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A nonequilibrium, generally time-dependent, environment whose form is deduced by optimal learning con-
trol is shown to provide a means for incoherent manipulation of quantum systems. Incoherent control by the
environment �ICE� can serve to steer a system from an initial state to a target state, either mixed or in some
cases pure, by exploiting dissipative dynamics. Implementing ICE with either incoherent radiation or a gas as
the control is explicitly considered, and the environmental control is characterized by its distribution function.
Simulated learning control experiments are performed with simple illustrations to find the shape of the optimal
nonequilibrium distribution function that best affects the posed dynamical objectives.
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I. INTRODUCTION

The manipulation of coherent atomic and molecular dy-
namics often utilizes shaped electromagnetic fields as the
control. This topic is the focus of extensive theoretical and
experimental research �1–6�, which relies on tailoring con-
structive and destructive interferences between different dy-
namical pathways of a quantum system. Many laboratory
implementations of quantum control with lasers use adaptive
feedback learning techniques �7�.

In this paper we consider the manipulation of atomic and
molecular dynamics with the control being a tailored non-
equilibrium, and generally time-dependent, state of the sur-
rounding environment. Different nonequilibrium states of the
environment can induce correspondingly unique dynamical
responses in the physical system being controlled. Incoherent
control by the environment �ICE� is distinct from operations
with coherent control. Control by ICE affects a system
through dissipative dynamics and can be used to steer the
system from a pure or a mixed state into mixed and in some
cases pure states. Control by lasers normally affects the sys-
tem through Hamiltonian evolution and transforms pure
states into the pure states. In practice limitations will exist on
laser controls and the capabilities of ICE as well. Thus, in the
most general circumstance a shaped laser pulse and a tailored
nonequilibrium environment could be combined into an
overall tool to simultaneously best perform control by
Hamiltonian and dissipative dynamics.

This paper explicitly considers ICE implemented by two
types of environments: incoherent radiation �i.e., a gas of
photons� and a gas of particles �i.e., electrons, atoms, or mol-
ecules�. The particles of an environment �i.e., photons or
matter� are characterized by their momenta k and internal
degrees of freedom indexed by �. For photons � denotes
polarization while for atoms or molecules it denotes their
internal energy levels. The environment is described by the
distribution of mean occupation numbers nk,��t� of its micro-
scopic states �k ,�� at time t. Thermal equilibrium states are
characterized by only a few parameters, such as temperature

and chemical potential, which uniquely determine the corre-
sponding equilibrium distribution. Nonequilibrium states are
characterized by occupation numbers of all microscopic
states and have much richer structure. The control considered
with ICE is the generally time dependent distribution func-
tion nk,��t�. The shape of this function �i.e., its dependence
on k, �, and t� together with the interaction Hamiltonian
determines the dynamics of the system under control. Al-
though operation with ICE does not induce coherent dynam-
ics, nevertheless the shaping of nk,��t� over k, �, and t pro-
vides considerable flexibility for system manipulation. Many
control objectives can be expressed in terms of creating spe-
cific mixed states of a system, which should be amenable to
utilizing nonequilibrium environmental states for their prepa-
ration. Certain pure states can also be reached with ICE. For
example, incoherent radiation can steer a three-level � atom
from the ground state to the intermediate excited state, a gas
can steer a two-level atom through collisions to the excited
state, etc.

