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We analyze the origin of interference disappearance in which-path double-aperture experiments. We show
that we can unambiguously define an observable momentum transfer between the quantum particle and the
path detector and we prove in particular that the so-called “momentum transfer free” experiments can be, in
fact, logically interpreted in term of momentum transfer.
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I. INTRODUCTION

Bohr’s principle of complementarity constitutes the hall-
mark and one of the most intriguing features of quantum
mechanics. On the basis of this principle �1,2�, it is indeed
universally accepted that any devices capable of determining
the path taken by a particle through a Young-like double-
aperture must destroy the interference. The justification usu-
ally presented is based on Heisenberg’s uncertainty principle
�3,4� and involves an irremediable exchange of momentum
between the system considered and the measuring apparatus.
Over the last decades, however, the primacy of such recoil
arguments has been contested in favor of a more general
decoherence mechanism considering the entanglement of the
observed system with its environment �5�. In particular,
Scully et al. emphasized �6� that an atom, after emitting a
long-wavelength photon in a “micromaser-cavity,” located
close to one of the two pinholes, can generate recordable
which-path information without transfer of significant mo-
mentum. The conclusions of �6� seem actually verified in
experiments using entanglement with an internal degree of
freedom to label the path with either neutrons �7�, photons
�8,9�, or atoms �10,11�.

This stirred up considerable controversy and a debate
�12–22� on the genuine meaning of momentum transfer in
which-path experiments. The paradox comes from the fact
that any far-field interference observed with a Youngs-like
double-aperture experiment is a direct map of the transverse
momentum distribution of the diffracted particle in the aper-
ture plane. Any processes able to erase the interference
should be then interpretable in terms of a perturbation done
on this momentum distribution. Such a proposition was for-
mally done �12–14�, but the answer is far from being univer-
sally accepted �15,16�. We found two reasons for that:
Firstly, the momentum distribution of the particle in the
single-aperture experiment is not affected by the detector
�this intuitively implies a momentum transfer equal to zero
�6��. Secondly, the momentum transfer defined in �12,13� is
in general “hidden” in the sense that it is not always con-
nected with an experimentally recordable momentum �like
the photon momentum in the Feynman light microscope
�23��.

In this article we revive this controversy by proposing a
consistent definition of momentum transfer based only on the

concept of quantum observables. We study the generality of
the recoil mechanism and show in particular why the scheme
proposed in �6� is not recoil free. We analyze in this context
the roles played by both Heisenberg’s relation and entangle-
ment.

II. TWO FUNDAMENTAL EXAMPLES OF WHICH-PATH
EXPERIMENTS

We consider at first the scheme suggested in �6� and
sketched in Fig. 1. In the absence of any photon emission
�see Fig. 1�a�� the atomic state immediately behind the
holes evolves into a sum of two diffracted waves, i.e.,
�I�r�=�A�r�+�B�r�, where �A,B are single-aperture wave
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FIG. 1. Sketch of Young’s double-hole experiment for one atom
as discussed in Ref. �6� and in the present article. The separation
between the pinholes A and B is d and the aperture screen is located
in the plane x=0. �a� Without which-path detectors we observe
interference fringes with high contrast. �b� Oppositely, if the two
micromaser cavities of length L�d are introduced the atom radi-
ates a photon giving the which-path information. As a consequence
of Bohr’s complementarity, the fringes must disappear.
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functions reducing to two narrow peaks located at
rA,B= ±d /2x̂ in the aperture plane �d being the distance be-
tween the holes�. The which-path detectors consist of two
micromaser empty cavities, one placed at each aperture A
and B of a Young interferometer. Before passing through the
double aperture, an atom initially in a long-lived Rydberg
exited state �e�, will radiate a photon in one or the other
cavity and will finish its journey in the ground state �g� �see
Fig. 1�b��. The joint wave function atom-photon is actually
an entangled state that carries the position ambiguity of the
molecule over to an ambiguity of the photon state:

��J� � � d3r��A�r���A� + �B�r���B���r� . �1�

Here, ��A,B� are single photon states well localized in one or
the other cavity. Such condition can create a distinguishabil-
ity since the photon states are orthogonal, i.e., 	�B ��A�=0. In
the far field of the apertures, the intensity collected on the
screen is proportional to G�1��r=Tr��̂ �r�	r � � �with the den-
sity operator �̂= ��J�	�J��, and we deduce

GS
�1��r,t� � 1 + V cos�pxd/ � + �� , �2�

where the visibility V= �	�B ��A�� and phase shift
�=arg�	�B ��A�� are identically equal to zero and where
px= x̂ · r̂h /�dB is the transverse atomic momentum for a par-
ticle with de Broglie wavelength �dB. There is clearly a one-
to-one relation between GS

�1��r , t� and the momentum distri-
bution P�px� of the atom in the aperture plane, and we will
accept the generality of this relationship in the following.

It is remarkable, however, that equations similar to Eqs.
�1� and �2� can be written in the case of an atom spontane-
ously emitting a photon while it is still in the vicinity of the
double pinhole. Supposing the nonrelativistic approximation
and that the de-excitation occurs sufficiently fast behind the
pinhole, one obtains in this Heisenberg-like which-path ex-
periment 	�B ��A�=F0�k�d� �24–26�, which tends to zero for
photon wavelength ��=2� /k� much smaller than d. This is
indeed in agreement with Heisenberg’s back-action argu-
ment. We justify the recoil mechanism at work during the
spontaneous emission process by expanding the photon
states in the wave-vector/polarization-vector basis:

��A,B� = 

k,	

�k,	
A,B�k,	� = 


k,	
�k,	

�0�e−ik·rA,B�k,	� , �3�

where �k,	
�0� is the photon amplitude for a hole centered at

x=y=z=0 �27�. In this context, Eq. �1� becomes

��J� � � d3r

k,	

��A�r,t��k,	
A + �B�r,t��k,	

B ��k,	,r� , �4�

and the atomic intensity recorded on the screen is conse-
quently

GH
�1��r� � PH�px� = 


k,	
P�px,k,	� , �5�

with

P�px,k,	� = ��̃0�px + � kx��2 · ��k,	
�0� �2�1 + cos�pxd/ � + k · d�� ,

�6�

and where �̃0�px� is the Fourier transform of the single-
aperture wave function �0�r� centered at the origin. The
tiny broadening of the single-aperture wave function
is not fundamental, and we can make the approximation

�̃0�px+ �kx���̃0�px� valid for narrow apertures.
We can see that the momentum transferred to the photon

by the atom or molecule affects the coherence of the re-
corded signal. This is clearly visible from the fact that GH

�1� is
a sum of patterns with unit visibility shifted by an amount
�k=k ·d=kxd. Each individual pattern is unable in itself to
erase the fringes, but the sum of all these patterns can do it.
Indeed, from the values of the coefficients ��k,	

�0� �2 �27–29�, we
deduce that the uncertainty 
kx on the x component of the
photon wave vector is sufficient to account for the disappear-
ance of fringes �this is effectively true because

kx�2� /���2� /d and 
�k�1�. The detailed calculation
is straightforward. The coefficients

��k,	
�0� �2 �

��ge · 	�2

�� − ���2 + �2/4
, �7�

are obtained for a two-level atom with life time �−1 and
transition energy ���. After summing on photon polarization
	, one deduces



	

��k,	
�0� �2 �

���ge�2 − ��ge · k�2/k2�
�� − ���2 + �2/4

. �8�

A numerical calculation of Eq. �5� requires evaluation of the

sum F�k�d�=
k
���ge�2−��ge·k�2/k2�

��−���2+�2/4
eik·d. One obtains �27�

F�k�d� = �

k

���ge�2 − ��ge · k�2/k2�
�� − ���2 + �2/4 F0�k�d� �9�

and

GH
�1��r,t� � 1 + F0�k�d�cos�pxd/ � � , �10�

where F0�k�d� is calculated in �30–33�. In particular, for an
isotropic distribution of transition dipoles, we have

