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We introduce a self-consistent framework for the analysis of both Abelian and non-Abelian geometric phases
associated with open quantum systems, undergoing cyclic adiabatic evolution. We derive a general expression
for geometric phases, based on an adiabatic approximation developed within an inherently open-systems
approach. This expression provides a natural generalization of the analogous one for closed quantum systems,
and we prove that it satisfies all the properties one might expect of a good definition of a geometric phase,
including gauge invariance. A striking consequence is the emergence of a finite time interval for the observa-
tion of geometric phases. The formalism is illustrated via the canonical example of a spin-1 /2 particle in a
time-dependent magnetic field. Remarkably, the geometric phase in this case is immune to dephasing and
spontaneous emission in the renormalized Hamiltonian eigenstate basis. This result positively impacts holo-
nomic quantum computing.
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I. INTRODUCTION

More than 20 years ago, Berry first observed that quan-
tum systems may retain a memory of their motion in Hilbert
space through the acquisition of geometric phases �1�. Re-
markably, these phase factors depend only on the geometry
of the path traversed by the system during its evolution. Soon
after Berry’s discovery, geometric phases became a subject
of intense theoretical and experimental studies �2�. In recent
years, renewed interest has arisen in the study of geometric
phases in connection with quantum-information processing
�3,4�. Indeed, geometric or holonomic quantum computation
�QC� may be useful in achieving fault tolerance �5�, since the
geometric character of the phase provides protection against
certain classes of errors �6–8�. However, a comprehensive
investigation in this direction requires a generalization of the
concept of geometric phases to the domain of open quantum
systems, i.e., quantum systems that may decohere due to
their interaction with an external environment.

Geometric phases in open systems, and more recently
their applications in holonomic QC, have been considered in
a number of works since the late 1980s. The first approach to
the subject used the Schrödinger equation with non-
Hermitian Hamiltonians �9,10�. This is a phenomenological,
nonrigorous approach �e.g., it cannot guarantee completely
positivity�. A consistent non-Hermitian Hamiltonian descrip-
tion of an open system in general requires the theory of sto-
chastic Schrödinger equations �11�. Nevertheless, this ap-
proach indicated for the first time that complex Abelian
geometric phases should appear for systems undergoing cy-
clic evolution. In Refs. �12–17�, geometric phases acquired
by the density operator were analyzed for various explicit
models within a master equation approach, but no general
theory was formulated for open-system geometric phases. In
Refs. �8,18�, the quantum jumps method was employed to
provide a definition of geometric phases in Markovian open
systems �related difficulties with stochastic unravelings have
been pointed out in Ref. �19��. In another approach, the den-

sity operator, expressed in its eigenbasis, was lifted to a pu-
rified state �20,21�. In Ref. �22�, a formalism in terms of
mean values of distributions was presented. An interferomet-
ric approach for evaluating geometric phases for mixed states
evolving unitarily was introduced in Ref. �23� and extended
to nonunitary evolution in Refs. �24,25�. This interferometric
approach can also be considered from a purification point of
view �23,25�. This multitide of different proposals has re-
vealed various interesting facets of the problem. Neverthe-
less, the concept of adiabatic geometric phases in open sys-
tems remains unresolved in general, since most of the
previous treatments did not employ an adiabatic approxima-
tion genuinely developed for open systems. Note that the
applicability of the closed-systems adiabatic approximation
�27� to open-systems problems is not a priori clear and
should be justified on a case-by-case basis. Moreover, almost
all of the previous works on open-systems geometric phases
were concerned with the Abelian �Berry phase� case. Excep-
tions are the very recent Refs. �8,28,29�, which discuss both
nonadiabatic and adiabatic dynamics, but employ the stan-
dard adiabatic theorem for closed systems in the latter case.