The practical creation of controls for implementing ICE is
important to consider. First, incoherent nonequilibrium radia-
tion as a control includes monochromatic incoherent light,
thermal radiation propagating in a medium with frequency
sensitive absorbtion �i.e., filters�, and radiation from lumines-
cent emission. In the simplest case monochromatic radiation
can be either coherent or incoherent, and in both circum-
stances it is composed of waves with the same wavelength.
In the second formulation of ICE, a nonequilibrium gas, or
more generally a surrounding fluid or solid medium, of par-
ticles is described by its distribution over momenta and in-
ternal degrees of freedom �e.g., vibrational and rotational
modes of molecules or atomic energy levels�. A nonequilib-
rium state of a gas may be generated in a number of ways,
including through a sudden change in its thermodynamic pa-
rameters. For example, if a lower energy level of a molecule
relaxes to equilibrium faster than an upper level, then a sud-
den temperature drop can create a nonequilibrium state with
population inversion. A nonequilibrium particle momentum
distribution can be created using selective excitation of the
internal degrees of freedom by a laser with subsequent col-
lisional transfer of the excitations into momentum modes.
Lasers can have dual roles in this general circumstance of �a�
directly addressing the system Hamiltonian for control as
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well as �b� first addressing the environment for its subse-
quent controlled manipulation of the system.

The main impediments to designing coherent optimal
control fields are the required detailed knowledge of the sys-
tem Hamiltonian and the need to solve the generally high
dimensional Schrödinger equation. The difficulties in han-
dling these two issues inevitably lead to significant errors in
the field designs, which would likely result in ineffective
control in laboratory experiments. To overcome these diffi-
culties optimal learning control in the laboratory is proving
to be very successful �7�. In this fashion the system subjected
to control is used as an analog computer which solves its
own Schrödinger equation exactly in real time and with the
true laser field and system Hamiltonian. The capabilities of
high duty cycle laser pulse shaping along with fast observa-
tion of the controlled outcome allows for efficient pattern
recognition algorithms �e.g., genetic algorithms �8�� to guide
a sequence of experiments to home in on the specified sys-
tem control objective. The same logic is proposed for ICE to
find an optimal nonequilibrium environment as a control,
either alone or possibly in conjunction with determining a
coherent control field.

This paper considers the following control problem: for a
given target state of the system �T, find a distribution func-
tion of the environment nk,��t� such that the corresponding
induced nonunitary system dynamics is steered from some
initial state �I as close as possible to the state �T. The corre-
sponding objective function can be chosen as J�nk,��t��
= ��nm��nm−�nm

T �2�1/2, where �nm is an element of the density
matrix �=��tf� at some final time tf evolved from �I under
the action of the environment with distribution function
nk,��t�. The problem of creating an effective control based on
significant environmental interactions generally requires an
adaptive learning control procedure. The advantage of learn-
ing control lies in its ability to find an optimal distribution
nk,��t� even if the details of the system, the environment, and
their interactions are not known. In the laboratory, practical
feedback signals would be of the form Tr ��, where � is an
observable operator, and the goal would be to steer Tr ��
towards the desired value Tr �T�. In the more general case,
expectation values of several possibly noncommutative ob-
servable operators �i could be used for feedback, and the
goal would be to steer the expectation value of each �i to-
wards its desired value. Other observable properties of the
system, the environment, or the means of generating its non-
equilibrium state also can be incorporated into the objective
function.

Learning control driven by a genetic algorithm �GA� is
employed in the present paper in simulations of the potential
effectiveness of ICE using either incoherent radiation or a
gas as controls. In these cases there is a Markovian regime
�i.e., weak coupling and low density� for the reduced dynam-
ics of the controlled system �9,10�. Master equations with
appropriate dissipative terms are reasonable models in this
regime. These equations are used here to simulate evolution
of the system’s density matrix towards the target under the
influence of a nonequilibrium environment. The general ICE
concept is not limited to the models used here, and in the
laboratory fully non-Markovian dynamics naturally would be
included as required.