	F0�k�d�� = sin�k�d�/�k�d�e−�d/�2c� � sin�k�d�/�k�d� ,

�11�

which indeed tends to zero for ���d. This result is in agree-
ment with the complementarity principle since the fringe vis-
ibility depends on the amount of information that is, in prin-
ciple, available to an outside observer. It is consistent with
Heisenberg’s back-action argument, since those photons that
provide a better path-information also impart a stronger re-
coil. Finally, it is derived by decoherence theory, which
means it is based on the entanglement between the atom and
the emitted photon. Equivalently, we can write
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PH�px� = 

k,	

��k,	
�0� �2P0�px + � kx� , �12�

with P0�px�= ��̃I�px��2= ��̃A�px�+�̃B�px��2. This is equivalent
to Eq. �5� and shows that we can define a momentum transfer
having the effect of a correlation function. The problem can
be then analyzed semiclassically only by using intuitive ar-
guments based on Heisenberg’s relation.

At this point it is relevant to repeat that the transfer of
momentum does not disturb the single-aperture pattern,
which is not broadened significantly! This is a central issue
here. Indeed, in both the Heisenberg and the Scully et al.
examples, the spatial wave functions �A,B�r , t� associated
with the center of mass are not affected since they factorize
from the photon states. However, our treatment of the
Heisenberg which-path experiment considers explicitly the
momentum transfer. This prompts the question as to whether
there is or there is not a recoil mechanism in the experiment
proposed by Scully et al.

One should now logically observe that the momentum
analysis of Heisenberg’s experiment can be extended to the
proposal made in �6�. The photon states in the micromaser
can indeed be expanded as in Eq. �3� but with different co-
efficients �k,	

A,B, taking into account the specifical structure of
the photon field confined by the cavity walls. In the micro-
maser setup, we consider the electric field being oriented
along x and ideally constant inside of the cavity of width L
�6,19�. In order to prohibit overlap between the two cavities,
we suppose additionally that they are centered on x= ±L /2.
After straightforward calculations, we deduce consequently

�k,	
A,B � sinc� kxL

2
�e±ikxL/2 = �kx

�0�e±ikxL/2, �13�

and we write GS
�1��r�� PS�px� with

PS�px� = 

kx

��kx

�0��2�1 + cos�pxd/ � + kxL����̃0�px��2.

�14�

Again, we have a sum of oscillation terms with unit visibility
as in Eq. �5�, but now with a phase shift �k=kxL instead of
kxd. Considering this difference we deduce that in the Scully
et al. scheme one only needs a variation of the wave vector
in the interval 
kx�2� /L�2� /d in order to destroy the
fringes. Such variation is made possible because the typical
dispersion 
kx in the Fourier space of the photon is �2� /L.
The result can be rigorously proven by using the
Wiener-Khintchine theorem. Indeed, the total visibility of
GS

�1��r� is equivalently defined by V= ����kx

0 �2eikxLdkx�. From
Wiener-Khintchine’s theorem, we deduce ���kx

0 �2eikxLdkx

=�dxf�x+L�f*�x�=0=V �autocorrelation function�, where
f�x�=F−1��kx

0 � is the unit rectangular function of width L
centered on the origin x=0.

It is then not true to say that the photon momentum is not
involved in a recoil mechanism since it is only by summing
all the oscillating contribution in Eq. �14� that we can ac-
count for the decoherence effect.

