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We relate the nonlocal properties of noisy entangled states to Grothendieck’s constant, a mathematical
constant appearing in Banach space theory. For two-qubit Werner states �p

W= p��−���−�+ �1− p�1 /4, we show
that there is a local model for projective measurements if and only if p�1/KG�3�, where KG�3� is
Grothendieck’s constant of order 3. Known bounds on KG�3� prove the existence of this model at least for
p�0.66, quite close to the current region of Bell violation, p�0.71. We generalize this result to arbitrary
quantum states.
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I. INTRODUCTION

The impossibility of reproducing all correlations observed
in composite quantum systems using models similar to that
of Einstein, Podolsky, and Rosen �EPR� �1� was proven in
1964 by Bell. In his seminal work �2�, Bell showed that all
local models satisfy some conditions, the so-called Bell in-
equalities, but there are measurements on quantum states that
violate a Bell inequality. Therefore, we say that quantum
mechanics is nonlocal �3�. Experimental verification of Bell
inequality violation closed the EPR debate, up to some tech-
nical loopholes �4�.

From an operational point of view it is not difficult to
define when a quantum state exhibits nonclassical correla-
tions. Suppose that two parties Alice �A� and Bob �B� share a
mixed quantum state � with support on HA � HB, where HA
�HB� is the local Hilbert space of A’s �B’s� system. Then �
contains quantum correlations when its preparation requires
a nonlocal quantum resource. Conversely, a quantum state is
classically correlated, or separable, when it can be prepared
using only local quantum operations and classical communi-
cation �LOCC�. From this definition, due to Werner �5�, it
follows that a quantum state � is separable if it can be ex-
pressed as a mixture of product states, �=	i=1

N pi��A
i ���A

i �
� ��B

i ���B
i �. A state that cannot be written in this form has

quantum correlations and is termed entangled. But the above
definition, in spite of its clear physical meaning, is somewhat
impractical. Tests to distinguish separable from entangled
states are complicated �6�, except when dA=2 and dB�3 �7�,
dA and dB denoting the dimensions of the local subsystems.

Violation of a Bell inequality by a quantum state is, in
many situations, a witness of useful correlations �8�. In par-
ticular, Bell inequality violation is a witness of a quantum
state’s entanglement. Now, the question is, are all entangled
states nonlocal? For the case of pure states, the answer is yes
�9�: all entangled pure states violate the Clauser-Horne-
Shimony-Holt �CHSH� inequality �10�. In 1989, Werner
showed that the previous result cannot be generalized to
mixed states �11�. He introduced what are now called Werner
states, and gave a local hidden variables �LHV� model for
measurement outcomes for some entangled states in this
family �5�. Although the construction only worked for pro-

jective measurements, his result has since been extended to
general measurements �12�.

In spite of these partial results, it is in general extremely
difficult to determine whether an entangled state has a local
model or not �13�, since �i� finding all Bell inequalities is a
computationally hard problem �14,15� and �ii� the number of
possible measurements is unbounded �see, however, �16� for
recent progress�. This question remains unanswered even in
the simplest case of Werner states of two qubits. These are
mixtures of the singlet ��−�= ��01�− �10�� /
2 with white
noise of the form

�p
W = p��−���−� + �1 − p�

1

4
. �1�

It is known that Werner states are separable if and only if
p�1/3, admit a LHV model for all measurements for
p�5/12 �12�, admit a LHV model for projective measure-
ments for p�1/2 �5�, and violate the CHSH inequality for
p�1/
2 �see Fig. 1�. However, the critical value of p, de-
noted pc

W, at which two-qubit Werner states cease to be non-
local under projective measurements is unknown. This ques-
tion is particularly relevant from an experimental point of
view, since pc

W specifies the amount of noise the singlet tol-
erates before losing its nonlocal properties.

In this paper, we exploit the connection between correla-
tion Bell inequalities and Grothendieck’s constant �17�, first

FIG. 1. Nonlocal properties of two-qubit Werner states �p
W.