An environment prepared impulsively in a nonequilibrium
state will evolve to equilibrium. In the simulations below we
consider control by stationary nonequilibrium environments.
In practice this requires keeping the environment in a non-
equilibrium state for a time that is sufficiently long to per-
form the control. In the simulations the master equations will
be followed temporally until a steady state is reached for the
control outcome. A stationary nonequilibrium state for inco-
herent radiation can easily be maintained using steady
sources. In addition, a nonequilibrium state of a stationary
gas can be maintained by controlling the gas with a suitable
external field. An example of such control is preparation of
population inversion in the He–Ne gas-discharge laser. In
this case we may consider the gas of He atoms as the control
environment and the Ne atoms as the controlled system. An
electric discharge is passed through the He-Ne gas to bring
the He atoms into a nonequilibrium state. Then He-Ne colli-
sions transfer the energy of the nonequilibrium state of the
He atoms into the high energy levels of the Ne atoms. This
process creates a population inversion in the Ne atoms and
subsequent lasing. A steady electric discharge can be used to
keep the gas of helium atoms in a nonequilibrium state to
produce a cw He-Ne laser. In the present simulations the
actual nature of the external control creating the nonequilib-
rium steady distribution nk will not be explicitly described.
Rather, in keeping with exploring the ICE concept, nk will be
treated directly as the control for optimization as a function
of k. In the laboratory the external control settings would be
guided by the learning algorithm using the system observa-
tions as a feedback signal.

Control by several lasers with incoherent relative phases
was considered in Ref. �11�. In this approach the interference
between different channels is manipulated by changing the
relative frequencies and intensities of the lasers. Although
the relative phases between the lasers are incoherent, each of
the lasers is a source of coherent radiation which affects the
system through induced Hamiltonian dynamics. The present
paper, in its part devoted to control by radiation, uses as the
control totally incoherent radiation, which affects the system
through induced dissipative evolution.

There is a relation between ICE and the recently proposed
measurement-assisted �12� and dual material-photonic re-
agent control �13�. In all these situations control is imple-
mented, at least partially, through induced dissipative dy-
namics. The ICE proposal directly exploits the influence of
an optimally shaped environmental distribution function
upon the dynamics of the controlled system. Measurement-
assisted control exploits the back action of decoherence in-
duced by measurements. Material-photonic reagent control
utilizes dynamics driven by a laser as well as identification
of an optimal material for the system and/or the environ-
ment. All these approaches to molecular or condensed phase
system manipulation can be considered as different branches
of the general perspective of introducing control through the
same aspects of dissipative dynamics.

Sections II and III present simple illustrations of ICE us-
ing incoherent radiation and a gaseous medium, respectively.
The formulations will be developed in the general context of
a coherent field being present for directly addressing the sys-
tem along with a time-dependent environmental control dis-
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tribution function nk�t�. The test simulations will be per-
formed with steady distributions and without a coherent
control field to serve as a simple demonstration of the basic
closed-loop ICE concept. Even richer control should be pos-
sible with temporal control densities operating along with a
coherent field ��t�. Brief concluding remarks are given in
Sec. IV.

II. INCOHERENT RADIATION SERVING AS A CONTROL

This section considers control by nonequilibrium incoher-
ent radiation described by a distribution nk of the photon
momenta. In general, the polarization dependence of the in-
coherent radiation also can be exploited as an additional con-
trol along with the propagation direction in cases where spa-
tial anisotropy is important �e.g., a system consisting of
oriented molecules bound to a surface�.

The thermal �i.e., equilibrium� distribution of photons at
temperature T and frequency � is determined by Planck’s
formula N�=�2 /	2c3�exp�
� /kBT�−1�, where c is the
speed of light, kB and 
 are the Boltzmann and the Planck
constants �we set them to 1 in the sequel�. Nonequilibrium
incoherent radiation may have an arbitrary distribution. Fig-
ure 1 gives an example of a thermal distribution and a non-
equilibrium distribution, which corresponds to incoherent
radiation composed of three nearly monochromatic compo-
nents of differing intensity. The latter distribution may be
produced either by filtering the thermal radiation or by using
independent monochromatic sources.

The master equation for a system simultaneously interact-
ing with a coherent electromagnetic field ��t� and an envi-
ronment with distribution nk�t� generally has the form

d��t�
dt

= − i�H0 + Heff − ���t�,��t�� + Ldiss�nk�t�;��t�� . �1�

The coherent dynamics is generated by the system Hamil-
tonian H0=�n�nPn with eigenvalues �n and the correspond-
ing projectors Pn, the effective Hamiltonian Heff originating
from system-environment interaction, dipole moment �, and
the electromagnetic field ��t�. The effective Hamiltonian
commutes with H0 and is not used in the following simula-
tions.