The comparison becomes more evident if we work in the
limit of very narrow apertures neglecting the modification of
the single hole diffraction pattern:

PS�px� � 

k,	

��kx

�0��2P0�px + � kxL/d� . �15�

The approximation ��̃0�px+ �kxL /d��2���̃0�px��2 is here
justified since 
kxL /d�1/L ·L /d=1/d and since we work in
the limit 
px

single hole�h /a�h /d for the single hole of width
a. As in Eq. �12�, we find a correlation function, but here the
result is not intuitive because we need an effective momen-
tum transfer

�kxL/d = � �k,	/d �16�

instead of �kx. Since ��k,	 /d� �kx this proves that the mo-
mentum transferred is much higher that the intuitive and
semiclassical expectation �h /L. This analysis, however,
does not constitute a disproof but actually a confirmation of
Heisenberg’s mechanism in terms of recoil transfer because
the effective momentum is typically �h /d. Both the math-
ematical treatment leading to Eqs. �12� and �15� are based on
a purely quantum analysis of momentum transfer. In the case
of Eq. �12�, the calculations confirm the intuitive semiclassi-
cal reasoning. However, in the case of Eq. �15�, only a quan-
tum treatment can justify the result when the semiclassical
analogy fails.

III. DISCUSSION: WHICH-PATH INFORMATION AND
QUANTUM ERASER

A. Which-path information and momentum transfer

The precedent result, which can seem rather surprising, is
in fact very general and not limited to the particular ex-
amples of Eqs. �12� and �15�. Consider the general which-
path state given by Eq. �1�, but where the detector states are
not necessarily associated with photons and can be expanded
in a arbitrary orthonormal basis �� as ��A,B�=
�

A,B ��. An
analysis similar to the previous one leads to

P�px� = 



���
A�2 + ��

B�2��1 + V · cos� pxd

�
+ ����̃0�px��2,

�17�

where �=arg �
A−arg �

B and where V is the fringe visibil-
ity given by

V =
2��

A� · ��
B�

���
A�2 + ��

B�2�
. �18�

From the discussion of the Scully et al. and Heisenberg-like
examples, we conclude that if �i� V equals unity for those
terms of the sum Eq. �17� for which ��

A�2+ ��
B�2 has signifi-

cant values, and if �ii� in the mean time the phase � changes
significantly in an interval 
��1, then decoherence will
occur and a momentum transfer can be invoked in the basis
. To be more precise and still in analogy with Eqs. �12� and
�15�, we can write in the narrow-aperture limit
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P�px� � 



���
A�2 + ��

B�2���1 − V� · ��̃0�px��2

+ VP0�px + � �/d�� �19�

because we suppose �̃0�px+ �� /d���̃0�px�. The regime
V=1 was the one considered in both Eqs. �12� and �15�. It
leads to a simple interpretation in terms of a correlation func-
tion with a momentum transfer

p = � �/d . �20�

� and then p are clearly experimentally defined by record-
ing the elementary interference pattern corresponding to . In
this context,


pd � � 
� � � �21�

plays the role of Heisenberg’s relation. Yet, in general
V�1, and this means that there are some terms in Eq. �19�
that are proportional to 1−V and that cannot be interpreted
in terms of correlation functions and momentum transfers in
the basis . At the extreme, V=0, and the momentum trans-
fer discussion is completely irrelevant in the basis .

However, it is not difficult using the arbitrariness in the
basis choice to find a representation of the problem in which
V=1 and in which momentum transfer is clearly defined.
This is true assuming the ideal which-path experiment

	�A��B� = 0. �22�

Indeed, this orthogonality relation means that we can use the
two states ��A,B� as a relevant basis for analyzing the prob-
lem. In this basis, VA,B=0. However, the equivalent choice

��±� = ���B� ± ��A��/�2 �23�

is completely pertinent as well. In such basis, V±=1 and Eq.
�20� leads to

p+ = 0, p− = � �−/d = h/2d . �24�

The momentum p− accounts for the loss of coherence in the
which-path experiment and we can indeed write

P�px� = 

±

P0�px + � �±/d� . �25�

This means that we can always interpret an ideal which-path
experiment in terms of momentum transfer and correlation
function in at least one basis .