In this work, we introduce a self-consistent open-systems
framework, based on a recent generalization of the adiabatic
approximation �30�, which allows for a general definition
and evaluation of both Abelian and non-Abelian geometric
phases in open systems undergoing cyclic adiabatic evolu-
tion. As we shall show, this approach yields new insights and
lends itself to a simple and elegant generalization of the con-
cept of geometric phases. An important feature emerging
from this picture is the appearance of a distinguished time
scale for the observation of adiabatic geometric phases in
open systems. We illustrate our results by considering the
canonical example of a spin-1 /2 in a magnetic field. In this
example, we find a remarkable robustness of the geometric
phase against both dephasing and spontaneous emission in
the instantaneous renormalized Hamiltonian eigenstate basis.
This result should have a positive impact on the robustness
against external disturbances of holonomic QC.
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We note that an alternative theory for adiabaticity in open
systems was recently developed by Thunström, Åberg, and
Sjöqvist, for systems coupled weakly to their environment.
This theory was then employed to study a non-Abelian geo-
metric phase gate in holonomic QC �26�. The main differ-
ence between the approach of Ref. �26� and our approach to
adiabaticity in open systems is that Thunström et al. empha-
size the decoupling of eigenspaces of the system Hamil-
tonian, while we focus on the entire superoperator. Central
conclusions, such as the breakdown of adiabaticity in open
systems, are shared by the two approaches. A full compari-
son is beyond the scope of the present work.

The structure of this paper is as follows. In the next sec-
tion, we review the coherence vector approach to solving
quantum master equations, the Jordan form of the superop-
erator, and the notion of adiabaticity in open quantum sys-
tems. In Sec. III, we derive the geometric phase in open
systems, in both the Abelian �Berry phase� and non-Abelian
cases. We prove that this geometric phase satisfies the ex-
pected properties, such as a proper closed system limit and
gauge invariance. In Sec. IV, we focus on applications,
namely we show that our theory predicts that there is a dis-
tinguished time scale for open-system geometric phases �re-
lated to the breakdown of adiabaticity�, and then we consider
the example of a spin-1 /2 coupled to a slowly varying mag-
netic field, in the presence of dephasing and spontaneous
emission. We conclude in Sec. V.

II. MASTER EQUATIONS AND THE ADIABATIC REGIME
OF OPEN QUANTUM SYSTEMS

Open quantum systems typically do not undergo unitary
dynamics, i.e., they are not governed by the Schrödinger
equation, or even by its non-Hermitian generalization �9,10�.
Instead, quite generally we may consider open quantum sys-
tems evolving under a convolutionless master equation �31�

��/�t = L�R� �t����t� , �1�

where L is a superoperator that depends on time only

through a set of parameters R� �t��R� . The Lindblad equation
�32� is an important example of this class of master
equations,

��/�t = − i�H,�� +
1

2�
i

���i,��i
†� + ��i�,�i

†�� , �2�

where we have suppressed the explicit dependence of the

operators on R� �t�. Here H is the effective Hamiltonian of the
open system �it is renormalized, i.e., contains the “Lamb
shift”—the unitary contribution of the system-bath interac-
tion �33,34��, the �i are operators describing the system-bath
interaction, and we work in �=1 units. In this work, we
consider the general class of convolutionless master equa-
tions �1�, and in a later section we illustrate our formalism
with an example using the case of Eq. �2�. In this example of
a spin-1 /2 in a magnetic field, we allow both H and �i to

depend on R� �t�. In a slight abuse of nomenclature, we will
refer to the implicitly time-dependent generator L �Eq. �1��

as the Lindblad superoperator and the �i �Eq. �2�� as Lind-
blad operators. This terminology is usually associated with
time-independent generators �32,33�, but recent work has
clarified the conditions under which Eq. �2� with time-
dependent �i can be derived in the usual Davies �35� weak-
coupling limit �36�. What is important to note is that the
microscopic weak-coupling limit derivation is consistent
with the general class of master equations postulated here,
wherein the Lindblad operators depend implicitly on time
through their explicit dependence on external control fields.
More specifically, in the microscopic derivation one shows
that the Lindblad operators are the Fourier components of the
time-dependent system operator terms in the system-bath in-
teraction Hamiltonian, where the time dependence arises by
working in the interaction picture with respect to the renor-
malized system Hamiltonian �36�. This is how the �i’s ap-
pearing here and in our example below must be interpreted.