The dissipative dynamics generated by the incoherent
radiation distribution function nk�t� has the form
Ldiss�nk�t� ;��=Ldiss

rad �nk�t� ;��=�����
+�t�+�−�

− �t���2�����
+

−��
+���−���

+��� where the sum is taken over all system
transition frequencies. Here the coefficients ��

±�t�

=	�dk��k �−�� �g�k��2�nk�t�+ �1±1� /2� determine the tran-
sition rates between energy levels with transition frequency
� and ��=��n−�m=�Pm�Pn. The transition rates are the func-
tions of the photon density nk�t� and matrix elements of the
dipole moment �. The form-factor g�k� determines the cou-
pling of the system to the kth mode of the field. If for all k,
nk	0 �i.e., the quantum system is in a vacuum�, then ��

−

	0, and the coefficients ��
+ together with dipole moment �

determine the inverse lifetime of the system’s energy levels.
The positivity of ��

±�t� guarantees that the off-diagonal ele-
ments of the density matrix vanish at sufficiently long time.

As a specific example, numerical simulations are per-
formed for control of a four-level system by means of inco-
herent radiation with the distribution nk in terms of the mag-
nitude of the photon momenta k	�k�; no direct coherent
control is present such that ��t�=0. The system has the free
Hamiltonian H0=diag
0,11,13,24� and dipole moment
matrix

� =�
0 0.8 0.3 0.5

0.8 0 0.2 0.7

0.3 0.2 0 1

0.5 0.7 1 0
 �2�

All transitions among the energy levels are allowed, and the
system is assumed to initially be in its ground state. The goal
of the control effort is to steer the system to a target mixed
state �T �we consider several examples for �T�. The corre-
sponding objective function is chosen to have the form
J�nk�= ��nm��nm−�nm

T �2�1/2 where �nm and �nm
T are elements

of the system’s density matrix and the target density matrix,
respectively. The goal is to minimize the objective function
at a sufficiently long time such that � is stationary.

Each distribution function nk determines the quantum dy-
namical semigroup Pnk

t =etLnk, t�0 with generator Lnk
�·�ª

−i�H0 , · �+Ldiss
rad �nk ; · �. An invariant state of the semigroup

�inv is defined by Lnk
��inv�=0 �thus Pnk

t ��inv�=�inv�. The so-
lution of Eq. �1� with initial condition ��t=0�=�0 has the
form ��t�= Pnk

t ��0�. If the coefficients ��
± are nonzero then

the system density matrix ��t� will converge at long time to
�inv. For a given distribution function nk one can compute the
corresponding Lindblad operator Lnk

and find its invariant.
Here we consider the inverse problem: given a target state �T

find a distribution function of the environment nk, which
generates the Lindblad operator Lnk

whose invariant state is
as close as possible to �T. In the case of control by radiation
only values of nk at the system transition frequencies gener-
ally have an effect on the dynamics. In principle, these val-
ues of nk could be calculated if there was full knowledge of
the system, the environment, and their interaction. This cir-
cumstance is rarely the case, and for a gaseous medium the
situation is even more complex, since generally all modes of
the gas contribute to the dynamics �see Eq. �3��. Even with
all of these uncertain conditions learning control can be ef-
fective because it only relies on laboratory control-response
observations.

The nonequilibrium radiation distribution function is
modeled as nk=exp�−�k��i=1

10 exp�−�k−ki�2 /2Di� /�2	Di

FIG. 1. The Planck density of black body radiation �upper
curve� and the density �un-normalized� of nonequilibrium radiation
composed of three nearly monochromatic sources �lower curve�.
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with �=1/20. The parameters Di and ki are optimized over
ranges large enough to include all of the system transition
frequencies. A set of these parameters forms an individual in
the population for the GA to operate with. Each individual
determines a distribution function nk, which is used to drive
the evolution of the system density matrix ��t� towards its
stationary form as t→� to ultimately determine the objec-
tive function. In practice, the time t only needs to be taken
out to some small multiple of the longest time scale of the
system transitions.

