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The time evolution of a quantum system with at most quadratic Hamiltonian is described with the help of
different methods, namely the time-dependent Schrödinger equation, the time propagator or Feynman kernel,
and the Wigner function. It is shown that all three methods are connected via a dynamical invariant, the
so-called Ermakov invariant. This invariant introduces explicitly the quantum aspect via the position uncer-
tainty and its possible time dependence. The importance of this aspect, also for the difference between classical
and quantum dynamics, and in particular the role of the initial position uncertainty is investigated.
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I. INTRODUCTION

For a complete description of a physical system, the clas-
sical point of view is generally not sufficient, but one also
has to take into account the quantum aspect. This also holds
for time-dependent problems where, in addition to the time
evolution of position and momentum, which represent the
classical particle aspect, also the change in time of the posi-
tion, and momentum uncertainties, representing the wave
mechanical aspect, have to be considered.

An interesting question in this context is also, what are
the characteristic differences between the quantum mechani-
cal and the classical description of a dynamical system and
what do they depend upon?

Different methods exist to describe the dynamics of
quantum systems, namely �i� the time-dependent
Schrödinger equation �SE� �with the corresponding continu-
ity equation �CE� for the probability density�; �ii� the de-
scription using a time propagator, also called Feynman ker-
nel or space representation of the Green function; and �iii�
the time-dependent Wigner function.

We will show that all three methods are linked via a dy-
namical invariant, the so-called Ermakov invariant �discov-
ered by Ermakov in 1880 �1�, obviously without any relation
to the not yet existing quantum theory�.

In the next section, for one dimensional and at most qua-
dratic Hamiltonians �with possibly time-dependent fre-
quency�, we will show how this invariant emerges from the
wave packet �WP� solution of the corresponding time-
dependent SE and how the occurring variables are related to
position, momentum, and the respective uncertainties. Also,
the CE corresponding to the time-dependent SE will be
briefly considered, in particular to show a characteristic dif-
ference compared to the classical situation.

In Sec. III, the time evolution of an initial system will be
described using a so-called propagator or Feynman kernel.
For the derivation of this kernel, Feynman solely uses the

classical Lagrangian of the respective system. The Feynman
kernel of the free motion and of the harmonic oscillator �HO�
will be given explicitly. Since this formalism is based en-
tirely on the classical Lagrangian, no information about the
initial quantum uncertainties of position �or momentum� en-
ter, a fact that has some consequences which will be dis-
cussed afterwards.

For the quadratic systems with Gaussian WP solutions,
the time propagator can also be derived very simply by using
a Gaussian ansatz where the time dependence enters via two
parameters that are connected with the description in Sec. II,
in particular with the Ermakov invariant. Since this invariant
not only depends on the classical variables, but also on the
quantum uncertainties, some information about this aspect,
especially concerning the initial state, will enter this form of
the propagator.

With the help of our propagator, the WP solution for the
free motion and the HO, with emphasis on the behavior of
the WP width �proportional to the position uncertainty�, will
be studied and compared with the usual treatment of these
systems via Feynman kernel. Specifically, the limit of disap-
pearing oscillator frequency, �→0, will be discussed. Also,
the relation between the Ermakov invariant and the time-
dependent parameters of our propagator will be explained.

The same form of our propagator can be obtained using
the Ermakov system as a starting point to modify the Feyn-
man procedure in a way that also the quantum uncertainty
aspect enters from the beginning, in addition to the classical
Lagrangian. Following the elegant method of Dhara and La-
wande �2� or a similar treatment by Nassar �3�, where clearly
the aspect of the time dependence of the position uncertainty
becomes obvious, one also arrives at our above-mentioned
propagator. After the inclusion of the uncertainty aspect into
the propagator formalism via the Ermakov invariant has been
specified, the influence of the initial uncertainty on the time
evolution of the quantum system will be discussed.

The connection between the Ermakov invariant and the
time-dependent Wigner function will be shown in Sec. IV.
The consequences of a time dependence of the position un-
certainty for the equations of motion connected with the
Wigner function will be specified, in detail.

Finally, in Sec. V, our results will be summarized, the
occurrence and importance of time-dependent position un-
certainties will be stressed—also for the difference between
classical mechanics and quantum mechanics—the special
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role of the initial position uncertainty will be emphasized,
and an outlook for further developments will be given.

II. DESCRIPTION OF QUANTUM DYNAMICS VIA
TIME-DEPENDENT SCHRÖDINGER EQUATION

One way of describing the dynamics of a quantum system
is the time-dependent SE. In the following, we restrict our
discussion to one spatial dimension and Hamiltonians that
are, at most, quadratic in their variables. We will discuss
explicitly the important model problems of the free motion
and the HO �the possibility of a time-dependent frequency
�=��t� will also be mentioned�, because in these cases, for
the relevant occurring quantities, exact analytic expressions
exist that allow a direct comparison of the considered
methods.