Werner’s local model works up to p=1/2, while the CHSH inequal-
ity is violated when p�2−1/2�0.71. Here, we prove the existence
of a local model for projective measurements when p�0.66.
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noticed by Tsirelson �18�, to prove the existence of a local
model for several noisy entangled states. We first demon-
strate that pc

W is related to a generalization of this constant,
namely, pc

W=1/KG�3�, where KG�3� is Grothendieck’s con-
stant of order 3 �19�. The exact value of KG�3� is unknown,
but known bounds establish that 0.6595� pc

W�1/
2. Thus,
we close more than three-quarters of the gap between Wern-
er’s result and the known region of Bell inequality violation
�see Fig. 1�. Next, we show that if Alice �or Bob� is restricted
to make measurements in a plane of the Poincaré sphere,
then there is an explicit LHV model for all p�1/KG�2�
=1/
2. This improves on the bound of Larsson, who
constructed a LHV model for planar measurements for p
�2/� �20�. Thus, in the case of planar projective measure-
ments, violation of the CHSH inequality completely charac-
terizes the nonlocality of two-qubit Werner states.

In the case of traceless two-outcome observables, we can
extend our results to mixtures of an arbitrary state � on
Cd � Cd with the identity, of the form �21�

�p = p� + �1 − p�
1

d2 . �2�

Denote by pc��� the maximum value of p for which there
exists a LHV model for the joint correlation of traceless two-
outcome observables on �p, and define

pc
d = min

�
pc���, pc = lim

d→�
pc

d. �3�

Then pc=1/KG where KG is Grothendieck’s constant. Again,
the exact value of KG is unknown, but known bounds imply
0.5611� pc�0.5963.

Finally, we discuss the opposite question of finding Bell
inequalities better than the CHSH inequality at detecting the
nonlocality of �p

W, or, more generally, of Bell diagonal states
�22�. In particular, we show that none of the Inn22 Bell in-
equalities introduced in Ref. �23� is better than the CHSH
inequality for these states.

Before proving our results, we require some notation. We
write a two-outcome measurement by Alice �Bob� as
�A+ ,A−� ��B+ ,B−��, where the projectors A± correspond to
measurement outcomes ±1. We define the observable corre-
sponding to Alice’s �Bob’s� measurement as A=A+−A−

�B=B+−B−�. An observable A is traceless if trA=0, or
equivalently trA−=trA+. The joint correlation of Alice and
Bob’s measurement results, denoted � and 	, respectively, is

��	� = tr�A � B�� . �4�

Alice’s local marginal is specified by ���=tr�A � 1��, and
similarly for Bob. Together, ��	�, ���, and �	� define the full
probability distribution for two-outcome measurements on �.
A LHV model for the full probability distribution is one that
gives the same values ��	�, ���, and �	� as quantum theory.
A LHV model for the joint correlation is one that gives the
same joint correlation ��	�, but not necessarily the correct
marginals. In the qubit case, the projective measurements
applied by the parties are specified by the direction of their
Stern-Gerlach apparatuses, given by normalized three-

dimensional real vectors a� and b�: A=a� ·
� and B=b� ·
� .

II. WERNER STATES

Let us first consider the case of Werner states �1�. For
projective measurements on �p

W, LHV simulation of the joint
correlation is sufficient to reproduce the full probability dis-
tribution. This follows from the lemma given below.

Lemma 1. Suppose that there is a LHV model L that gives
joint correlation ��	�L. Then there is a LHV model L�
with the same joint correlation and uniform marginals:
��	�L�= ��	�L, ���L�= �	�L�=0.

Proof. Let � and 	 be the outputs generated by the LHV
L �dependent on the hidden variables and measurement
choices�. Define a new LHV L� by augmenting the hidden
variables of L with an additional random bit c� �−1,1�. In
L�, Alice outputs c� and Bob c	. �

Therefore, the analysis of the nonlocal properties of
Werner states under projective measurements can be re-
stricted to Bell inequalities involving only the joint correla-
tion. Actually, this holds for any Bell diagonal state, under
projective measurements, since trA�=trB�=1 /2 for all these
states, so all projective measurements give uniform margin-
als. In the Bell scenarios we consider, Alice and Bob each
choose from m observables, specified by �A1 , . . . ,Am� and
�B1 , . . . ,Bm�. We can write a generic correlation Bell inequal-
ity as


 	
i,j=1

m

Mij��i	 j�
 � 1, �5�

where M = �Mij� is an m�m matrix of real coefficients de-
fining the Bell inequality. The matrix M is normalized such
that the local bound is achieved by a deterministic local
model, i.e.,

max
ai=±1,bj=±1


 	
i,j=1

m

Mijaibj
 = 1. �6�

For the singlet state, ��i	 j��− =−a� i ·b� j. We obtain the maxi-
mum ratio of Bell inequality violation for the singlet state,
denoted Q, by maximizing over normalized Bell inequalities,
and taking the limit as the number of settings goes to infinity:

Q = lim
m→�

sup
Mij

max
a� i,b

�
j


 	
i,j=1

m

Mija� i · b� j
 . �7�

Since all joint correlations vanish for the maximally mixed
state, it follows that the critical point at which two-qubit
Werner states do not violate any Bell inequality is pc

W=1/Q.
As first noticed by Tsirelson, the previous formulation of

the Bell inequality problem is closely related to the definition
of Grothendieck’s inequality and Grothendieck’s constant,
KG �see �18� for details�. Grothendieck’s inequality first
arose in Banach space theory, particularly in the theory of
p-summing operators �24�. We shall need a refinement of his
constant, which can be defined as follows �17�:

Definition 1. For any integer n�2, Grothendieck’s con-
stant of order n, denoted KG�n�, is the smallest number with
the following property: Let M be any m�m matrix for
which
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i,j=1

m

Mijaibj
 � 1, �8�

for all real numbers a1 , . . . ,am ,b1 , . . . ,bm� �−1, +1�. Then


 	
i,j=1

m

Mija� i · b� j
 � KG�n� �9�

for all unit vectors a�1 , . . . ,a�m ,b�1 , . . . ,b�m in Rn.
Definition 2. Grothendieck’s constant is defined as

KG = lim
n→�

KG�n� . �10�

The best bounds currently known for KG are
1.6770�KG�� / �2 ln�1+
2��=1.7822 �25�. The lower
bound is due to Reeds and, independently, Davies �26�, while
the upper bound is due to Krivine �19�.

It follows immediately from the first definition that the
maximal Bell violation for the singlet state �7� is KG�3�. We
have therefore proved the following theorem.

Theorem 1. There is a LHV model for projective
measurements on the Werner state �p

W if and only if
p� pc

W=1/KG�3�.
It is known that 
2�KG�3��1.5163. The lower bound

follows from the CHSH inequality; the upper bound is again
due to Krivine �19�. He shows that KG�3��� / �2c3� where c3

is the unique solution of


c3

2
�

0

c3

t−3/2 sin t dt = 1 �11�

in the interval �0,� /2�. Numerically we find that
c3�1.0360. This implies KG�3��1.5163 and pc

W�0.6595.
Furthermore, it turns out that an explicit LHV model
emerges from Krivine’s upper bound on KG�3�, and the de-
tails are presented in �27�.

Another result follows from Krivine’s work.
Theorem 2. If Alice’s projective measurements are re-

stricted to a plane in the Poincaré sphere, then there is a LHV
model for �p

W if and only if p�1/
2.
Proof. In this case, the vectors a� i in Eq. �7� are two di-

mensional. Since the quantum correlation depends only on

the projection of b� j onto a� i, we can assume that the vectors b� j
lie in the same plane. It follows that pc

W=1/KG�2� for planar
measurements, and Krivine has shown that KG�2� is equal to

2 �19�. �

Again Krivine’s proof can be adapted to give an explicit
LHV model for planar measurements, valid for p�1/
2
�27�.

III. GENERALIZATION TO HIGHER DIMENSION

It is possible to extend these results to general states of
the form �2�, if we restrict our analysis to correlation Bell
inequalities of traceless two-outcome observables. Admit-
tedly, this analysis is far from sufficient. Indeed it does not

allow us to determine whether the full probability distribu-
tion admits a LHV model even in the case of two-outcome
measurements, since the most general Bell inequalities have
terms that depend on marginal probabilities �23�. Mindful of
this caveat, we now prove the existence of LHV models for
the joint correlation of the states �2�. To make the connection
with Grothendieck’s constant, we start with a representation
of quantum correlations as dot products, first noted by Tsire-
lson �18�. It is sufficient to restrict attention to the case of
pure states, since we can obtain a LHV for a mixed state � by
decomposing it into a convex sum of pure states, and taking
a convex combination of the LHV’s for those pure states.