A GA with crossover and mutation operators is used to
find the optimal values for ki and Di. The number of indi-
viduals in each population is 14. The total of 20 variables
form an individual corresponding to ten parameters ki and
Di. Each variable is coded into a string of 20 bits. The two
most fit individuals are always retained in the successive
generation. The remaining 12 individuals are produced from
the parent population using the crossover and mutation op-
erators. The fitness function determines the number of times
each individual from the parent generation is chosen to pro-
duce offspring in the next generation. The probability of
crossover is Px=0.9 and of mutation �a bit flip� is Pm
=0.7/Lind, where Lind=400 is the length of the bit string
forming an individual.

The results of the simulations for three different target
states are presented in Fig. 2. Each case contains plots of the
objective function versus generation, the optimal spectral
distribution function versus frequency, and the corresponding

evolution of the system density matrix. In each case the tar-
get objective is met very well with a suitable spectral distri-
bution function. The fitness function in Figs. 2�a� and 2�b�
has small values for the initial population because most ran-
domly chosen distribution functions nk induce states of the
system, that are close to the equally populated state. Hence,
the search for a distribution function that steers the system to
a complex target state is a nontrivial problem. A general
expectation is that certain modes of radiation will promote
transitions to the target state whereas others may be harmful
for control. Thus, it is found that distinct distributions of
radiation energy are required to most effectively steer the
system into each particular target state. Each of the radiation
distribution functions has components at all of the system
transition frequencies, and the mechanism of the control is
simply not evident in each case. Further analysis �14� would
be needed to identify the control mechanism. In keeping with
the logic of the adaptive control technique, the learning al-
gorithm deduces how to distribute the radiation energy with-
out specific knowledge or details of the microscopic dynam-
ics, including the Hamiltonian and initial state of the system,
as well as details of its coupling to the nonequilibrium envi-
ronment. Figure 2 shows that excellent results can be
achieved even with diverse choices for the target density
matrix.

Using incoherent radiation as the control clearly has some
limitations. For example, incoherent radiation cannot create
population inversion in a two-level atom. However, incoher-
ent radiation can steer a quantum system from a pure state to
a mixed one, possibly of a complex structure as indicated in
Fig. 2, and in some cases specific pure states can also be
reached. Tailored incoherent radiation also can be used
jointly with a laser field ��t� to improve the degree of system
control when significant laser restrictions exist, such as
bounds on laser intensity or bandwidth.

III. A GASEOUS MEDIUM SERVING AS A CONTROL

This section considers ICE with a nonequilibrium density
nk�t� of gas particles such as electrons, atoms, or molecules
serving as the control. Quantum systems interacting with
such gases are described by master equations whose dissipa-
tive generators are different from Ldiss

Rad in Sec. II. The gas is
assumed to be sufficiently dilute such that the reduced dy-
namics of the system is Markovian. In this case the probabil-
ity of simultaneous interaction of the system with two or
more particles of the gas is negligible and the reduced dy-
namics is determined by two body scattering events between
one particle of the system and one particle of the gas. The
assumption of the rarity of the gas is not a restriction for
ICE, and dense gases might be used for control as well.

