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I. INTRODUCTION

The geometric phase is a property of a physical system
that depends only on the path the system follows during its
evolution, not on the details of the dynamics. Since the work
of Berry �1�, geometric phases have acquired a primary role
in our understanding of many physical phenomena �2�, and
have been subject to several experimental verifications �3�.
The original idea, framed within the context of adiabatic and
cyclic evolutions of isolated systems, has been generalized in
various directions �4–8�; of particular importance are all
those efforts �5–9� aiming at defining a geometric phase for
open quantum systems, which are not mathematically de-
scribed by a pure state ��t� but in terms of a reduced density
matrix �t undergoing a nonunitary evolution. Such proposals,
besides being interesting on their own, could be important
for possible applications, e.g., to quantum computation �10�.

The mathematical framework within which the geometric
phase for an open quantum system is defined is the follow-
ing:

�i� One assumes that the effect of the environment on the
quantum system is such that, under suitable approximations,
the system can be effectively treated as an isolated system
undergoing a nonunitary type of linear1 evolution,

�t:�0 → �t��0� � �t, �1�

which takes into account both the internal dynamics of the
system and its interaction with the environment. Under rea-
sonable assumptions �12�, which have nevertheless been
questioned in the literature �see, e.g., �13��, the map �t can
be taken of the quantum-dynamical-semigroup type, gener-
ated by the following class of equations:

d�

dt
= −

i

�
�H,�� −

�2

2 �
n=1

N

	Ln
†Ln� + �Ln

†Ln − 2Ln�Ln
†
; �2�

the self-adjoint operator H is usually identified with the stan-
dard Hamiltonian of the system, while the operators Ln, to-
gether with the positive constant �, summarize the effect of
the environment on the system.

A general consequence of this type of approach is that a
pure state ��t� is usually mapped into a statistical mixture �t,
so the problem arises of how to identify a geometric phase
for the evolution of a density matrix �t.

�ii� A common strategy that is used in the literature for
associating a geometric phase to the evolution of �t is to
formally map the density matrix into a statistical mixture of
pure states ��t

n�, each of which is weighted with a probability
pn�t�,

�t → 	„��t
n�,pn�t�…
: �t = �

n

pn�t���t
n���t

n�; �3�

one can then use the standard definition of geometric phase
for a pure state,

�t
geo = �t

tot − �t
dyn = arg��0��t� − Im�

0

t

��t�d��t� , �4�

to associate a geometric phase also to �t; this strategy has
given fruitful results in the case of mixed states undergoing a
unitary evolution �6�, while the case of nonunitary evolu-
tions, in particular those associated to open quantum sys-
tems, is still under debate. In this second case, a tentative
definition of geometric phase has been given via state puri-
fication �7� and the quantum-jump approach �9�.

A well-known characteristic property of relation �3� is that
the association between a density matrix �t and an ensemble
	���t

n� , pn�t��
 is not one-to-one, but one-to-many �14�: in
general, there are different ensembles, containing different
vectors and different probabilities, which give rise to the
same density matrix; moreover, such vectors and the corre-
sponding probabilities evolve in completely different ways.
In the state purification approach, this property of density
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1As discussed in Ref. �11�, the evolution equation for the statisti-

cal operator must be linear, otherwise it can give origin to superlu-
minal effects.
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matrices is related to the fact that there are different Kraus
representations of the dynamical evolution of �t �15�. In the
quantum-jump approach, the same property reflects the fact
that there are different stochastic unravelings which end up
reproducing the same statistical operator �16�.

In this paper, we analyze the consequences of such a fea-
ture of density matrices for the definition of geometric
phases, within the context of the stochastic unraveling for-
malism, to which the quantum-jump approach belongs. We
will show that the approach followed in �9� to identify a
geometric phase strongly depends on the type of unraveling
of �t: as a consequence, such a phase is not a geometric
object, because it depends also on non-physical parameters
that are not related to the path followed by the density matrix
during its evolution.

