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An orbital-dependent nonlocal correlation energy functional has been derived from an energy formula
defined in the transcorrelated method. The obtained functional explicitly depends on a Jastrow function, which
has been successfully used for the electron gas and solids. We found that our correlation energy functional is
successfully used with the exact exchange energy functional and gives relatively good estimates for the total
energy and the ionization potential for atoms and ions.
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I. INTRODUCTION

Density-functional theory �DFT� �1,2� has become one of
the standard methods to obtain electronic structures of a va-
riety of systems. Since it was created, a lot of attention has
been paid to improving the exchange-correlation energy
functional Exc since the functional form of Exc is responsible
for the quality of approximation in DFT. The most widely
used functional is the local-density approximation �LDA�
where Exc is simply expressed as a functional of a local
density. Although LDA has given a great number of success-
ful results �3–5�, it also has some problems: cohesive energy
estimates for solids are overestimated, band gaps for insula-
tors or semiconductors are underestimated, and so on �3–5�.
These failures are considered to be due to the extremely sim-
plified exchange-correlation energy functional Exc

LDA, where
nonlocal effects of the electron correlation are completely
ignored. Therefore, it has been desired to go beyond LDA by
constructing a nonlocal Exc.

The generalized-gradient approximation �GGA� �6� is one
of these attempts, in which Exc is expressed as a functional of
a gradient of the density as well as the density itself to in-
corporate the nonlocal effect of the electron correlation.
GGA improves estimates of the total energy, the ionization
potential, the electron affinity for atoms, and the atomization
energy for molecules �7,8�. Moreover, GGA weaken the
binding energy of solids, i.e., cohesive energy estimates are
improved over LDA �9–11�, though overcorrections are ob-
served in some cases �12�. A different derivation of the gra-
dient correction to the exchange energy was suggested by
Becke �13�. The Becke’s gradient correction has been com-
bined with a correlation energy functional given by Lee,
Yang, and Parr �14�. The hybrid functional named BLYP has
been successfully applied to a wide range of quantum chemi-
cal calculations �15�. However, GGA or BLYP are not able to
improve the underestimation of the band gaps over LDA.
This is partly due to the wrong asymptotic behavior of the
exchange-correlation potential in these gradient corrected
functionals. It is known that any functional based on the
gradient correction cannot satisfy the correct asymptotic be-
havior simultaneously for the exchange energy density
−1/2r and the exchange potential −1/r �16�. Taking into
account the Laplacian as well as the gradient of the density
improves the asymptotic behavior �17�. Actually, the Laplac-

ian of the density is known to be an important ingredient to
go beyond GGA �18,19�. Unfortunately, both the LDA and
GGA are not able to deal with van der Waals interactions
�20–25�.

The weighted density approximation �WDA� �26,27� is a
well-known nonlocal density-functional approach. The for-
malism of WDA is based on the rigorous formula of Exc
written with a pair-correlation function. For approximation,
some specific functions are adopted for the pair-correlation
function with a weighted density, which is introduced so as
to satisfy the sum rule for the exchange-correlation hole.
WDA has been applied to a variety of systems: atoms
�28,29�, electron gas �30,31�, surfaces �32,33�, and solids
�34–40�. However, some of the solid state calculations re-
vealed that WDA has difficulty in going beyond LDA when
it comes to computing physical constants such as the bulk
modulus �40� and the band gap �39,40�. Furthermore, the
exchange-correlation potential of WDA yields a wrong
asymptotic behavior −1/2r instead of the correct −1/r �28�.

There is another attempt to go beyond LDA by treating
the exchange energy functional exactly in the Kohn-Sham
formalism �2�. In this approach, which is called the exact
exchange �EXX� method �41–47�, the exchange energy Ex

EXX

is expressed in the same way as the Hartree-Fock method,
namely, the Fock term expressed as an orbital-dependent
two-body functional. Since EXX is a self-interaction free
method, it can reproduce the exact asymptotic behavior −1/r
of the exchange potential. A special treatment is required for
the functional derivative of the orbital-dependent Ex

EXX func-
tional with respect to the density, which is usually imple-
mented by the optimized effective potential �OEP� method
�48�. A useful approximation to the OEP method was sug-
gested by Krieger, Li, and Iafrate �KLI� �49–51�, which is
applicable to any orbital-dependent exchange-correlation en-
ergy functional. The EXX method or its KLI approximation,
where LDA or GGA correlation energy functional is usually
employed in addition to Ex