We begin with the time-dependent SE for the one-
dimensional HO in position space

i �
�

�t
��x,t� = �−

�2

2m

�2

�x2 +
m

2
�2x2���x,t� . �1�

For this equation, analytic solutions in the forms of
Gaussian WPs exist

�WP�x,t� = N�t�exp�i�y�t�x̃2 +
1

�
�p	x̃ + K�t�
� , �2�

where x̃=x− �x	=x−��t� with �x	=�−�
+��*x�dx=��t�= clas-

sical trajectory, �p	=m�̇= classical momentum; N�t� �nor-
malizing factor� and K�t� are purely time-dependent terms
whose meaning will become obvious later. The complex,
possibly time-dependent, quantity y�t�=yR�t�+ iyI�t� is con-
nected with the WP width, or the position uncertainty, via
yI=

1
4�x̃2	 with �x̃2	= �x2	− �x	2.

Inserting WP �2� into SE �1� yields the equations of mo-
tion for ��t� and y�t�. The equation of motion for the WP
maximum, located at x=��t�, is just the classical equation of
motion

�̈ + �2� = 0, �3�

where overdots denote time derivatives.
The equation of motion for y�t� is given by the complex

Riccati equation

2�

m
ẏ + �2�

m
y2

+ �2 = 0, �4�

which can be separated into real and imaginary parts

Im:
2�

m
ẏI + 2�2�

m
yI�2�

m
yR = 0, �5�

Re:
2�

m
ẏR + �2�

m
yR2

− �2�

m
yI2

+ �2 = 0. �6�

The real part yR�t� can be eliminated from Eq. �6� by
solving Eq. �5� for yR and inserting the result into Eq. �6�.

It is useful to introduce a new variable, ��t�, that is con-
nected with yI�t� via

2�

m
yI =

1

�2�t�
, �7�

where ��t� is directly proportional to the WP width, or posi-
tion uncertainty, respectively, i.e.

� =� m

2 � yI
=�2m�x̃2	

�
. �8�

Inserting definition �7� into Eq. �5� shows that the real
part of y�t� just describes the relative change in time of the
WP width

2�

m
yR =

�̇

�
=

1

2

d

dt
�x̃2	

�x̃2	
. �9�

Together with definition �7� this finally turns Eq. �6� into

�̈ + �2� =
1

�3 . �10�

It has been shown by Ermakov in 1880 �1� that the system
of differential equations �3� and �10�, coupled via the possi-
bly time-dependent frequency �, leads to a dynamical invari-
ant, I, that has been rediscovered by several authors in the
20th century �4�, also in a quantum mechanical context �5�,
and is also known in the literature as Ermakov-Lewis invari-
ant. Ermakov’s way of obtaining this invariant �see also Ray
and Reid in �6�� used Eq. �3� to eliminate �2 in Eq. �10� �a
method that we will encounter again later in the context of
the Feynman kernel�, leading to �̈− �̈

��= 1
�3 . After some basic

manipulations, one arrives at the expression

1

2

d

dt
��̇� − ��̇�2 = −

1

2

d

dt
��

�
2

, �11�

which yields the invariant

I =
1

2
���̇� − ��̇�2 + ��

�
2
 = const. �12�

This invariant not only depends on the classical variables
��t� and �̇�t�, like, e.g., the classical Lagrangian, but also on
the quantum uncertainty, connected with ��t�, and its change
in time, �̇�t�, which will be of importance later on.

In order to discuss the differences between the classical
and the quantum dynamics of the same model system, we
briefly mention a property of the density function ��x , t�
=�*�x , t���x , t�, corresponding to the solution of the SE �1�.
This probability density fulfills the CE

�

�t
� +

�

�x
��v� =

�

�x
� + v

�

�x
� + �

�

�x
v = 0, �13�

where the velocity field v in the probability current j=�v is
defined as
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v =
�

2mi
� �

�x
�

�
−

�

�x
�*

�* � =
�

2mi

�

�x
ln

�

�* , �14�

i.e., it depends on the phase of �. In the case of our WP
solutions, one obtains for the quantum system

�

�x
v =

�̇

�
=

1

2

d

dt
�x̃2	

�x̃2	
. �15�

This quantity only vanishes for WPs with constant width,
but for �̇�0 it is different from zero. For the classical case,
a continuity equation equivalent to Eq. �13� exists, but there
for the distribution of a virtual ensemble over the phase
space, described by a density function �cl of the generalized
coordinates and momenta and of time. From Hamilton’s
equations of motion it follows that

�v = 0, �16�

�but now in phase space with � representing derivatives with
respect to position and momentum variables�. For more de-
tails comparing the classical and the quantum CEs, see �7�.
In any case, the fact that �

�xv�0 is possible for a Hamil-
tonian system is a typical quantum property and the condi-
tions that have to be fulfilled in order to obtain this property
will follow from our further discussion.

III. DESCRIPTION OF QUANTUM DYNAMICS
VIA TIME PROPAGATOR

A. Feynman kernel via classical Lagrangian

Another way of describing the dynamics of a quantum
system is to start with an initial state ��x� , t�� at time t� �e.g.,
t�=0� and to propagate it into the state at time t with the help
of a so-called propagator K�x ,x� , t , t�� via

��x,t� = �
−�

+�

dx�K�x,x�,t,t����x�,t�� , �17�

where the integral kernel K�x ,x� , t , t�� provides the probabil-
ity for the transition of the initial state at time t� into the state
at time t. Since Feynman found a way to derive this kernel
�via the so-called path integral method�, it is also called
Feynman kernel (some authors also call it Feynman propa-
gator, which is incorrect, since the Feynman propagator has a
different form and is important in quantum field theory (see,
e.g., �8�, p. 25�).