In the superoperator formalism, the density matrix for
a quantum state in a D-dimensional Hilbert space is
represented by a D2-dimensional “coherence vector”
����= ��1 ,�2 , . . . ,�D2�t and the Lindblad superoperator L be-
comes a �D2�D2�-dimensional supermatrix �33�, so that the
master equation �1� can be written as a linear vector equation
in D2-dimensional Hilbert-Schmidt space, in the form

�����/�t = L�R� �t������ . �3�

Such a representation can be generated, e.g., by introducing a
basis of Hermitian, trace-orthogonal, and traceless operators
�e.g., the D-dimensional irreducible representation of the
generators of su�D��, whence the �i are the expansion coef-
ficients of � in this basis �33�, with �1 the coefficient of I �the
identity matrix�. In this case, the condition Tr�2�1 corre-
sponds to 	����	�1, �=�† to �i=�i

*, and positive semidefi-
niteness of � is expressed in terms of inequalities satisfied by
certain Casimir invariants �e.g., of su�D�� �37,38�. A simple
and well-known example of this procedure is the representa-
tion of the density operator of a two-level system �qubit� on
the Bloch sphere, via �= �I2+v� ·�� � /2, where �� = ��x ,�y ,�z�
is the vector of Pauli matrices �generators of su�2�� and I2 is
the 2�2 identity matrix.

The master equation generates a nonunitary evolution
since L is non-Hermitian. In fact, L need not even be a
normal operator �L†L�LL†�. Therefore, L is generally not
diagonalizable, i.e., it does not possess a complete set of
linearly independent eigenvectors. Equivalently, it cannot be
put into diagonal form via a similarity transformation. How-
ever, one can always apply a similarity transformation to L
which puts it into the �block-diagonal� Jordan canonical form
�39�, namely LJ=S−1LS. The Jordan form LJ of a D2�D2

matrix L is a direct sum of blocks of the form LJ= ��=1
m J�

�� enumerates Jordan blocks�, where m�D2 is the number
of linearly independent eigenvectors of L, ��=1

m n�=D2,
where n��dim J� is the dimension of the �th Jordan block,
and J�=	�In�

+Ka, where 	� is the �th �generally complex-
valued� Lindblad-Jordan �LJ� eigenvalue of L �obtained as
roots of the characteristic polynomial�, In�

is the n��n� di-
mensional identity matrix, and Ka is a nilpotent matrix with
elements �Ka�ij =
i,j−1 �1’s above the main diagonal�, where 
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is the Kronecker symbol. Instantaneous right 
��D�
�j��R� �t�����

and left 
��E�
�i��R� �t����� bi-orthonormal bases in Hilbert-

Schmidt space can always be systematically constructed such
that they obey the orthonormality condition ��E�

�i� �D�
�j���

=
��
ij �30�. Here superscripts enumerate basis states inside
a given Jordan block �i , j� 
0, . . . ,n�−1��. When L is diag-

onalizable, 
��D�
�j��R� �t����� and 
��E�

�i��R� �t����� are simply the
bases of right and left eigenvectors of L, respectively. If L is
not diagonalizable, these right and left bases can be con-
structed by suitably completing the set of right and left
eigenvectors of L �see Ref. �30� and also Appendix A for a
detailed discussion of the left and right basis vectors, includ-
ing their completeness relation�. Based on the above consid-
erations, we gave, in Ref. �30�, a definition of adiabaticity in
open quantum systems:

An open quantum system is said to undergo adiabatic dy-
namics when its Hilbert-Schmidt space can be decomposed
into decoupled LJ-eigenspaces with distinct, time-
continuous, and noncrossing instantaneous eigenvalues of L.