Lemma 2. Suppose Alice and Bob measure observables A
and B on a pure quantum state ����Cd � Cd. Then we can
associate a real unit vector a� �R2d2

with A �independent of

B�, and a real unit vector b� �R2d2
with B �independent of A�

such that ��	��=a� ·b� . Moreover, if ��� is maximally en-

tangled, then we can assume the vectors a� and b� lie in Rd2−1.
Proof. Let �a�=A � 1B��� and �b�=1A � B���. Then

��	�= �a �b�, �a �a�= �b �b�=1. Denote the components of �a�
as ai where i=1,2 , . . . ,d2, and similarly for �b�. We
now define a 2d2-dimensional real vector a�
= �Re a1 , Im a1 ,Re a2 , Im a2 , . . . ,Re ad2 , Im ad2�, and simi-

larly b� = �Re b1 , Im b1 ,Re b2 , Im b2 , . . . ,Re bd2 , Im bd2�. Then

a� ·a� =b� ·b� =1 and ��	�=a� ·b� �because �a �b� is real�.
If ��� is maximally entangled, we can assume ���= ��+�

= �1/
d�	i=1
d �ii�. We calculate ��	��+ = trA�ABt� /d where Bt is

the transpose of B. Introduce a �d2−1�-dimensional basis gi

for traceless operators on HA, normalized such that
tr�gigj�=d
ij. Let A=	iaigi, Bt=	ibigi, which define the vec-

tors a� and b� . Squaring these definitions and taking the trace
gives 	iai

2=	ibi
2=1. Finally, tr�ABt�=d	iaibj, which implies

that ��	�=	iaibi=a� ·b� .
The converse of Lemma 2 is also true: all dot products of

normalized vectors a� ,b� �Rn are realized as observables on
��+�, where n=2�log2 d�+1 and �x� denotes the largest integer
less than or equal to x. This result was derived by Tsirelson
in Ref. �18�. For the sake of completeness, we state it here
without proof �see �18� for the details�.

Theorem 3. Let �âi�i=1
m and �b̂j� j=1

m be sets of unit vectors in
Rn. Let d=2�n/2� and ��+� be a maximally entangled state on
Cd � Cd. Then there are observables A1 . . . ,Am and B1 . . . ,Bm
on Cd such that

��i� = ��+�Ai � 1��+� = 0, �12�

�	 j� = ��+�1 � Bj��+� = 0, �13�

��i	 j� = ��+�Ai � Bj��+� = âi · b̂j , �14�

for all 1� i , j�m.
Note that in our case, the stipulation that the observables

be traceless ensures that their outcomes are random on the
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maximally mixed state. The next theorem follows from
Lemma 2 and Theorem 3.

Theorem 4. Let � be a state on Cd � Cd and define �p and
pc

d as in Eqs. �2� and �3�. Then

1

KG�2d2�
� pc

d �
1

KG�2�log2 d� + 1�
. �15�

In other words, there is always a LHV model for the joint
correlation of traceless two-outcome observables on �p for
p�1/KG�2d2� and there is a state �in fact, the maximally
entangled state on �log2 d� qubits� such that the joint correla-
tion is nonlocal for p�1/KG�2�log2 d�+1�.

Corollary 1. The threshold noise for the joint correlation
of two-outcome traceless observables is pc=1/KG.

This follows from the previous theorem, taking the limit
d→�. The known bounds imply 0.5611� pc�0.5963. Com-
pare this to ps, the threshold noise at which the state �p is
guaranteed separable: while ps decreases with dimension at
least as 1 / �1+d� �28�, pc approaches a constant. In the case
of two-qubit systems, we can be more specific, because pro-
jective measurements are traceless and have two outcomes.

Corollary 2. Suppose � is an arbitrary state on C2 � C2.
Then there is a LHV model for the joint correlation on
�p= p�+ �1− p�1 /4 for p�1/KG�8�. In particular, KG�8�
�1.6641 �19,27�, which implies there is a LHV model for
p�0.6009.

For maximally entangled states, marginals of traceless ob-
servables are uniform, so Lemmas 1 and 2 imply the follow-
ing.

Theorem 5. Let �p= p��+���+�+ �1− p�1 /d2 where ��+� is a
maximally entangled state in Cd � Cd. Then there is a LHV
for the full probability distribution arising from traceless ob-
servables for p�1/KG�d2−1�.

IV. BELL INEQUALITIES FOR WERNER STATES

Just as upper bounds on KG�n� yield LHV models, lower
bounds yield Bell inequalities. The case of Werner states
appears of particular interest: at present, there is no Bell
inequality better than the CHSH inequality at detecting the
nonlocality of �p

W �29�. This and other approaches to con-
struct new Bell inequalities will be presented in �27�. Unfor-
tunately, none of these inequalities could be proven to be
better than the CHSH inequality. It is remarkable how diffi-
cult it is to enlarge this region of Bell violation or, equiva-
lently, to show that KG�3��KG�2�=
2. Actually, in the case
of random marginal probabilities, as for Bell diagonal states
under projective measurements, no improvement over the
CHSH inequality can be obtained using 3�n measurements
�30�.