EXX, have been proved to be suc-
cessful especially for evaluating band gaps of semiconduc-
tors and insulators �44,45�. However, the other physical con-
stants such as bulk moduli or lattice constants are not always
improved over LDA �52�. This is also the case in estimations
of the binding energy of molecules �47,50,53,54�. These fail-
ures are attributed to the absence of error cancellations be-
tween Ex

EXX and the correlation energy functional such as
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Ec
LDA or Ec

GGA. Since the exchange energy functional is
treated exactly in the EXX method, errors included in Ec

LDA

or Ec
GGA cannot be canceled out. Whereas the error cancella-

tion usually occurs when LDA �GGA� is employed both for
the exchange and the correlation energy functionals Exc

LDA

�Exc
GGA� �3,4�. This is the reason why the EXX method is not

successful with Ec
LDA or Ec

GGA and rather worsen the results
given by Exc

LDA in some cases. Therefore, the construction of
a correlation energy functional, which is successfully used
with Ex

EXX, is desired. Grabo and Gross have applied a cor-
relation energy functional proposed by Colle and Salvetti
�CS� �55� to atomic systems �50,51� using Ex

EXX and obtained
very good results. However, since parameters in the CS func-
tional are determined by a fitting procedure for a He atom
using Hartree-Fock orbitals, it is hardly expected to be ap-
plicable to solid state calculations. It is actually known that
the CS functional fails to reproduce the dissociation energies
of molecules �50�. A simple remedy for coupling Exc

LDA with
Ex

EXX was suggested by Becke �56� where the LDA
exchange-correlation potential is utilized for the coupling
procedure with semiempirical parameters. Recently, another
nonlocal correlation energy functional, which is successfully
used with Ex

EXX, was suggested �57�. In their work, the long-
range electron-electron correlation is treated by the random-
phase approximation �RPA� and the short-range correlation is
represented by LDA or GGA. It was shown that this method
can improve the binding energy estimates for molecules over
LDA or GGA �58�.

In this paper, we propose a new correlation energy func-
tional, which is completely different from these conventional
functionals. Our correlation energy functional is derived
from an energy formula defined in the transcorrelated �TC�
method �60–69� and explicitly depends on a Jastrow factor
�59�. Such an attempt has been made by Imamura and Scu-
seria �64� where Jastrow parameters are determined so as to
reproduce atomic energies. Thus, the obtained functional is
hardly expected to be applicable to extended system such as
electron gas or solid. Moreover, three-body interactions
emerged in the formula of the transcorrelated energy were
completely ignored in their work. On the other hand, our
correlation energy functional does not contain any fitting pa-
rameter and the three-body interactions are fully taken into
account. The Jastrow factor adopted in the present work has
been successfully used in the quantum Monte Carlo calcula-
tions for electron gas and solids. Thus, the obtained func-
tional is expected to be useful for extended systems. Actu-
ally, we have reported that our correlation energy functional
well reproduces correlation energies of the homogeneous
electron gas �67�. In the present work, we apply this new
correlation energy functional to atomic systems in order to
assess the usefulness of it for inhomogeneous systems.

The layout of this paper is as follows. In Sec. II, a new
orbital-dependent nonlocal correlation energy functional will
be proposed. In Sec. III, we will show the results for atoms
and ions in comparison with those obtained from other non-
local density-functional approaches. Charge densities and
correlation potentials are also depicted for atoms. In Sec. IV,
we will give our conclusions.

II. THEORY

The Hartree atomic units �m=e2= � =1� are used in the
following. In the transcorrelated method, an energy formula
is derived from a stationary condition to a variance with
respect to a parameter E:

�

�E
� �HTCD − ED�2dx3N = 0, �1�

where D is a single Slater determinant. HTC is the transcor-
related Hamiltonian defined by a similarity transformation of
a Hamiltoniam H with respect to a Jastrow factor F:

HTC =
1

F
HF . �2�

Equation �1� results in the following energy formula:

ETC = Re�D�HTC�D� =
1

2
�D�HTC + HTC

† �D� , �3�

where Re denotes the real part. Detailed derivation of Eq. �3�
is given in Ref. �66�. If we treat the nuclei classically and
adopt the Born-Oppenheimer approximation for H, HTC and
its Hermitian conjugate HTC