II. STOCHASTIC UNRAVELINGS

A stochastic unraveling of a linear evolution �t for a den-
sity matrix �t is defined as follows. Let us fix a probability
space �� ,F ,P� and let us consider a stochastic evolution for
state vectors,

Tt���:��0� → ��t���� , �5�

which, for each different sample element ���, associates a
different state vector ��t���� to the same initial state ��0�.
One can then define the density matrix,

�̃t � �
n

pnEP���t
n������t

n����� , �6�

where the symbol EP denotes the average value with respect
to the probability measure P; here we have assumed that the
initial state of the system is represented by a statistical mix-
ture 	���0

n� , pn�
, so an extra sum over the possible initial
states appears in the definition of �̃t. The above relation de-
fines a map,

�̃t:�0 → �̃t��0� � �̃t, �7�

where �̃t is given by Eq. �6�. Now, if the map �̃t defined by
Eqs. �7� and �6� coincides with the linear map �t, we say that
Tt��� is a stochastic unraveling of �t.

Among the other things, the above definition of stochastic
unraveling implies that, when computing observable quanti-
ties of a system that evolves according to the map �t, e.g.,
the expectation value of a self-adjoint operator, �O�t

=Tr�O�t�, one can start with a stochastic unraveling �5� of
�t, then compute the quantum expectation ��t��� �O ��t����,
and finally average over the noise; this sequence of opera-
tions is legitimate since, by the definition of stochastic un-
raveling, one trivially has

EP���t�O��t�� = Tr	O�t���0���0��
; �8�

of course, if the initial state is a mixed state, an extra sum
over the possible initial states, weighted with the correspond-
ing probability distribution, has to be added at the left-hand
side of Eq. �8�.

In the literature, two types of stochastic unravelings have
been proposed, one discrete and one continuous. The first

one is the quantum jump approach �16� which has been used
in Ref. �9� to associate a geometric phase to the evolution of
an open quantum system; the second one is given in terms of
stochastic Schrödinger equations �17�. The two approaches
are similar and, in the following, we will resort to the second
one, because it is more elegant from the mathematical point
of view and easy to handle. We now briefly review it.

The idea is simple: the stochastic evolution Tt��� is as-
sumed to be generated by a stochastic Schrödinger equation,
whose typical structure is the following �17–19�:

d��t� = −
i

�
Hdt + ��

n=1

N

�Ln − rn,t�dWt
n

−
�2

2 �
n=1

N

�Ln
†Ln − 2Lnrn,t + rn,t

2 �dt���t� , �9�

where

rn,t =
1

2
��t��Ln

† + Ln���t� , �10�

with H and Ln defined as in Eq. �2�; Wt
n �n=1, . . . ,N� are N

independent standard Wiener processes with respect to the
measure P, which make Eq. �9� a stochastic differential
equation.

Such kinds of equations have been used in several con-
texts: within the theory of quantum measurement, to describe
the effects of a repeated measurement on the evolution of a
quantum system �20�; within collapse models, to provide a
solution to the measurement problem �21�; and within the
theory of an open quantum system, as a mathematical tool to
efficiently simulate the evolution of an open system �22�.

One of the fundamental properties �17� of Eq. �9� is that
the density matrix �t�EP���t���t � � solves Eq. �2�, i.e., Eq.
�9� represents a stochastic unraveling of the Lindblad-type
equation �2�.

Note that Eq. �9� is nonlinear, but it preserves the norm of
the state vector. There is a well-known way �17� to linearize
the equation, at the price of relinquishing the normalization
condition; consider the following stochastic differential
equation:

d�	t� = −
i

�
Hdt + ��

n=1

N

Lnd
t
n −

�2

2 �
n=1

N

Ln
†Lndt��	t�;

�11�

the stochastic processes 
t
n are standard Wiener processes

with respect to a new probability measure Q, whose relation
to P will soon be established.

The connection between the linear Eq. �11� and the non-
linear Eq. �9� is the following; given the solution �	t� of Eq.
�11� for an initial condition �	0�, if one performs the follow-
ing two operations:

�i� normalize the solution: �	t�→ ��t�= �	t� / ��	t��,
�ii� make the substitution,
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t
n → Wt

n = 
t
n − 2��

0

t

rn,tds , �12�

then the wave function ��t� so defined is the solution of Eq.
�17� for the same initial condition ��0�= �	0�. Moreover, one
can further show that the two probability measures P and Q
are related as follows �17�:

EP�Xt� � EQ��	t�	t�Xt� , �13�

where Xt is a stochastic process.

