial one �A�. Sequence A→B→F→ Ē→ Ā is a minus type
trajectory, leading to a global phase gain of �. Note that in this

geometric view, points A and Ā are both in the center of the sphere,
since this point is opposite to itself.
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only: tracing �12� with respect to the evolved or the fixed
qubit. If one traces out the evolved qubit, all the phases
should come from the trajectory of the non-MES in SO�3�.
By tracing with respect to the second �fixed� qubit, the phase
information must come from the reduced density matrix vec-
tor’s trajectory in the Bloch ball and the dynamical phase.
Let us consider first the case where one traces out the
evolved qubit. Defining �12� as the center of the sphere rep-
resenting SO�3�, after applying the same sequence of rota-
tions discussed in the previous section, there are still two
types of trajectories �plus and minus� in SO�3� that are rep-
resented exactly in the same way as Fig. 6. In general, we
therefore have that the total phase after the cyclic evolution
is the same as for the MES case regardless of the value of �0.

Indeed, the existence of the two types of trajectory does
not depend on the degree of entanglement. The total phase
can be calculated from �1�. Figure 7 shows it for three pos-
sible values of �0=0.3, 0.4 and 0.48 for both types of trajec-
tory. We see that for the three values of �0 one can effec-
tively define two types of trajectory. However, the closer we
are to MES ��0=0.5�, the more abrupt the phase gain be-
comes, until it reaches a discontinuity for �0=0.5. In this
limit case, the phase is either zero or � during the whole
trajectory and the discontinuity represents the gain of the
topological phase. As seen before, it is a consequence of
state’s ���t�� crossing the border of the SO�3� sphere in the
middle of the trajectory �t=4� /3�. Figure 7 shows that the
same happens for non-MES.

Let us consider now the same trajectories but trace with
respect to the fixed qubit. This results on the reduced density
matrix of the evolved qubit. This density matrix performs a
trajectory in the Bloch ball. As mentioned above, the exis-
tence of the two types of trajectory is a mathematical result,
valid for the entangled pure state, that must be reproduced in
the two situations: tracing with respect to the evolved or the
fixed qubit. By tracing with respect to the fixed qubit, one
can calculate the global phase from its definition �1�. In order
to do so, we should first calculate the scalar product PS

PS = cos
t

2
+ i�Xnx�t� + Yny�t� + Znz�t��sin

t

2
. �13�

In the expression above, X ,Y, and Z are the coordinates of
the Bloch vector of the reduced density matrix and the vector
n̂ was taken as a function of time, as proposed in �18�. In the
example studied, n̂�t� suffers discontinuous changes corre-
sponding to the different axes of rotation. We see that Eq.
�13� is completely determined by the coordinates of the re-
duced density matrix vector in the Bloch ball and the same
result could be obtained by calculating the mixed state total

phase �t
M =arg Tr�Û�̂�. One can see that for the particular

initial state �12� and the sequence of rotations under consid-
eration, the scalar product never reaches the value of zero, so
there is no discontinuity in the phase. This result has already
been seen in Fig. 7 as being a consequence of the trajectory
of the entangled state in SO�3�. However, Eq. �13� shows
clearly that the same result can be obtained from information
on the Hamiltonian and the reduced density matrix only.
Equation �13� also shows that a total n� phase still appears.
This result can be seen as being a consequence of the parity
of the number of times the initial state crosses the border of
the SO�3� sphere or of the area of the trajectory of the re-
duced density matrix in the Bloch ball combined to the dy-
namical phase.

We can now calculate the contribution coming from the
dynamical and the geometric phases of the reduced density
matrix. The calculation of the dynamical phase is performed
from its definition �3�. It is given by the integral

1

2
	

0

t

�nx�t�X + ny�t�Y + nz�t�Z�dt , �14�

that can be seen as the integral of the scalar product between
the density matrix vector and the direction of rotation n̂�t�.
For this specific example, the dynamical phase is still zero. It
is thus the geometric phase that explains the existence of the
two types of trajectories. The two different sequences of evo-
lution operators lead to different trajectories in the Bloch ball
that are independent of the degree of entanglement. They are
shown in Fig. 8. The area of each one of these trajectories
can be calculated, and by weighting them using the tech-
niques of Sec. II, one finds the two possible global phases, 0
or �.

We see that either one can obtain the total global phase of
a non-MES entangled state from the topological properties of
SO�3�, or by geometric properties of a reduced density ma-
trix. This means that looking at a subsystem of the entangled
state gives us information about its global phase.