† are explicitly written as

HTC = 	
i=1

N 
−
1

2
�i

2 −
1

2

�i
2F

F
−

�iF

F
· �i� + U + V , �4�

HTC
† = 	

i=1

N �−
1

2
�i

2 +
1

2

�i
2F*

F* +
�iF

*

F* · �i − 
�iF
*

F* �2 + U

+ V , �5�

where F* denotes the complex conjugate of F. U and V are
potential energies for electron-electron and electron-nucleus
interactions, respectively. Obviously, Eq. �5� is different from
Eq. �4� and so HTC is a non-Hermitian operator. Using Eqs.
�3�–�5�, ETC is explicitly written as

ETC = �D�H�D� −
1

2
�D�	

i=1

N �1

2

�i

2F

F
−

�i
2F*

F* �
+ 
�iF

F
−

�iF
*

F* � · �i + 
�iF
*

F* �2�D� . �6�

The first term in Eq. �6� corresponds to the total energy for-
mula of the Hartree-Fock method. Therefore, the second
term of Eq. �6� could be a correlation energy functional Ec. If
we assume F to be a real function, Ec is written as

Ec = −
1

2�D�	
i=1

N 
�iF

F
�2�D� . �7�

It is interesting to notice that Ec is negative definite, and so,
it is guaranteed that ETC gives a smaller value than a total
energy calculated from the Hartree-Fock method if Eq. �3� is
minimized over D.

The Jastrow factor F is usually written as
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F = exp
	
i=1

N

��i
�ri� −

1

2	
i=1

N

	
j=1��i�

N

u�i�j
�ri,r j�� . �8�

Here, ���r� and u����r ,r�� are the one-body and the two-
body Jastrow factor, respectively. For the two-body term, we
have adopted the following simple function:

u����r,r�� = u����R� =
A

R
�1 − e−����R� , �9�

where R= �r−r��. This type of function has been used in the
quantum Monte Carlo calculations for the electron gas and
solids �59,67,70,71�. In the present work, the parameters in
Eq. �9� are determined by the following two conditions. One
is the cusp conditions �59,72,73�:

� du����R�

dR
�

R=0
= − ����, �10�

where �↑↑=1/4 and �↑↓=1/2, which restrict short-range in-
teractions between two electrons. Substituting Eq. �9� into
Eq. �10�, the following equation is derived:

���� =�2����

A
, �11�

where ���� is assumed to be a positive value. The second
condition is based on the random-phase approximation
�RPA� �59,74�, which restricts the long range electron inter-
actions in a high density electron gas. From the result of the
RPA, the parameter A in Eq. �9� is determined by

A =
1

�p
=

1
�4�n

, �12�

where �p is the plasma frequency and n is the density of the
homogeneous electron gas. In the case of inhomogeneous
systems, we suppose that an averaged density

n̄ =
1

N
� n�r�n�r�dr �13�

is reasonably used in Eq. �12�.
The one-body term in Eq. �8� ���r� is known to be an

important ingredient because it suppresses unfavorable
changing of charge density caused by the two-body term
�59,75�. Recently, a simple remedy is suggested for produc-
ing ���r� from the two-body term as �76�

���r� =
N − 1

2N
	
��
� n���r��u����r,r��dr�. �14�

The essence of Eq. �14� is understood from the fact that the
main role of ���r� is to cancel out the unfavorable effect
caused by u����r ,r�� �59,75,77�. Now all the functions in Eq.
�8� are completely determined without any variational pa-
rameters.

Using Eq. �8�, the correlation energy functional Ec defined
by Eq. �7� is explicitly written as

Ec = Ec
�1� + Ec

�2� + Ec
�3�, �15�

Ec
�1� = −

1

2	
�

	
i
� ��i��r��2�����r��2dr , �16�

Ec
�2� =

1

2	
�

	
ij
� �1

2
�Sij

��r,r���2h↑↑
�2��r,r��

+ ��i��r�� j−��r���2h↑↓
�2��r,r��drdr�, �17�

Ec
�3� = −

1

2	
�

	
ijk
� �1

6
�Rijk

� �r,r�,r���2h↑↑↑
�3� �r,r�,r��

+
1

2
�Sij

��r,r���k−��r���2h↑↑↓
�3� �r,r�,r��

+
1

2
�Ski

� �r�,r�� j−��r���2h↑↓↑
�3� �r,r�,r��

+
1

2
�Sjk

−��r�,r���i��r��2h↑↓↓
�3� �r,r�,r��drdr�dr�,

�18�

where

h���
�2� �r,r�� = − ��u�����r − r����2 + 2����r� · �u�����r − r��� ,

�19�

h�����
�3� �r,r�,r�� = �u�����r − r��� · �u�����r − r��� , �20�

Sij
��r,r�� = �i��r�� j��r�� − �i��r��� j��r� , �21�

Rijk
� �r,r�,r�� = � �i��r� � j��r� �k��r�

�i��r�� � j��r�� �k��r��
�i��r�� � j��r�� �k��r��

� . �22�

Ec
�2� and Ec

�3� are calculated from the Monte Carlo sampling
as addressed in our previous paper �69� where required inte-
grations are up to three-body even for many-body systems.