B. Erasing knowledge with momentum

The precedent discussion focussed on the concepts of mo-
mentum transfer and which-path information in quantum me-
chanics. However, we must add here a few further remarks
concerning the quantum eraser experiment since the exis-
tence of a momentum transfer seems to be in contradiction
with the spirit of this experiment. Quantum erasure, which
was initially proposed in �6,34� and experimentally realized
in �8,9,35–38�, has been recently discussed in, e.g., �39,40�.
Such experiments are usually thought of as “a way around
the uncertainty principle” �6,29,40�, and one says that in

classical physics, “this question would never come up” �6�.
In order to clarify this point, one has first to recall that the
philosophy of the quantum eraser proposal is based on the
possibility to rewrite an entangled state as

�A�r,t���A� + �B�r,t���B� �26�

in the equivalent form

�+�r,t���+� + �+�r,t���+� , �27�

with

�±�r,t� = ��A�r,t� ± �B�r,t��/�2, �28�

and where ��±� are defined by Eq. �23�.
Clearly, if one is able to project the photon state in the

orthogonal basis ��±�, one would be able to retrieve interfer-
ence fringes �or even anti-interference fringes if the projec-
tion is made on ��−��. Since this projection can be delayed,
the atom fringes can be rebuilt �using coincidence measure-
ment techniques� even after that the atom reaches the screen
�38�.

From semiclassical physics, this behavior is prohibited
�6,41�. The most famous quantum eraser proposal was given
by Scully et al. in �6� and is based on the micromaser two-
cavity setup described in Sec. II.

Less known, however, the fact that quantum eraser could
be, in principle, realized with the “Heisenberg” setup de-
scribed in Sec. II and based on spontaneously emitted pho-
tons �42�. The principle of this proposal is sketched in Fig.
2�a�. Detection of single photons emitted in the close vicinity
of A and B is ensured by microscope objective�s� able to
resolve clearly the apertures region. The photon state coming
from A is oriented through an optical fiber to the first en-
trance of a 50-50 beam splitter �BS�. The second photon state
follows a similar path to the second entrance of the beam
splitter. The recombination of the photon states at the exit
outports D1 and D2 erases the which-path information since
we have no way to know where the photon was coming
from. One could thus retrieve fringes or antifringes by
changing the phase � between the photon paths and by de-
tecting in coincidence the molecule arrival on a screen in M
�this experiment is very close to the one realized in �38��. If
the Heisenberg experiment described in Sec. II �Eqs.
�4�–�12�� was effectively based on �semi-�classical momen-
tum kicks associated with the emission of a particle, the
quantum eraser discussed here could not work! This shows
that the semiclassical picture is not adapted even in “canoni-
cal” experiments like those described by Einstein �1� or
Feynman �23�.

However, the important word in any quantum eraser ex-
periment is coincidence �i.e., correlation photon-atom�. In-
deed, if it were possible to erase the fringes without corre-
lating the detections of the photon and atom, then it could be
possible to realize faster-than-light communication �43�. The
argument against this possibility is the same as the one used
by Bell in the context of Einstein Podolsky Rosen experi-
ments �44�. If we do not compare the data coming from the
two exits D1,2 with the molecule arrival, we must find the
initial molecule profile without fringes �see Fig. 2�b��. This is
particularly clear from the fact that we have �6�
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��+�r,t��2 + ��−�r,t��2 = ��A�r,t��2 + ��B�r,t��2. �29�

It must be remarked that this rebuttal of faster-than-light
communication gives us a solution for the paradox concern-
ing the coexistence of momentum transfer with quantum era-
sure. Indeed, Eq. �29� is tantamount to arguments based on
decoherence theory, which say that the entanglement with
the environment is responsible for the loss of coherence ob-
served during a which-path experiment �we must sum the
two quantum eraser patterns ��+�r , t��2 and ��−�r , t��2
in order to obtain the complete pattern given by
��A�r , t��2+ ��B�r , t��2, e.g., Eq. �12� or �15��.

Now we should remember that the discussion of momen-
tum transfer in Sec. II tells us that we have necessarily to
sum all the individual patterns associated with different �k�
in order to obtain the full diffraction pattern without fringes.
The present discussion is thus identical to the previous one
but is done in the base ��±� instead of �k�. This is completely
consistent with Sec. III A discussing the observer freedom
on the choice of the detector basis ��.