According to Feynman �9�, the kernel is defined as

KF�x,x�,t,t�� =� exp� i

�
�

t�

t

Lcldt�Dx�t� , �18�

where Dx�t� is the Feynman path differential measure and Lcl

the classical Lagrangian �in the case of the HO it is in our
notation Lcl=

m
2 ��̇2−�2�2�� so the integral in the exponent

corresponds to the classical action. It is important to mention
that Lcl depends only on the classical trajectory and the clas-
sical velocity �and their initial conditions�, but not on any

quantum property. Nevertheless, the corresponding kernel KF
is also able to describe the quantum dynamics of the system.
Why this is possible, and which quantum aspect still has to
be taken into account—and at what point—in order not to
miss anything important, shall be clarified subsequently.

For the free motion and the HO �at least with constant
frequency ��, analytic expressions for KF can be obtained;
these are �8,9�:

�a� Free motion �V=0�

KF,fr�x,x�,t,t� = 0� = � m

2�i � t
1/2

	exp� im

2 � t
�x2 − 2xx� + x�2�� ,

�19�

�b� HO �V= m
2 �2x2�

KF,HO�x,x�,t,t� = 0� = � m�

2�i � sin�t
1/2

exp� im�

2 � sin�t

	��x2 + x�2�cos �t − 2xx��� �20�

For an initial WP located �with its maximum� at �x	�t=0�
=�0=0 and with initial momentum p0 and initial width pro-
portional to �x̃2	0, i.e.

�WP�x�,t� = 0� = �m
0

��
1/4

exp� im

2�
�i� x�

�0
2

+ 2
p0

m
x�
� ,

�21�

where the abbreviation 
0= �

2m�x̃2	0
= 1

�0
2 �with dimension fre-

quency� has been introduced. When the Feynman kernel KF
is inserted into Eq. �17�, where ��x� , t�� is given by Eq. �21�,
from the explicit time dependence of KF, as given in Eqs.
�19� and �20�, together with the initial momentum p0 occur-
ring in ��x� , t��, the classical trajectory emerges in the re-
sulting time-dependent WP. Denoting this classical path—as
defined below Eq. �2�—by ��t�, one obtains the time-
dependent WP

�a� for the free motion

�WP,fr�x,t� = �
0m

��
1/2� 1

1 + i
0t
1/2

	exp�−
�x − ��t��2

4�x̃2	0�1 + �
0t�2�

+
im

2�

0

�
0t�
�1 + �
0t�2�

�x − ��2

+
i

�
��p	x̃ +

�p	�
2

� , �22�

where the WP width is spreading quadratically in time, and,
�b� for the HO, where the initial WP corresponds to the

ground state with 
0=�, i.e.
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�WP,HO�x�,0� = �m�

��
1/4

exp�−
m�

2�
x�2 +

i

�
p0x�� ,

�23�

one obtains the WP that is usually found in the textbooks
�e.g., �10��

�WP,HO�x,t� = �m�

��
1/2

exp�−
m�

2�
�x − ��2

+
i

�
��p	�x − �� +

1

2
�p	�
� , �24�

i.e., a WP with constant width �x̃2	= �x̃2	0= �

2m� .
One should assume that in the limit �→0, the WP solu-

tion �24� of the HO turns into the spreading WP solution �22�
of the free motion. However, performing this limit, the WP
�24� turns into a plane-wave-type solution

lim
�→0

�WP,HO�x,t� � exp�ikx −
i�

2m
k2t� , �25�

with k=
�p	

� , �p	=m�̇=const, which is only a particular solu-
tion of the problem but not the complete one that corre-
sponds to the WP spreading in time. The reason for this
inconsistency will become obvious during the course of our
discussion.

B. Direct solution for Gaussian WPs

For the quadratic systems with Gaussian WP solutions,
the time propagator can also, very simply, be derived directly
using a Gaussian ansatz for K, where the time dependence
enters via two parameters û and ẑ that are connected with the
Ermakov invariant of Sec. II, as will now be shown. Since,
via � and �̇ I depends also on the quantum uncertainties,
some information about this aspect will enter this form of K.

With the ansatz

KD�x,x�,t,t� = 0� = � m

2�i � �0ẑ
1/2

exp� im

2�
� ż̂

ẑ
x2 − 2

x

ẑ
� x�

�0


+
û

ẑ
� x�

�0
2
� , �26�

where �0=��t=0�, and the initial WP, as defined in Eq. �21�,
one obtains the WP at time t in the form

�WP�x,t� = � m

��
1/4� 1

û + iẑ
1/2

	exp� im

2�
� ż̂

ẑ
x2 −

�x −
p0�0

m
ẑ2

ẑ�û + iẑ�
�� . �27�

The ansatz �26� for KD is valid for the HO as well as for
the free motion. In the latter case, one has only to set �=0 in
the equations of motion for ẑ and û and in any relation de-
rived from them.