FIG. 7. Total phase for trajectories “minus” �above� and “plus”
�below� for three values of the parameter �0 :0.3 �dot-dashed line�,
0.4 �dashed line�, and 0.48 �continuous line�. The curves become
more sharp and tend to discontinuity as the value of �0 increases.
For �0=0,1 �product states�, it is given by a straight line, as
expected.
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As a general rule, the scalar product �13� and the dynami-
cal phase �14� can tell us all about the types of phases ap-
pearing in an evolution. To illustrate that, let us study a sim-
pler Hamiltonian, describing a rotation around only one fixed
axis, say the z axis. For a general state of the type �8�, �13�
depends on � as PS=cos t

2 + i�2�0−1�cos � sin t
2 . The dy-

namic phase for this case is �d=��2�0−1�cos �. Notice that,
apart from a scaling factor depending on the degree of en-
tanglement �2�0−1�, it has the same form as for pure states.
The cyclic geometric phase also depends on � and �0. It is
given by �g=�+��1−2�0�cos �, plotted in Fig. 9. The con-
nection of this phase to the pure state case is not direct.
However, some limit cases are reproduced. First, notice that
for �0=1/2 �MES�, �g and �d vanish, as expected. Also, for
separable states ��0=0 ,1�, �g oscillates with � as in the pure
state example discussed in Sec. II. At the same time, in this
limit, the total phase is a linear function of time, as one
should expect. The dependence of the phases on � of �g is
also interesting: in the limit �=� /2, �d and �g show that the
total global phase is of geometric nature only, a result analo-
gous to the one found for one qubit states. However, for �
=0, the analogy with the one qubit case breaks down. The
geometric phase is given by �g=2��1, in contrast to zero for
the case of one qubit. Nevertheless, there is no contradiction,
since in the discussed case of mixed states the dynamical
phase does not account for the total phase. It assumes the
value of ��2�0−1�, so both add together to �, as expected. It
is also easy to verify that for an arbitrary value of � ,�g

+�d=�, the proportions of geometrical and dynamical
phases are determined by the angle �. By looking now again
at the case where the first qubit is traced away, for an evo-
lution representing a rotation around one fixed axis in space,
all trajectories cross the border of the SO�3� sphere, account-
ing for a global phase of �. This is why we must observe
�g+�d=�.

The discussion above generalizes the results of �11� and
gives a geometric interpretation of the nature of the cyclic
phases for entangled two-qubit states with an arbitrary de-
gree of entanglement. This is done with the help of geomet-
ric phases represented in the Bloch ball for density matrices.
As for the case of MES, the results presented can be, in
principle, tested experimentally. To do so, one needs to throw
the non-MES in an interferometer, so that the global phase
can become a relative phase. A possible way to do that is
using photon interference, as proposed in �11�. Recently,
other proposals have appeared aiming to show the same ef-
fects in a system of entangled spin pairs �18�. Both proposals
need slight modifications in order to account for the phase
effects described in this paper. This modification concerns
only the initial state, that now can have an arbitrary degree of
entanglement. Taking the example of polarized twin photons,
it has already been demonstrated that polarization entangled
photon pairs with an arbitrary degree of entanglement can be
generated �20�. As shown above, the same set of transforma-
tions performed in MES lead to the two different types of
trajectories also for non-MES. This means that the same set
of wave plates used in �11� can be employed to test the
predicted results.

V. CONCLUSIONS

To conclude, the different types of phases appearing in a
cyclic evolution of a pure bipartite entangled state were stud-
ied. This is done from a geometric point of view. It is shown
that the interplay between topological, dynamical, and geo-
metrical phases always lead to a global phase of n�. The

FIG. 8. Trajectories in the Bloch ball for the two possible sets

of rotations: �a� A→B→F→ Ē→ Ā �minus trajectory�, and �b�
A→B→F→D→A �plus trajectory�.

FIG. 9. �Color online� Geometric phase for a cyclic evolution
around a fixed axis as a function of the angle � and of parameter �0,
proportional to the degree of entanglement.

PÉROLA MILMAN PHYSICAL REVIEW A 73, 062118 �2006�

062118-8



parity of n can have different origins, depending on how one
chooses to geometrically represent the pure entangled state:
by considering evolution operators acting on one qubit only
and tracing with respect to the fixed qubit, trajectories of the
type plus and minus are a consequence of geometric and
dynamical phases of the evolved qubit. Alternatively, still
supposing that only one qubit only evolves and tracing it out,
the parity of the total phase is a consequence of the number
of times an initial state, placed at the origin of SO�3�, crosses
the border of this sphere. As a consequence, it is shown that

mixed states coming from the trace of a pure entangled state
with respect to one of the particles may play a crucial role in
describing the total phase gain of the pure entangled states
itself.
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