In conclusion, since all the arguments presented in Sec. II
are based only on decoherence theory, it means that reason-
ing based on quantum erasers is rigorously equivalent to that
based on momentum transfer presented in this article. The
quantum eraser corresponds thus precisely to procedures of

projection for measuring the momentum transfer. This is vis-
ible from Eqs. �23�–�25�, which show indeed that the phase
shift between the two quantum eraser patterns ��±�r , t��2 cor-
responds to momentum transfers of p+=0 and p−=h /2d re-
spectively �e.g., to phase shifts of �−=0 and �+=�, respec-
tively�.

It is well known that with a lens focused on the two-
aperture plane, one can, in principle, realize a which-path
experiment. The experimentalist has the choice to position
the photon detectors at any distance behind the lens. If the
detectors are located in the image plane of the lens, one can
distinguish the path followed by the atom in the interferom-
eter. However, if the photon detectors are positioned in the
back focal plane of the lens �i.e., Fourier plane�, then the
observer can record the photon momentum distribution in the
base �k�. As discussed in Sec. II �i.e., Eq. �6�� the joint dis-
tribution of probability photon-atom reveals atom fringes
with a phase shift kxd, which corresponds to a transverse
momentum transfer pk= �kx. From this discussion, it is thus
in principle possible to realize a quantum eraser experiment
by correlating photon detection in the back focal plane of the
lens with the detection of an atom on the screen. This shows
once again that the quantum eraser is indeed connected to the
definition of momentum transfer used in this article. The
same procedure using a lens could be �in principle� realized
with the setup described in �6�. Such an experiment would
correspond to a measure of the momentum distribution
pk= �kxL /d �see Eqs. �14�–�16��. However, the presence of
the cavity walls constraints in practice such observations
with a lens �45�. To realize a quantum eraser it is thus easier
to consider the basis ��±� instead of the basis �k�.

The apparent contradiction between the existence of
quantum erasers on one hand and the existence of momen-
tum transfer on the other hand results from the �implicit� use
of a classical definition of momentum. Once again, with such
a definition, the quantum eraser would not be possible. Here,
our definition of momentum transfer, e.g.,

p = � �/d , �30�

does not have this handicap. This definition is indeed purely
quantum and represents the most direct generalization of the
usual definition used for the case of the Heisenberg-like ex-
periment in Eqs. �4�–�12�. It can be applied to any double-
aperture which-path or quantum eraser experiments �like the
ones described in �6��.

IV. SUMMARY

Our discussion of wave-particle duality and of momentum
transfer is directly based on the very basis of quantum me-
chanics, which involves only observable quantities associ-
ated with states ��. This means that the momentum transfer
is always in principle experimentally accessible to the ob-
server. This clearly shows the pertinence of our definition in
a physical discussion concerning the meaning of momentum
transfer. Our analysis shows additionally that momentum

FIG. 2. �Color online� �a� Quantum eraser experiment using two
microscopes for recording a photon spontaneously emitted by the
atom close to the aperture A or B. The photon is oriented through
optical fibers and a 50-50 beam splitter �BS� before reaching one of
the two detectors D1 or D2. The coincidence measurement atom-
photon can be used to rebuild molecular fringes. �b� Depending on
the phase shift � one can observe fringes or antifringes. If the cor-
relation D1-M gives us the fringe pattern ��+�2= 1

2 ��A+�B�2 �black
curve�, then the correlation D2-M gives ��−�2= 1

2 ��A−�B�2 �red
dashed curve�. The sum of both patterns gives us the initial distri-
bution ��A�2+ ��B�2 �green dotted envelope�.
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transfer and quantum eraser are not two independent con-
cepts and that they are in fact two formulations of the same
decoherence argumentation applied two double-aperture ex-
periments. Clearly, most of the formalism used here was al-

ready known �33�. However, the analysis in terms of momen-
tum of experiments like the one proposed in �6� has to our
knowledge never been done, consequently missing some
fundamental subtleties of the interpretation.
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