Since in the definition of ��x , t� according to Eq. �17�,
only K actually depends on x and t, the kernel KD, as defined

in Eq. �26�, must also fulfill the time-dependent SE. Inserting
KD into the SE, one obtains terms proportional to powers of
x and x�. From the terms proportional to x2, it follows that ẑ
must fulfill the classical equation of motion for the system.
The same also applies to û; so, for the HO, one obtains

z̈̂ + �2ẑ = 0 and ü̂ + �2û = 0. �28�

The equation of motion for û follows from the fact that ẑ
and û are not independent of each other but must fulfill a
relation that is obtained from the terms proportional to x�2.
This relation has formal similarities to a conservation of an-
gular momentum

ż̂û − u̇̂ẑ = 1. �29�

As WP �27� must be identical to the WP solution �2� of
the time-dependent SE, direct comparison shows that the fol-
lowing relations exist:

ẑ =
m

�0p0
��t� �30�

and

2�

m
y =

ż̂

ẑ
−

1

ẑ�
=

�̇

�
, �31�

where, in the latter case, the complex quantity

� = û + iẑ �32�

has been introduced and relation �29� has been used. Obvi-
ously, � obeys the classical equation of motion. This can be
confirmed by inserting the relation between y and � into the

Riccati equation �4�, yielding �̈+�2�=0.
Expressing ��t� in polar coordinates as

� = �ei �33�

allows one to write the Cartesian components as

û = � cos , ẑ = � sin  . �34�

Inserting �33� into the rhs of Eq. �31� then yields

2�

m
y =

�̇

�
+ i̇ . �35�

However, inserting Eq. �34� into the conservation law �29�
leads to

̇ =
1

�2 . �36�

Comparing now the imaginary part of �35�, expressed by
�36�, with �2�yI /m�, as defined in Eq. �7�, shows that the
absolute value of � is identical with � occurring in Eq. �7�,
which is defined in Eq. �8�.

With the help of �, , and � and their time derivatives,
the quantum mechanical uncertainties can now be expressed
not only via yI and yR but also in the following forms:

�x̃2	 =
1

4yI
=

�

2m
�2 =

�

2m
��*, �37�
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�p̃2	 = �2 yR
2 + yI

2

2yI
=

�m

2
��̇2 + �2̇2� =

�m

2
��̇�̇*� , �38�

��x̃, p̃�+	 = �x̃p̃ + p̃x̃	 = � � yR

yI
 = � �̇� =

�

2

�

�t
���*� ,

�39�

and the quantum mechanical energy contribution can be writ-
ten as

Ẽ =
�p̃2	
2m

+
m

2
�2�x̃2	 =

�

4
��̇2 + �2̇2 + �2�2�

=
�

4
��̇�̇* + �2��*� . �40�

Using all this information, the WP solution �27� can fi-
nally be written in the form

�WP�x,t� = � m

��
1/4� 1

�
1/2

exp�−
m

2�
� 1

�2 − i
�̇

�
x̃2

+
i

�
�p	x̃ +

im

2�
�̇�� . �41�

The explicit values for û and ẑ can be determined for our
systems of interest and turn out to be

�a� Free motion

û = �0 = const, ẑ =
1

�0
t , �42�

�b� HO

û = �0 cos �t, ẑ =
1

�0�
sin �t . �43�

�These values are obtained for ��0�=0 and p0= pmax; differ-
ent initial conditions for the classical quantities only lead to
more cumbersome calculations but do not change the essen-
tial results�.

Inserting these results into the propagator �26� yields the
same analytical expressions as function of time as the Feyn-
man kernels �19� and �20�; only in the form �26� of KD does
the initial position uncertainty �0 occur explicitly, which is
connected with the fact that û appears instead of �̇. Later in
this section, it will be shown that this not only has to be
different by a constant factor, but can be more involved.

What are the consequences for the time-dependent WPs
calculated with KD instead of KF? The quantities û and ẑ
contain explicitly the initial value �0 that is identical with the
initial value in ��x� ,0�, see Eq. �21�. Calculating �2�t� for
the free motion leads to the same results using KF or KD.
However, calculating �2 for the HO using KD does not nec-
essarily lead to the constant WP width according to �2

= 2m
� �x̂2	=�0

2= 1
� , but also to a possibly time-dependent width

since

�HO
2 = ��* = û2 + ẑ2 = �0

2�cos2 �t + � 1

�0
2�

sin �t2

= �0

2�cos2 �t + �
0

�
sin �t2
 � const for 
0 � � .

�44�

It can now be shown straightforwardly that this oscillating
WP width leads to the correct spreading WP width of the free
motion WP in the limit �→0, and not only to a plane wave,
i.e.

lim
�→0

�HO
2 �t� = �0

2�1 + �
0t�2� = � fr
2 �t� . �45�

A more explicit explanation for this fact will be given
below.