A. Equivalent stochastic unravelings

Two stochastic unravelings Tt
�1� and Tt

�2� are said to be
equivalent if they unravel the same evolution �t. A very re-
markable property is that there are infinite different but
equivalent stochastic unravelings for practically all physi-
cally interesting �t; within the quantum jump approach, this
issue is addressed, e.g., in �16�; within the stochastic
Schrödinger formalism, such a feature is less known, still
very easy to show. As a matter of fact, suppose in Eq. �9� we
change the Lindblad operators Ln as follows:

Ln → cnLn, �14�

where cn=ei�n are arbitrary phase factors; clearly, Eq. �2�
does not change, while Eq. �9� does change, since terms
appear that are not proportional to Ln

†Ln. Such a change is not
as trivial as it may seem: as we shall see, stochastic equations
with different values of �n entail completely different evolu-
tions for the state vector. Of course, there are other possible
unravelings of Eq. �2� besides those which can be obtained
by a phase shift in the Lindblad operators, but for simplicity
we consider here only these, since they are sufficient for the
subsequent analysis.

III. GEOMETRIC PHASE AND STOCHASTIC
UNRAVELINGS: AN EXAMPLE

As already remarked, in Ref. �9� the stochastic-unraveling
approach has been used to associate a geometric phase to an
open system; in this section, we discuss how the existence of
different equivalent stochastic unravelings affects the com-
putation of the geometric phase. As an example, we now
calculate the geometric phase associated with the evolution
of a spin particle in a constant magnetic field directed along
the z axis of a chosen reference frame, while the spin is
subject to dephasing. The quantum Hamiltonian is
H=−�Bz, and the effect of the environment is described by
one Lindblad operator L=z; the corresponding Lindblad
equation is ��=1�

d

dt
�t = i�B�z,�t� −

�2

2
†z,�z,�t�‡ . �15�

The initial spin state is taken equal to

��0� = cos
�

2
� + � + sin

�

2
�− � , �16�

where �+ � and �−� are the two eigenstates of z. Equation �9�
becomes

d��t� = i�Bzdt + ��cz − cos��z�t�dWt

−
�2

2
�z

2 − 2c cos��z�tz + cos2 ��z�t
2����t� ,

�17�

with �z�t= ��t �z ��t�. In the above equation, we have in-
cluded also the arbitrary phase factor c=ei� which, as al-
ready discussed, does not appear in Eq. �15� for the density
matrix �t. We now compute the total and dynamical phases
associated with the ensemble of vectors 	��t����t���� ,�
��
 generated by Eq. �17�.

A. Total phase

To derive the correct formula for the total phase, we resort
to an interferometric scheme like the one depicted in Fig. 1,
i.e., a Mach-Zehnder interferometer with a variable phase
shifter � in one of the two arms and the magnetic field in the
other. We call �h� and �v� the spatial part of the wave function
when the beam travels along the horizontal and vertical di-
rection, respectively; in the subsequent analysis, we will ne-
glect the contribution to the phase given by the free part of
the evolution, since we assume that the length of the two
arms of the interferometer is the same. The initial state of the
beam is then

��0� = ��0� � �h� = cos
�

2
� + � + sin

�

2
�− �� � �h� . �18�

To find the evolution from the initial time t=0 to the final
time t= tF when the beam comes out through the interferom-
eter, we first consider the linear version of Eq. �17�, which is2

d��t� = i�Bzdt + �czd
t −
�2

2
z

2dt���t� . �19�

By taking into account the effects of the two mirrors and
partial beam splitters, one finds for the beam at time tF

2In the following when we write ��t� and ��t�, we mean that Eqs.
�17� and �19� include not only the spin degree of freedom, but also
the spatial one; when on the other hand we write ��t� and �	t�, we
mean that we are taking into account only the spin degree of free-
dom.