Although Eqs. �17� and �18� are not explicitly written as
functionals of the density but functionals of orbitals, they are
implicitly functionals of the density analogous to the exact
exchange energy functional �41–43�. Thus, in the present
work, the KLI approximation �49,50� is adopted for imple-
menting the functional derivative of Eqs. �17� and �18� with
respect to the density in the same way as the exact exchange
energy. The total energy is then given by Eq. �6� with the
second term replaced by Eq. �15�. The Kohn-Sham equation
is self-consistently solved for atoms and ions within the KLI
approximation both for the exact exchange and the correla-
tion energy functional. The averaged density n̄ defined by
Eq. �13� is fixed during the functional derivative, although n̄
is updated every time when the density is updated while
solving the Kohn-Sham equation.

The computational cost for the calculation of Ec
�3� scales

as N3 as understood from Eq. �18�, which is larger than that
of the exact exchange term N2 or the LDA exchange-
correlation energy N. Thus, application of the present method
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to the systems that contain a larger number of electrons
would be difficult. Moreover, statistical errors caused by the
Monte Carlo sampling are inevitable for computing the
three-body integrals in Ec

�3� �69�. In the present work, we set
the sampling number �104	3� so that the statistical error is
negligible.

III. RESULTS

Here, we show the results for atoms and ions given by the
correlation energy functional proposed in the previous sec-
tion. In Table I, total energy estimates for atoms and ions
given by the present correlation energy functional are listed
in comparison with those obtained from various nonlocal
density-functional approaches. It is shown that the present
method gives relatively good estimates for the atomic total
energy. It is especially remarkable that the present method
can reproduce a bound state for the negatively ionized hy-
drogen, which is known to be very difficult to be achieved.
The results given by the exact exchange method with an
LDA �78� correlation energy functional �EXXLDA� contain
largest deviations from exact values among the methods
listed in Table I. The reason for this large deviation is the
lack of the error cancellation between exchange and correla-
tion energies as discussed before. The present correlation en-
ergy functional certainly improves this issue over EXXLDA.

In Table II, correlation energy estimates are listed com-
pared to the exact values for atoms and ions. Here, the cor-
relation energy is defined by the difference between a total
energy estimate and the Hartree-Fock energy. Although the

absolute values of the correlation energy are still underesti-
mated in the present method, one can observe significant
improvements in the present results over EXXLDA, WDA1,
and WDA2. The percentages of the correlation energy repro-
duced in these estimates are depicted in Fig. 1. It is under-
stood that the present method can reproduce 60–90 % of the
correlation energies for these atoms. The failure in the error
cancellation is again observed in the results of EXXLDA,
where absolute values of the correlation energy estimates are
largely overestimated. The present method certainly im-
proves this aspect. The disagreements between WDA1 and
WDA2 are originated from the different functional forms in
the exchange-correlation energy functional. It is clearly
shown that both the WDA methods are behind the present
method in terms of the correlation energy estimates. Never-
theless, PW91 yields slightly better results than the present
method. The underestimation of the absolute correlation en-
ergy estimates in the present method infers that more sophis-
ticated Jastrow factors are required to achieve accurate esti-
mation of the atomic correlation energies.

In Table III, ionization potentials given by the present
work and the other methods are listed for atoms and ions.
These values are calculated from the highest occupied orbital
energies 
HO. It is well known that the ground state total
energy difference of a neutral atom and a cation �E gives a
fairly good estimate of the ionization potential even in LDA
or GGA. On the other hand, the absolute value of 
HO, which
is in principle identical with �E �79�, yields poor estimates
of the ionization potential in LDA and GGA because of the
wrong asymptotic behavior of the exchange-correlation

TABLE I. Ground state total energy estimates for Helium-isoelectronic series �H−, He, Li+, and Be2+� and
atoms from Li to Ne, given by the present method, the exact exchange method with an LDA correlation
energy functional �78� �EXXLDA� within the KLI approximation �50,51�, GGA given by Perdew and Wang
�PW91� �8,50�, and the weighted density approximation from Ref. �28� �WDA1� and �29� �WDA2�. Exact

values are from �80,81�. 	 and blanks indicate no bound state and no data, respectively. �̄ denotes the mean
absolute deviation from the exact data for atoms from Li to Ne. All energies are in Hartree atomic units
�m=e2= � =1�.