As we mentioned before, the position uncertainty also en-
ters explicitly the Ermakov invariant. Therefore, we now
wish to show the connection between the time-dependent
parameters û and ẑ, entering the propagator KD, and this
invariant.

The invariant �12� can be rewritten, in terms of ẑ= m
�0p0

�,
as

I =
1

2
��0p0

m
2��ż̂� − ẑ�̇�2 + � ẑ

�
2
 = const. �46�

According to Eq. �34�, we know that ẑ
� =sin , in order to

obtain I=const, �ż̂�− ẑ�̇�2 must therefore, be equal to � û
�

�2

=cos2 .
So, up to a ± sign, we obtain

û = ż̂�2 − ẑ�̇� = �2� ż̂ −
�̇

�
ẑ , �47�

or

û

ẑ
= �2� ż̂

ẑ
−

�̇

�
 , �48�

or

ż̂

ẑ
=

�̇

�
=

1

�2

û

ẑ
+

�̇

�
. �49�

Proof: Considering the time dependence of ẑ, and taking
into account, that for a time-dependent WP width also �, and
hence , can be time dependent, one obtains

ż̂ =
d

dt
ẑ =

d

dt
�� sin � =

�̇

�
ẑ + ̇� cos  =

1

�
��̇ẑ + cos � ,

�50�

or ż̂�− ẑ�̇=cos = û
� .

The expressions in I more resemble a form that reminds
one of a Hamiltonian or Lagrangian, if time derivatives are
replaced by derivation with respect to the angle �t�, occur-
ring in �=�ei.

Introducing a new variable Y = ẑ
� =sin �t� with

�t�=�t 1
�2 dt� leads to û=cos = d

dY, so
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I =
1

2
� p0�0

m
2��dY

d
2

+ Y2
 = const. �51�

This form allows for a comparison with another approach
to obtain the time propagator, now based on the Ermakov
system of differential equations, which will be presented in
the next sub-section.

C. Method of Dhara and Lawande
to obtain the time propagator

Dhara and Lawande �2� used an elegant method to derive
the time propagator, making use of the Ermakov system.
Since the Ermakov system holds also for time dependent �,
the same applies to their method. Starting point is again, as
in Feynman’s procedure, the classical Lagrangian �where
their x�t� equals our ��t��,

Lcl =
m

2
��̇2 − �2�t��2� = �0

2� p0
2

2m
�ż̂2 − �2�t�ẑ2� . �52�

From Eq. �10� they take

�2�t� =
1

�4 −
�̈

�
=

1

�4 − � �̇

�
2

−
d

dt
� �̇

�
 �53�

to replace �2�t� in Eq. �52�, thus introducing explicitly the
quantum mechanical uncertainty property, expressed by �
and �̇, into the method.

After some basic rearrangements, the classical Lagrangian
can be expressed in terms of the classical variables �where ẑ
is proportional ��t� , ẑ= m

�0p0
�� and the quantum variables ��

and �̇� as

Lcl =
��0p0�2

2m
� d

dt
� �̇

�
ẑ2 + �2� d

dt
� ẑ

�

2

−
1

�2� ẑ

�
2�

= L� + L, �54�

with

L� =
m

2
��0p0

m
2 d

dt
� �̇

�
ẑ2 , �55�

and

L =
m

2
��0p0

m
2��2� d

dt
� ẑ

�

2

−
1

�2� ẑ

�
2� . �56�

The �-dependent part can be integrated directly to yield

i

�
�

0

t

L�dt� =
im

2�
� �̇�t�

��t�
ẑ2 − � �̇

�


0
ẑ�2�0�
��0p0

m
2

=
i

�
S�,

�57�

where � �̇
�

�
0, as well as ẑ�0�, vanish in the cases considered in

this paper.
For the -dependent part, they introduce new variables

that correspond in our notation to Y = ẑ
� =sin  and 

=�0
t 1

�2�t��
dt� with d

dt = ̇= 1
�2 and hence d= 1

�2 dt or d
dt = 1

�2
d

d .

So, L takes the form

L = ��0p0

m
2m

2
�2�� d

dt
Y2

− � 1

�22

Y2�
= ��0p0

m
2m

2

1

�2�� d

d
Y2

− Y2� . �58�

From Eq. �58� follows that

�
t0

t

Ldt� = �
0�t0�

�t�

L̂d , �59�

with

L̂ = �2L�Y��� , �60�

or

L̂ = ��0p0

m
2m

2
��dY

d
2

− Y2� . �61�

This looks very much like a Lagrangian that corresponds
to a Hamiltonian of the form �51�—written in velocities in-
stead of momenta—that represents the Ermakov invariant.

On the other hand, this Lagrangian also looks like the
classical Lagrangian for the HO, only t is replaced by  and
�=1.

So, what remains to be calculated is

�
t0

t

Ldt� = �
0

 ��0p0

m
2m

2
��dY���

d�
2

− Y2���
d�,

�62�

where d
d�

Y���=cos � and Y���=sin �.
These calculations have been performed �2,3� and lead to

a similar result as in Feynman’s case, only �̇ must be re-
placed by û, and instead of x and x�, the quantities x

� and x�
�0

occur, which corresponds to x�
��

and x�
��

in the notation of
Dhara and Lawande.