The master equation for a system interacting with a
coherent electromagnetic field ��t� and a gas has the form of
Eq. �1� with the dissipative generator Ldiss�nk�t� ;��
=Ldiss

gas �nk�t� ;�� specified by the distribution function of the
gas nk�t� and by the T-operator �transition matrix� for scat-
tering of the system and a gas particle. A transition matrix
element is Tn,n��k ,k��= �n ,k �T �n� ,k��, where �n ,k�
	�n� �k� denotes the product state of the system discrete

FIG. 2. Results of ICE simulations with tailored incoherent
radiation as the control for target states �a� �T

=diag�0.3,0.3,0.2,0.2�, �b� �T=diag�0.3,0.2,0.3,0.2�, and �c� �T

=diag�0.4,0.1,0.4,0.1�. Each case shows the objective function vs
GA generation, the optimal spectral distribution vs frequency, and
the evolution of the diagonal matrix elements of the density matrix
for the optimal distribution. In the plots for the objective function
the upper curve is the average value for the objective function and
the lower one is the best value in each generation.
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eigenstate �n� �an eigenstate of the system’s free Hamiltonian
H0 with eigenvalue �n� and a translational state of the system
and a gas particle with relative momentum k. If the system is
fixed in space �we consider this case below corresponding to
the system particle being much more massive than the par-
ticles of the surrounding gas� then �k� is a translation state of
a gas particle. The general case of relative system gas par-
ticle motion can be considered as well using suitable master
equations. We assume that the particles of the gas are char-
acterized only by their momenta and do not have internal
degrees of freedom; otherwise, the state of one particle of the
gas should have the form �k ,��, where � specifies the state
of the internal degrees of freedom. It is convenient to intro-
duce the notation T��k ,k��ª�m,n:�m−�n=�Tm,n�k ,k�� �m��n�.
The density of particles of the gas at momentum k is nk�t�,
the kinetic energy of a gas particle of mass M is �k�2 /2M,
and B is the set of transition frequencies � of the system
among the energy levels of H0. In this notation the dissipa-
tion generator is

Ldiss
gas �nk�t�;�� = 2	 �

��B
� dkdk�� �k��2

2M
−

�k�2

2M
+ ��nk�t�

��T��k�,k��T�
+�k�,k� −

1

2
�T�

+�k�,k�

�T��k�,k�� + �T�
+�k�,k�T��k�,k��� . �3�

If the gas is at equilibrium with inverse temperature �, then
the density is stationary and has the Boltzmann form nk�t�
	nk=C�� ,n�exp�−� �k�2 /2M�, where the normalization
constant C�� ,n� is determined by the condition �dknk=n,
where n is the total density of the gas. The structure of Eq.
�3� for equilibrium gases has been discussed previously in
�10� and for nonequilibrium stationary gases in �15�. Non-
equilibrium gases may be characterized by generally time
dependent distributions. Equation �1� with Ldiss�nk�t� ;��t��
=Ldiss

gas �nk�t� ;��t�� is the general formulation for control by
both a coherent electromagnetic field ��t� and a nonequilib-
rium gas density nk�t�. As a simple illustration of ICE we
only consider a simulation for control by a static nonequilib-
rium distribution nk.

Let Ei,n= �k�2 /2M +�n be the initial energy of the total
system consisting of one gas particle and the controlled sys-
tem before collision and let Ef ,m= �k��2 /2M +�m be the final
energy after the collision. If for each transition frequency �
there are only two system levels n and m such that �=�n
−�m, then Eq. �1� for the diagonal elements of the density
matrix reduces to the Pauli master equation

d�ll�t�
dt

= 2�
n

�wln�nn�t� − wnl�ll�t�� ,

where the transition probability wmn=	�dknk�t�
��dk��Ef ,m−Ei,n� �Tmn�k� ,k��2 between levels n and m is
explicitly determined by the distribution function nk�t�.

The quantity �dk��Ef ,m−Ei,n� �Tmn�k� ,k��2 defines the
scattering cross section between the system and one gas par-
ticle. There are two possible strategies for investigating the

prospects for control by a nonequilibrium gas. First, one may
start with the microscopic interaction Hamiltonian between
the system and a particle of the gas to compute the T matrix
for use in the dissipative generator �3�. The second strategy
is to use experimentally measured cross sections for the same
purpose. As our purpose here is to illustrate the prospect of
closed-loop laboratory learning control with ICE, we will
simply use the first option in a model.