FIG. 1. Interferometric scheme for measuring the total phase. �h�
corresponds to the beam traveling in the horizontal direction, while
�v� corresponds to the beam traveling in the vertical direction. � is
a variable phase shifter and B a magnetic field.
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��tF
� =

i

2
�ei� + ei�BT�e�c
tF

−��2/2��1+c2�tFcos
�

2
� + �

+ �ei� + e−i�BT�e−�c
tF
−��2/2��1+c2�tFsin

�

2
�− ���h�

+
1

2
�ei� − ei�BT�e�c
tF

−��2/2��1+c2�tFcos
�

2
� + �

+ �ei� − e−i�BT�e−�c
tF
−��2/2��1+c2�tFsin

�

2
�− ���v� .

�20�

One can now compute the output intensity along �h�,

ItF
��� = ��tF

���h��h� � ISPIN���tF
�

=
1

2
+

1

2
�f tF

����cos	� + arg�f tF
����
 , �21�

where ��tF
�= ��tF

� / ���tF
�� and

f tF
��� =

e−2�2tF cos2 �

��tF
��tF

� e2�
tF
cos �−i�BT cos2�

2

+ e−2�
tF
cos �+i�BT sin2 �

2
� . �22�

One can then identify the total phase, for each realization of
the noise, as

�t
tot��� � arg�f t���� , �23�

which depends not only on �, but also on �, i.e., on the type
of unraveling of the master equation �15�. Anyway, �t

tot��� as
such is not a physical quantity because it cannot be observed.
The final outcome—i.e., the interference pattern—consists of
many repetitions of the experiment, accordingly the observ-
able physical quantity is the average intensity It�EP�It����,
which can be easily computed by taking into account relation
�13�,

IT =
1

2
+

1

2
�Tcos�� − �T

tot� , �24�

where

�T � �EP�f tF
����� = �ei�BTcos2�

2
+ e−i�BTsin2�

2
� �25�

is the output visibility, while

�T
tot = arg EP�f tF

���� = argei�BTcos2 �

2
+ e−i�BTsin2 �

2
�

= arg EQ��	0�	t�� �26�

is the total phase difference; in particular, if B acts on the
spin for a time T=� /�B, we have the standard result �T

tot

=�.
Note that the total phase �T

tot does not depend on �, i.e., it
does not depend on the specific choice of the unraveling used
to make the calculations. Such a result is a consequence of
property �8� of stochastic unravelings, i.e., of the fact that

Eq. �21� for the output intensity, when also the average over
the noise is taken into account, can be expressed as a func-
tion of the density matrix (It�EP�It����=Tr���h��h �
� ISPIN��t�), so that any dependence on the unraveling disap-
pears. Such a result is then not a peculiar byproduct of the
specific model taken into account, but a necessary math-
ematical consequence of the formalism. This fact can be seen
in a different way: the total phase difference between the two
arms of the interferometer is a physical quantity which can
be experimentally measured; like all physical quantities, it
must be deducible from the master equation �15�, so it does
not have to depend on �.

As a final observation, we note that both the average vis-
ibility and the average total phase do not depend on �. This
specific fact is a consequence of our simple model of open
quantum system, according to which the noise is perfectly
correlated among the two arms of the interferometer. Of
course such an assumption is not realistic, and it has been
made only to simplify the calculations, since it does not af-
fect the conclusion of our work.

B. Dynamical phase

We now compute the dynamical phase �t
dyn induced by the

precession of the spin-system when interacting with the mag-
netic field; by using Itô calculus �18�, one finds from Eq. �17�

���t��d���t�� = i�B�z�tdt + i� sin��z�tdWt

−
�2

2
�1 − �2c cos� − cos2 ���z�t

2�dt ,

�27�

where only the imaginary part has to be taken into account.
For each realization of the noise, the dynamical phase is

�t
dyn��� = �B�

0

t

�z�sds + � sin��
0

t

�z�sdWs

+ �2sin� cos��
0

t

�z�s
2ds , �28�

which, like the total phase �t
tot���, depends not only on �,

but also on the unraveling of the master equation.
We now compute the stochastic average �t

dyn of �t
dyn���,

for which we need to know the statistical properties of both
�z�t and �z�t

2: these can be easily computed by writing the
corresponding stochastic differential equations, both of
which can be quite easily derived from Eq. �17�. The equa-
tion for �z�t is

d�z�t = 2� cos ��1 − �z�t
2�dWt, �29�

which tells us that since the Brownian increment dWt has
zero mean, the average value of �z�t does not change in
time: EP��z�t�=EP��z�0�=cos �.