Therefore, their propagator, written in our notation, would
read

KDL�x,x�,t,t� = 0� = � 1

2�i � �0ẑ
1/2

exp� im

2�

�̇

�
x2 +

im

2�

	� û

ẑ
� x

�
2

− 2
x

ẑ
� x�

�0
 +

û

ẑ
� x�

�0
2
� ,

�63�

�with the subscript DL standing for Dhara and Lawande, the
authors of �2�� where their dY

d corresponds to dû
dt , instead of

d�
dt in Feynman’s case, and the integration with respect to the
angle  instead of time t provides a factor 1

�2 �for upper
integration limit�, or 1

�0
2 �for the lower one�. Considering Eq.

�49� shows that the two terms in the exponent that are pro-

portional to x2 can be combined to ż̂
ẑ , so KDL is identical to

KD in Eq. �26�, only that in the form �63� the temporal
change of ��t� is explicitly pronounced.

This is due to the fact that this method uses the Ermakov
system, where ��t� explicitly appears.
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D. Influence of the initial uncertainty on the time
evolution of the quantum system

We have shown that the time propagator, which has the
same analytical dependence on time in all cases considered,
can be expressed in different variables, where Feynman’s
procedure is totally based on the classical variables, whereas
the methods that are connected with the Ermakov invariant
also take into account the quantum uncertainties, at least at
the initial time.

The comparison of the methods is in agreement with Eq.
�49�. This relation also holds for constant � �e.g., the HO
with ground state as initial state� where �̇=0 and �=�0.
Therefore, relation �49� can be extended to

ż̂

ẑ
=

1

�2�t�
û

ẑ
+

�̇

�
=

1

�0
2

û

ẑ
. �64�

This shows that in the case when � is time dependent, not
only �0

2 has to be replaced by �2�t�, but also an additional
term �̇

� has to be taken into account. Eq. �64� also allows for
the comparison

ż̂

ẑ
=

�̇

�
=

1

�0
2

û

ẑ
or û = �0

2ż̂ , �65�

which is in agreement with the fact that KD�KF, if û
�0

2 is

replaced by ż̂ in KD.
Inserting �65� into the expression for �2�t�, i.e.,

�2�t� = û2 + ẑ2 = � m

�0p0
2

��0
4�̇2 + �2� = �0

2� �̇2

v0
2 +

1

�0
4� �

v0
2
 ,

leads to

�2�t� =
�0

2

v0
2 ��̇2 + 
0

2�2� =
2m

�
�x̃2	 . �66�

This shows that the quantum mechanical uncertainty of
position �at any time t� can be expressed solely in terms of
the classical trajectory ��t� and the corresponding velocity
�̇�t�, if the initial velocity v0 and the initial position uncer-
tainty, expressed by �0, or 
0= 1

�0
2 , are known. Note that in

our case, the initial position was chosen to be zero, but a
different choice would not change the essential result. So,
even for a complete knowledge of the classical situation, the
quantum mechanical aspect of initial �even minimum� uncer-
tainty would not allow a deterministic description that is
more accurate than the initial uncertainty. To the contrary, the
uncertainty can even become larger due to a possible time
dependence.

This explains why Feynman’s procedure, based only on
the classical Lagrangian, provides the correct time evolution
of the system since the time dependence enters only via the
classical variables. On the other hand, the importance of the
initial position uncertainty should not be underestimated. In
Feynman’s procedure it does not occur explicitly, therefore,
the use of the ground state wave function of the HO as initial
function does not provide the complete solution of the time-
dependent problem. The influence of the initial uncertainty

becomes clear if one inserts the expressions for ��t� and �̇�t�
into Eq. �66�.

�a� For the free motion, one obtains with �=v0t, �̇=v0

�2 = �0
2�1 + �
t�2�; �67�

�b� for the HO with �=
v0

� sin �t and �̇=v0 cos �t, Eq.
�66� yields

�2 = �0
2�cos2 �t + �
0

�
sin �t2�

= �0
2�1 + ��
0

2 − �2

�2 sin2 �t
� . �68�

�Note the formal similarity with transition rates connected
with Fermi’s Golden Rule�.

This shows, obviously, that for the case where 
0

= �

2m�x̃2	0
is not identical with the ground state value �

2m�x̃2	GS

=�, the WP width is oscillating.
That the time dependence of � depends on the difference

between the initial state’s position uncertainty and its ground
state uncertainty, connected with a parameter occurring in
the potential of the system, becomes even more obvious,
regarding the time derivative of �2

�̇� =
�0

2

v0
2 �̇�
0

2� + �̈� =
1

�
��x̃, p̃�+	 . �69�

For V=0 follows �̈=0 and only the initial uncertainty,
entering via 
0, matters. For the HO with �̈=−�2�, it fol-
lows

�̇� =
�0

2

v0
2 ��̇�
0

2 − �2� . �70�

This obviously vanishes if 
0=�, which corresponds to
�x̃2	0= �x̃2	GS. In all other cases, even for constant �, � is
time dependent. Obviously, for �=��t� also a time depen-
dent � follows, since 
0 is constant. In the case of the HO
with constant frequency �=�0, the WP width oscillates with
the frequency 2�0 and an amplitude that depends on the
absolute value of the difference between 
0

2 and �2.
Finally, it should be pointed out that for �̇�0, and hence

��x̃ , p̃�+	�0, the term �
�xv in the CE is also not vanishing,

which gives rise to the above-mentioned difference between
the classical and the quantum mechanical case.