In the simulations we consider a four-level system with
the same free Hamiltonian H0 in Sec. II, immersed in a dilute
gas. The system is initially prepared in its ground state and
the goal of the control is to steer the system to a target state
�T �we consider the same target states and the same objective
function as in Sec. II�. The interaction V between the
system and one particle of the gas is considered to be
weak with matrix elements Vnm�k ,k��	�n ,k �V �m ,k��
=�nmgn�k�gm�k�� defined by the matrix � of the form �2�
and by the functions gn�k� chosen as characteristic functions
of the momentum magnitude k	�k�, gn�k�=��an ,bn��k�.
Here ��an,bn��k� has unit value if an�k�bn and zero other-
wise. The parameters an and bn are chosen randomly as a1
=2, b1=12, a2=9, b2=24, a3=3, b3=17, a4=14, and b4
=26. We chose M =1.

The matrix � describes transitions between the system’s
energy levels due to interaction with the gas, and the func-
tions gn�k� describe the corresponding change in the momen-
tum of a gas particle. For a general � its diagonal elements
are responsible for elastic scattering of the system �these el-

FIG. 3. Results of ICE simulations with a surrounding nonequi-
librium gas as the control for target states �a� �T

=diag�0.3,0.3,0.2,0.2�, �b� �T=diag�0.3,0.2,0.3,0.2�, and �c� �T

=diag�0.4,0.1,0.4,0.1�. Each case shows the objective function vs
GA generation, the optimal distribution vs momentum, and the evo-
lution of the diagonal elements of the density matrix for the optimal
distribution. In the plots for the objective function the upper curve
is the average value for the objective function and the lower one is
the best value in each generation.

TEACHING THE ENVIRONMENT TO CONTROL QUANTUM¼ PHYSICAL REVIEW A 73, 062102 �2006�

062102-5



ements are zero in our case�, whereas the off-diagonal ones
control the inelastic events. Spontaneous emission from the
upper levels is assumed to be negligible, corresponding to
the lifetimes of the excited states being much longer than the
inverse transition rates due to collisions with the gas. Elastic
scattering and spontaneous emission can be included when
necessary, and all physical processes could naturally be
present in a laboratory closed loop experiment.

The weak nature of the interaction allows for replacing
the T operator in Eq. �3� by the interaction Hamiltonian V.
The control in the simulations is a static distribution of the
form nk=exp�−�k2��i=1

10 exp�−�k−ki�2 /2Di� /�2	Di with �
=0.01. The parameters ki and Di are optimally determined by
the GA. This distribution together with interaction Hamil-
tonian determines the dissipative generator Ldiss

gas according to
Eq. �3� and the evolution of the system density matrix ac-
cording to the master equation �1� �with ��t�=0 in this case�.
The goal of the control is to find a stationary nonequilibrium
state of the gas which steers the system to a target state �T. If
desired, either the constraint of a fixed total energy of the gas
or its cost for minimizing its value could be included by
adding appropriate terms to the objective function. Figure 3
gives the results of the numerical simulation for different
target states. The simulations show that diverse mixed states
can be reached very well by manipulating the momentum
distribution function nk using ICE based on a learning
algorithm.

IV. CONCLUSIONS

In this paper learning control with a nonequilibrium envi-
ronment is proposed as a means for manipulating quantum
systems. Two cases are simulated: control by incoherent ra-
diation and by a gas of particles. The control is the distribu-
tion of mean occupation numbers of the environment. The
control affects the physical system through tailored dissipa-
tive dynamics and allows for steering an initial pure or a
mixed state into a complex target state. The search for an
optimal control distribution in ICE is performed by a learn-
ing control strategy, which could be implemented in the labo-
ratory without detailed knowledge of the system Hamil-
tonian, coupling to the environment, etc. The method can be
generalized by combining standard laser control and the pro-
posed ICE control. In the latter case a most interesting situ-
ation would be attaining states which cannot be obtained by
using either restricted lasers or a nonequilibrium environ-
ment alone. An open issue is to establish the degree of con-
trol, i.e., the set of states reachable with ICE.
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