The stochastic differential equation for �z�t
2 instead is
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d�z�t
2 = 4� cos��z�t�1 − �z�t

2�dWt

+ 4�2cos2 ��1 − �z�t
2�2dt; �30�

the first term on the right-hand side does not contribute to the
stochastic average, so one has

d

dt
EP��z�t

2� = 4�2 cos2 �EP�1 − �z�t
2�2 � 0, �31�

which implies that EP��z�t
2� constantly increases in time,

and in general �unless �=� /2+k� ,k�Z� it stops increasing
only when EP�1− �z�t

2�2=0, i.e., when �z�t
2=1, with the

possible exception of a set of points ��� of measure 0.
Concluding, the average dynamical phase �t

dyn

�EP��t
dyn����, after a time T, is equal to

�T
dyn = �BT cos� + �2 sin� cos��

0

T

EP��z�t
2�dt , �32�

which, contrary to what happens to the average total phase,
still depends on �, i.e., on the specific stochastic unraveling
of the master equation.

One could argue that, when computing the average dy-
namical phase, we should not average over the phase, but
over the phase factor, i.e., we should compute
EP(exp�i�t

dyn����) in place of EP��t
dyn����, and then extract

the argument; in this way we would take into account the
fact that a phase is defined modulus 2�. The stochastic dif-
ferential of exp�i�t

tot���� is

dei�t
tot��� = i�B�z�t + i�2sin� cos��z�t

2

−
�2

2
sin2 ��z�t

2�ei�t
tot���dt

+ �i� sin��z�t�ei�t
tot���dWt. �33�

Its average value cannot be explicitly computed, due to the
dependence of both �z�t and �z�t

2 on the noise; anyway,
when taking the average, the dependence on � in general
does not disappear. For example, if we take the trivial case in
which the initial state is ��0�= �+ �, so that �z�0=1, then Eqs.
�29� and �31� tell us that both �z�t and �z�t

2 remain equal to
1 for each realization of the noise; in such a case, the average
value of exp�i�t

tot���� at time T is

EP„exp�i�T
tot����… = e−��2/2� sin2 �T+i��B+�2 sin � cos ��T, �34�

and its argument clearly depends on �.

C. Geometric phase

The geometric phase �t
geo is the difference between the

total and the dynamical phase. For each realization of the
stochastic process Wt, one has from Eqs. �23� and �28�,3

�T
geo��� = arg�f t���� − �B�

0

T

�z�sds − � sin��
0

T

�z�sdWs

− �2 sin� cos��
0

T

�z�s
2ds �35�

�f t��� is defined in Eq. �22��, which clearly depends on the
type of unraveling. Its average value is

�T
geo = arg EP�f t���� − �EP��T

dyn���� or

arg„EP�exp	i�T
dyn���
�… ,

�36�

Also the average geometric phase depends on the type of
stochastic unraveling of the master equation, whichever way
the average dynamical phase is computed. This is the main
result of our paper.

IV. DISCUSSION AND CONCLUSIONS

The geometric phase of an open quantum system should
be a quantity depending only on the path followed by the
density matrix �t in its state space; we have seen that such a
phase, when computed by means of stochastic
unravelings—as done in Ref. �9�—depends on the type of
unraveling, both for single realizations of the noise �Eq. �35��
and for its average value �Eq. �36��. This fact has two impor-
tant consequences.

�i� First of all, the phase defined in Eqs. �35� and �36� is
not a geometric object, since it depends also on �, which has
nothing to do with the path followed by �t during its evolu-
tion.

�ii� Worse than this, such a phase is not even an object
somehow related to a physical quantity, because � itself has
no physical meaning since it only selects one of the infinitely
many equivalent stochastic unravelings that can be used.