IV. CONNECTION BETWEEN THE ERMAKOV
INVARIANT AND THE WIGNER FUNCTION

Another way of describing quantum systems that comes
closest to the classical phase space description, is with the
Wigner function. Despite its well-known problematic aspects
�11�, it is often a useful tool, and is particularly applied re-
cently in studies concerning the transition from quantum to
classical physics.

In order to keep the paper self-contained, the first part of
this section will present a short overview of the connection
between the Wigner function and the Ermakov invariant that
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has been communicated by one of the authors recently �12�.
In the second part, the particular consequences of time-
dependent uncertainties for the description of the dynamics
based on the Wigner function will be analyzed.

To obtain the Wigner function corresponding to our WP
solution �2� of the time-dependent SE, one has to perform the
transformation �11�

W�x,p,t� =
1

2��
�

−�

+�

dqeipq/��WP
* �x +

q

2
,t�WP�x −

q

2
t .

�71�

Using our notation with �x	=�, x̃=x−�, p̃= p−m�̇, and
y�t�=yR+ iyI, the Wigner function can be expressed as

W�x,p,t� =
1

��
exp�− 2� yI

2 + yR
2

yI
x̃2 −

p̃2

2�2yI
+

2

�
� yR

yI
x̃p̃� .

�72�

In order to elucidate the physical meaning of this expres-
sion, it is helpful to rewrite yI and yR in terms of the position
and momentum uncertainties, according to Eqs. �37�–�39�.
Using these relations, W�x , p , t� can be expressed as

W�x,p,t� =
1

��
exp�−

2

�2��p̃2	x̃2 − ��x̃, p̃�+	x̃p̃ + �x̃2	p̃2�� .

�73�

The connection with the Ermakov invariant is found eas-
ily, providing the uncertainties are now expressed in terms of
� and �̇ instead of yI and yR, again according to Eqs.
�37�–�39�.

The Wigner function then reads

W�x,p,t� =
1

��
exp�−

m

�
���̇2 +

1

�2x̃2

− 2��̇
p̃

m
x̃ + �2 p̃2

m2
� . �74�

The term in square brackets can be rewritten to yield
W�x , p , t� as

W�x,p,t� =
1

��
exp�−

m

�
���̇x̃ − �

p̃

m
2

+ � x̃

�
2
� .

�75�

The form of the exponent of W�x , p , t� already looks very
similar to the Ermakov invariant and, particularly at the ori-
gin of the phase space, i.e., for x=0 an p=0, the square
bracket in the exponent of Eq. �75� is, up to a constant factor,
identical with the Ermakov invariant, i.e.

W�0,0,t� =
1

��
exp�−

m

�
���̇� − ��̇�2 + ��

�
2
�

=
1

��
exp�−

2m

�
I� = const. �76�

Since the time dependence of position and momentum

enters the exponent of W�x , p , t� only via �x	=��t� in x̃ or
�p	=m�̇ in p̃ �and �x	 and �p	 occur only quadratic or bilin-
ear, so the negative sign in x̃ and p̃ does not matter�, also the
exponent of W�x , p , t� is a temporal invariant. This agrees
with the facts �i� that the normalization factor of
W�x , p , t� , 1

�� , is time independent and �ii� that for quadratic
potentials, W�x , p , t�=W0(x0�x , p , t� , p0�x , p , t�), where
W0�x , p� is the Wigner function at time t=0, and
(x0�x , p , t� , p0�x , p , t�) is the phase space point at which a
classical particle would have to start at time t=0 in order to
reach the point �x , p� at time t �see �13��.

Inserting the Wigner function �73� into the corresponding
equation of motion

�

�t
W�x,p,t� = −

p

m

�W

�x
+

�V

�x

�W

�p
, �77�

with V=0 or V= m
2 �2x2, leads to terms that are quadratic,

bilinear, or linear in the shifted variables x̃ and p̃, or inde-
pendent of them. The time dependence of the position uncer-
tainty, entering ��x̃ , p̃�+	= ��̇�, only affects the terms that
are quadratic or bilinear in the variables. Since the equations
of motion for the classical trajectory and velocity �or mo-
mentum� are only connected with the terms linear in the
variables, they are not affected by the value of ��x̃ , p̃�+	.
However, the time dependence of position—and
momentum—uncertainty strongly depends on this term.