A similar result can also be proven for the whole family
of the so-called Inn22 �23� Bell inequalities. These are speci-
fied by a matrix of zeros and ±1 as follows:

Inn22 =�
− 1 0 ¯ ¯ ¯ 0

− �n − 1� 1 ¯ ¯ ¯ ¯ 1

− �n − 2� 1 ¯ ¯ ¯ 1 − 1

− �n − 3� 1 ¯ ¯ 1 − 1 0

] ] ] ] ] ] ]

− 1 1 1 − 1 0 ¯ 0

0 1 − 1 0 ¯ ¯ 0

�
�16�

All the coefficients in the first column �row� refer to Alice’s
�Bob’s� marginal probabilities, while the rest of the terms are
for joint probabilities. Only one of the two possible out-
comes, say +1, appears in the inequality and its local bound
is always zero. For example, when n=2, and denoting
p�ai ,bj�= p�ai= +1,bj = +1�, I2222 reads

p�a1,b1� + p�a1,b2� + p�a2,b1� − p�a2,b2� − p�a1 = + 1�

− p�b1 = + 1� � 0, �17�

which is equivalent to the CHSH inequality.
Theorem 6. Consider the set of Inn22 Bell inequalities, for

n two-outcome settings. Then, if a Bell diagonal state vio-
lates any of these inequalities with projective measurements,
it also violates the CHSH inequality.

Proof. Our proof takes advantage of the fact that all mar-
ginal probabilities for projective measurements on Bell diag-
onal states are fully random. Thus, when dealing with these
states, one can put all the terms in the first row and column
of �16� equal to 1/2. In order to avoid confusion, we denote
by In� the Inn22 inequalities where the local terms have been
replaced by 1/2.

We start our proof with the simplest nontrivial case I3322.
For Bell diagonal states, it can be written as

I3� =
1

2
�I2��1213� + I2��1223� + I2��1312� + I2��2312�� � 0,

�18�

where the arguments of I2��ijkl� are the measurements that
appear in the I2� inequality, i and j for Alice, and k and l for
Bob. From this identity we have that the violation of I3� im-
plies that at least one of the I2� inequalities is violated too.
This procedure can be generalized for all n: the idea is to
express In� in terms of I2� inequalities using the joint probabil-
ity terms with a negative sign in �16�. For example, when
n=4 one has

I4� =
1

3
�I2��1214� + I2��1224� + I2��1234� + I2��1313� + I2��1323�

+ I2��2313� + I2��2323� + I2��1412� + I2��2412� + I2��3412�

+ p�a3,b3� −
1

2
� � 0. �19�

Note that since all local probabilities are equal to 1/2,
p�a3 ,b3�−1/2 is never positive. Thus, whenever I4��0, at
least one of the I2� inequalities appearing in �19� is violated.
For arbitrary n, In� can always be written as
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In� =
1

n − 1� 	
i=1

s1�n�

I2� + 	
i=1

s2�n� �p�a,b� −
1

2
�� � 0, �20�

i.e., the sum of s1�n� I2� inequalities and s2�n� negative
terms p�ai ,bj�−1/2, up to an n−1 factor. Some patient
calculation shows that s1�n�=n�n2−1� /6 and s2�n�
= �n−1��n−2��n−3� /6. Thus, if a Bell diagonal state violates
Inn22, it also violates a CHSH inequality. Consequently, none
of these inequalities enlarge the known region of Bell viola-
tion for Werner states.

After seeing these results, one would be tempted to con-
jecture that the CHSH violation provides a necessary and
sufficient condition for detecting the nonlocality of Bell di-
agonal states, and in particular of Werner states. This result,
however, would imply that KG�3�=KG�2�=
2, which seems
unlikely. Actually, one can find in �25� an explicit construc-
tion with 20 settings showing that KG�5��10/7�
2. More
recently, one of us has shown that KG�4��
2 as well �27�.

V. CONCLUSIONS

In this work, we have exploited the connection between
Bell correlation inequalities and Grothendieck’s constants to
prove the existence of LHV models for several noisy en-
tangled states. In the case of Werner states, one can demon-
strate the existence of a local model for projective measure-
ments up to p�0.66, close to the known region of Bell
violation. Although we only proved here the existence of the
LHV models, the correspondence between noise thresholds
and Grothendieck’s constants can also be exploited to con-
struct the explicit models. Indeed, these can be extracted
from �the proofs of� Krivine’s upper bounds on KG�n�. The
details are presented in Ref. �27�.
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