The conclusion is that the stochastic-unraveling method
does not lead to a sensible definition of geometric phase.

One could say that different stochastic unravelings might
correspond to different ways to perform the measurement or
to monitor the environment �16� and then that different val-
ues for the phase correspond to different ways to measure the
system; anyway, this is not the case here: in our example, we
have taken a standard interferometer where the output inten-
sity is measured in a standard and unique way. Nevertheless,
different unravelings can still be taken into account.

Note that the dependence on � comes only from the dy-
namical phase, not from the total phase. As already re-
marked, this is not a consequence of the specific model of
open quantum system we are considering here, but a direct
consequence of the fact that a total-phase difference is a
measurable quantity and as such must be deducible from the
density matrix �t, which does not depend on �. On the con-
trary, the dynamical phase and thus also the geometrical
phase are not directly observable, so—at least from the
mathematical point of view—it can depend on �, as it hap-
pens here.

What is the mathematical origin of the dependence of
�t

geo��� and �t
geo on �? Its unraveling dependence does not

come from the total phase but from the dynamical compo-

3In Eqs. �35� and �36�, t refers to the time during which the beam
travels through the interferometer, while T is the time during which
the spin interacts with the magnetic field.
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nent for the following reason: by definition, �t
dyn��� is not a

function of ��t� at the considered time, but a function of the
whole history of ��s�, from s= t0 to s= t, i.e., it depends on the
whole trajectory followed by the state vector. Now, it is easy
to see that for different unravelings, the trajectories followed
by the state vector are radically different. For example, when
�=� /2+k� with k�Z, Eq. �29� shows that �z� is constant
in time, for each realization of the stochastic process: this
implies that the projection of the spin vector along the mag-
netic field does not change in time, i.e., the vector rotates
always along the same circle on the Bloch sphere. On the
other hand, when ��� /2+k� with k�Z, then, as we have
already discussed in connection with Eq. �31�, �z�2 ap-
proaches the value 1 for t→�, i.e., the variance var�z�
��z

2�− �z�2=1− �z�2 of the operator z approaches zero:
this means that the state vector is driven toward one of the
two eigenstates of z, thus changing the projection of the
spin vector along the magnetic field �23�. As a consequence,
since the trajectories followed by the state vector so strongly
depend on the kind of unraveling, there is no need for the
dynamical phase to be unraveling-independent, as it actually
occurs.

A different way to see what happens is the following: the
relation ��t �d ��t�=0 defines the parallel transport condition,
and for different unravelings one has different inequivalent
parallel transport conditions, thus different definitions of a
geometric phase.

Another interesting question is about the physical reason
for such a dependence of the geometric phase on �. It has
been surmised that the problem arises because the master
equation used to model the effect of the environment is of
the Lindblad type. Since the Lindblad equation is only an
effective equation approximating an otherwise too complex

system, its validity is limited and it could not be suitable for
computing the geometric phase. We think that this is not the
case: the source of all troubles derives from the fact that
there are different equivalent stochastic unravelings associ-
ated with the same evolution �t which determines different
evolutions for the state vector, thus different parallel trans-
port conditions; such a feature is not an exclusive property of
the Lindblad equation �it is not even a mathematical conse-
quence of it�, but has a more general character.

To summarize, the stochastic-unraveling approach used in
�9� does not produce a phase which is geometric, i.e., which
depends only on the trajectory followed by �t during the
evolution; it depends also on the specific choice of the un-
raveling used for the calculations, which by itself has no
particular physical meaning. This difficulty in principle can
be overcome by fixing the unraveling to be used for comput-
ing the geometric phase, as often implicitly done in the lit-
erature, but this procedure cannot be satisfactory for two
reasons: first, it obviously does not remove the fact that the
definition is mathematically unraveling-dependent; second,
there is no fundamental physical reason to choose one unrav-
eling in place of another, since they are all on the same
footing.

In Ref. �8� it has been stated that, within the state purifi-
cation approach of �7�, different Kraus representations may
lead to different values for the geometric phase; if so, then
our criticism applies also to the approach of �7�.
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