So, ignoring the time dependence of �, or taking
��x̃ , p̃�+	=0, respectively, would lead to the following results
that contradict the well-known established ones:

�a� Free motion

�i�
�p̃2	

2m =0 instead of being constant �0;
�ii� �

�t �x̃
2	=0, i.e., �x̃2	= const instead of having a time

dependence describing the spreading of the WP.
�b� HO:

�i�
�p̃2	

2m = m
2 �2�x̃2	, which is only valid for WPs with con-

stant width, but as we have seen, there exist also WPs with
oscillating width;

�ii� �
�t �x̃

2	=0, which is not valid in the general case, as
discussed above;

�iii� �
�t �p̃

2	=0, here the same applies as stated above for
�
�t �x̃

2	=0.
Therefore, the time dependence of � is crucial in order to

obtain the proper dynamical behavior of the quantum me-
chanical aspect of the system.

V. CONCLUSIONS AND PERSPECTIVES

One major result of our investigation is that the Ermakov
invariant is the central quantity that connects different forms
for the description of the dynamics of quantum systems, such
as the time-dependent SE, the time propagator, or Feynman
kernel, respectively, and the time-dependent Wigner func-
tion.

Unlike the classical Hamiltonian or Lagrangian, this in-
variant not only depends on the classical variables such as
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position and momentum or velocity �and their initial condi-
tions�, but also on the quantum uncertainties contained in �
and �̇. Therefore, the initial conditions of these quantities are
also somehow taken into account in a description using the
variables û and ẑ or �=�û2+ ẑ2, occurring in I. So, time-
dependent phenomena such as the possible time dependence
of the WP width become directly obvious, whereas they are
somewhat hidden �although present in principle� in the usual
description according to Feynman, based only on the classi-
cal variables.

The importance of the initial value of the uncertainty has
been demonstrated �so far, in particular of the position un-
certainty or �0, respectively, since in the cases considered
� �̇

�
�
0=0 is valid, that might be different for different systems�,

since it determines whether � is time dependent or not. For
�̇�0, a term �

�xv�0 occurs in the CE �13� for the quantum
mechanical probability density that is not present in the clas-
sical description of the same Hamiltonian system. This term
is related to a nonclassical contribution to the probability
current j=�v, since v is given by v= �̇+ �̇

� x̃, and therefore
related to transport phenomena such as conduction or resis-
tance properties of the system. The effect of an oscillating
��t� might also be measurable. Since a similar effect also
occurs for the motion of a quantum system in a magnetic
field �even with dissipation�, one of us proposed a possible
experiment in an earlier work �14�.

In particular, it is interesting that the time-dependent ef-
fect can arise when the system is initially in a state that does
not match a parameter occurring in the potential, since �̇ is,
according to Eq. �69�, proportional to the term 
0�+ �̈
=
2�− �

��V���.
So, for the free motion, no influence of any potential is

present, which leads to the same WP with the time-
dependent spreading width using the Feynman kernel or the
methods based on the Ermakov invariant. For the HO, how-
ever, using the latter methods, it immediately becomes obvi-
ous that �̇�0 if the system is initially not in the ground
state, but, e.g., in an excited state.

It also becomes immediately clear from Eq. �70�, that for
a system with time dependent ��t�, such as for example
single atoms or ions caught in a Paul trap �15�, �̇�0 holds.

In the case of the Wigner function, the occurrence of �̇
�0 or �̇�= 1

� ��x̃ , p̃�+	�0, respectively, has no effect on the
classical aspect, i.e., the equation of motion of the classical

trajectory, but it has an important influence on the dynamics
of the position and momentum uncertainties. The possibility
of �̇�0, and hence �

�xv�0, shows, that the coupling of po-
sition and momentum, expressed by �x̃p̃+ p̃x̃	�0, is obvi-
ously a phenomenon, that is not present in the classical phase
space description.

Another major result is the fact that, according to Eq.
�69�, the time evolution of a typical quantum mechanical
property such as the position uncertainty or �2�t�, respec-
tively, can be totally described, if one only knows the clas-
sical trajectory ��t� and the classical velocity �̇�t� �including
their initial conditions� plus the initial position uncertainty,
expressed by �0 or 
0= 1

�0
2 but without the knowledge of any

dynamical quantum degree of freedom. In other words, the
dynamics of the quantum system can be described totally in
terms of the classical degrees of freedom, if only the initial
uncertainty of the position measurement is given. This is a
very surprising result, since it traces quantum dynamics en-
tirely back to the classical one plus the existence of an un-
certainty principle. However, this is, so far, demonstrated
only for the model system treated in this work. It seems to be
an interesting question if this property is valid for all dy-
namical quantum systems, or, at least, for which other sys-
tems apart from the ones considered above. This question is,
however, beyond the scope of this work and will be dis-
cussed elsewhere. It shall only be mentioned that an exten-
sion to include polynomial Hamiltonians might be possible
based on the work of Sarlet �16�, who showed that in this
case it is sometimes possible to reduce these Hamiltonians to
a quadratic form by carrying out canonical transformations.

Finally, it should be mentioned that further developments
to include dissipative effects should be possible. A way of
reaching this goal might be the use of a logarithmic nonlin-
ear SE for the effective description of dissipative systems
with irreversible dynamics �17� since, particularly for this
equation, also an exact dynamical invariant of Ermakov type
exists �18�. Work in this direction is in progress.
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