EXXLDA PW91 WDA1 WDA2 Present Exact

H− −0.5630 	 −0.5095 −0.5278

He −2.9742 −2.9000 −2.945 −2.909 −2.8929 −2.9037

Li+ −7.3705 −7.2676 −7.2728 −7.2799

Be2+ −13.7610 −13.6340 −13.6514 −13.6556

Li −7.5937 −7.4742 −7.535 −7.473 −7.4737 −7.4781

Be −14.7964 −14.6479 −14.725 −14.605 −14.6311 −14.6674

B −24.8233 −24.6299 −24.775 −24.583 −24.6077 −24.6539

C −38.0628 −37.8265 −37.895 −37.779 −37.7930 −37.8450

N −54.8623 −54.5787 −54.61 −54.530 −54.5451 −54.5893

O −75.3592 −75.0543 −75.195 −75.011 −75.0125 −75.067

F −100.0502 −99.7316 −99.97 −99.695 −99.6850 −99.734

Ne −129.2851 −128.9466 −129.265 −128.914 −128.9066 −128.939

�̄ 0.232 0.012 0.125 0.048 0.040
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potential. In Table III, it is clearly shown that the present
correlation energy functional gives very good estimates of
the ionization potential from �
HO� for atoms. The accuracy is
almost comparable to that of the Hartree-Fock method,
which is known to yield good ionization potential estimates
for atoms. This is partly due to the fact that the exchange
energy is treated exactly in the present work, and then, the
correct asymptotic behavior of the exchange-correlation po-
tential is reproduced. Moreover, the present method certainly
improves the results of EXXLDA. Therefore, it was proved
that the present correlation energy functional is successfully

used with the exact exchange functional. On the other hand,
PW91 and WDA fail to give accurate ionization potentials
from the highest occupied orbital energies because these
functionals do not reproduce the correct asymptotic behavior
of the exchange-correlation potential.

In Fig. 2, errors in charge densities given by the present
work are shown for a He atom. The present correlation
energy functional reproduces fairly good charge density
compared to that obtained from LDA or GGA �PW91�. How-
ever, the accuracy is comparable to that of the exact ex-
change method with an LDA correlation energy functional
�EXXLDA� and still behind the Hartree-Fock �HF� method.
Thus, our correlation energy functional should be further
modified for improving the charge density over EXXLDA
and the HF method.

In Fig. 3, the correlation potential vc�r� for a He atom
obtained from the present correlation energy functional is
depicted with those given by other correlation energy func-
tionals. The exact result is taken from Ref. �85�. It is shown
that vc�r�s given by Colle-Salvetti functional and the gradi-
ent corrected functionals of BLYP and PW91 are all diverged
at the origin. This is an unphysical behavior of vc�r�. On the
other hand, vc�r� given by the present functional becomes a
finite value at the origin and this value is very close to that of
the exact vc�r�. Nevertheless, the detailed behaviors of the
exact vc�r�, i.e., turning from negative to positive value at
about r=0.5 a .u. and reaches the maximum value at about
r=0.9 a .u. are still not reproduced by the present correlation
energy functional.

IV. CONCLUSIONS

In this work, an orbital-dependent nonlocal correlation en-
ergy functional was suggested. It was constructed from an

TABLE II. Correlation energy estimates for Helium-isoelectronic series �H−, He, Li+, and Be2+� and
atoms from Li to Ne, given by the present method, the exact exchange method with an LDA correlation
energy functional �78� �EXXLDA� within the KLI approximation �50,51�, GGA given by Perdew and Wang
�PW91� �8,50�, and the weighted density approximation from Ref. �28� �WDA1� and �29� �WDA2�. Exact
values are from subtractions of the exact total energies �80,81� and the Hartree-Fock energies �82,83�. 	 and
blanks indicate no bound state and no data, respectively. All energies are in Hartree atomic units
�m=e2= � =1�.

EXXLDA PW91 WDA1 WDA2 Present Exact

H− −0.0751 	 −0.0216 −0.0399

He −0.1125 −0.0383 −0.083 −0.0473 −0.0312 −0.042

Li+ −0.1341 −0.0312 −0.0364 −0.0435

Be2+ −0.1497 −0.0227 −0.0401 −0.0443

Li −0.1609 −0.0414 −0.1022 −0.0402 −0.0409 −0.0453

Be −0.2234 −0.0749 −0.152 −0.032 −0.0581 −0.0944

B −0.294 −0.1006 −0.2457 −0.0537 −0.0784 −0.1246

C −0.3728 −0.1365 −0.205 −0.089 −0.103 −0.155

N −0.4577 −0.1741 −0.2054 −0.1254 −0.1405 −0.1847

O −0.5456 −0.2407 −0.3814 −0.1974 −0.1989 −0.2534

F −0.6394 −0.3208 −0.5592 −0.2842 −0.2742 −0.3232

Ne −0.738 −0.3995 −0.7179 −0.3669 −0.3595 −0.3919

FIG. 1. Percentage of the correlation energy reproduced by the
present method is shown in comparison with those obtained from
the other density functional methods.
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energy formula defined in the transcorrelation method, in-
cluding two-body and three-body interactions originated
from a Jastrow factor. We found that our correlation energy
functional gives fairly good estimates for the total energy of
atoms and ions compared to those obtained from other non-
local correlation energy functionals. Moreover, it yields re-

markably good ionization potential estimates from the high-
est occupied orbital energies. Our correlation energy
functional also reproduces relatively good charge density for
a He atom compared to LDA or GGA. However, the accu-
racy in the charge density is still behind the Hartree-Fock
method. Furthermore, the correlation potential vc�r� for a He
atom derived from our correlation energy functional was
found to converge to a finite value at the origin, which is
very close to the exact value, although detailed behavior of

TABLE III. Ionization potential estimates calculated from absolute eigenvalues of the highest occupied
states for Helium-isoelectronic series �H−, He, Li+, and Be2+�, and atoms from Li to Ne, given by the present
method, the exact exchange method with an LDA correlation energy functional given by Perdew and Zunger
�78� �EXXLDA� within the KLI approximation �50,51�, GGA given by Perdew and Wang �PW91� �8,50�, and
the weighted density approximation from Ref. �28� �WDA�. Exact values for the Helium-isoelectronic series
are from data in Ref. �81� and the experimental values for atoms from Li to Ne are from Ref. �84�. 	 and

blanks indicate no bound state and no data, respectively. �̄ denotes the mean absolute deviation from the
exact or experimental data for the atoms from Li to Ne. All energies are in Hartree atomic units
�m=e2= � =1�.

HF EXXLDA PW91 WDA Present Exacta /Expt.b

H− 	 0.078 	 0.054 0.0278a

He 0.918 0.976 0.583 0.624 0.943 0.9037a

Li+ 2.792 2.864 2.227 2.824 2.7799a

Be2+ 5.667 5.748 4.870 5.703 5.6556a

Li 0.196 0.228 0.119 0.128 0.200 0.198b

Be 0.309 0.348 0.207 0.225 0.314 0.343b

B 0.311 0.354 0.149 0.215 0.316 0.305b

C 0.435 0.484 0.226 0.230 0.444 0.414b

N 0.571 0.623 0.308 0.301 0.584 0.534b

O 0.509 0.561 0.267 0.376 0.531 0.500b

F 0.674 0.729 0.379 0.456 0.703 0.640b

Ne 0.850 0.909 0.494 0.542 0.878 0.792b

�̄ 0.025 0.064 0.197 0.157 0.038

FIG. 2. Errors in the charge densities for a He atom given by the
present method, the Hartree-Fock �HF� method, the local-density
approximation �LDA� �78�, the generalized gradient approximation
suggested by Perdew and Wang �PW91� �8,50�, the exact exchange
method with an LDA correlation �EXXLDA�.

FIG. 3. Correlation potentials for a He atom given by the
present method, the local-density approximation �LDA� �78�, the
gradient correction of BLYP �13,14�, the generalized gradient ap-
proximation suggested by Perdew and Wang �PW91� �8,50�, and the
exact exchange method with Colle-Salvetti-type correlation func-
tional �55� �EXXCS�. The exact correlation potential is from Ref.
�85�.
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vc�r� should be further improved. From these results, we
conclude that the suggested correlation energy functional is
successfully used with the exact exchange energy functional
and our approach is promising for creating a new correlation
energy functional.
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