Note that the key to establishing the concept of adiabaticity
in open systems is to replace the idea of decoupling of
the Hamiltonian eigenstates by that of decoupling of the
Jordan blocks of the Lindblad superoperator �each
Jordan block is associated with an independent eigenstate
of L�. The definition of adiabaticity given above implies
a condition on the total evolution time T which
generalizes the well-known closed-systems condition,
T�max0�s�1
�k�s��dH�s� /ds�m�s��
 / �gmk�s��2, where s= t /T
is the normalized time, H is the time-dependent Hamiltonian,
�k� and �m� are eigenstates of H, and gmk is the energy gap
between these two states. For further details, we refer the
reader to Refs. �30,42�; the condition in the case of one-
dimensional Jordan blocks is given in Eq. �32� below. The
theory developed in Ref. �30� applies also in the more gen-
eral case of explicitly time-dependent generators L�t�, but
since we focus here on geometric phases, we shall only con-

sider implicit time dependence as in L�R� �t��.

III. GEOMETRIC PHASES FOR OPEN SYSTEMS
IN CYCLIC ADIABATIC EVOLUTION

In order to define geometric phases in open systems, we
expand the coherence vector in the instantaneous right vector

basis 
��D�
�j��R� �t����� as

���t��� = �
�=1

m

�
j=0

n�−1

p�
�j��t�e�0

t 	��t��dt��D�
�j��R� �t���� , �4�

where we have explicitly factored out the dynamical phase
exp��0

t 	��t��dt��. The coefficients 
p�
�j��t�� play the role of

“geometric” �nondynamical� amplitudes. We assume that the
open system is in the adiabatic regime, i.e., Jordan blocks
associated to distinct eigenvalues evolve in a decoupled
manner �recall the definition of open systems adiabaticity
given above�. Then, Eqs. �3� and �4�, together yield

ṗ�
�i� = p�

�i+1� − �
��	�=	�

�
j=0

n�−1

p�
�j���E�

�i��Ḋ�
�j��� . �5�

A condition on the total evolution time T, which allows one
to neglect the coupling between Jordan blocks used in
deriving Eq. �5�, was given in Ref. �30�. It is given by
T�max�T�

c , where T�
c is given for the case of one-

dimensional Jordan blocks in Eq. �32� below. Note that, due
to the restriction 	�=	�, the dynamical phase has disap-
peared. For closed systems, Abelian geometric phases are
associated with nondegenerate levels of the Hamiltonian,
while non-Abelian phases appear in the case of degeneracy.
In the latter case, a subspace of the Hilbert space acquires a
geometric phase which is given by a matrix rather than a
scalar. Here, for open systems, one-dimensional Jordan
blocks can be associated either with Abelian or non-Abelian
geometric phases �depending on the possibility of degen-
eracy� while multidimensional Jordan blocks are naturally
tied to a non-Abelian phase.

A. The Abelian case: Generalized Berry phase

Consider the simple case of a nondegenerate one-
dimensional Jordan block �a block that is a 1�1 submatrix
containing an eigenvalue of L�. In this case, the absence
of degeneracy implies in Eq. �5� that 	�=	�Þ�=� �nonde-
generate blocks�. Moreover, since the blocks are assumed
to be one-dimensional we have n�=1, which allows us
to remove the upper indices in Eq. �5�, resulting in

ṗ�=−p���E� �Ḋ���. The solution of this equation is

p��t�= p��0�exp�i
��t��, with 
��t�= i�0
t ��E��t�� �Ḋ��t����dt�.

In order to establish the geometric character of 
��t�, we now
recall that L depends on time implicitly through the param-

eters R� �t�. Then, for a cyclic evolution in parameter space
along a closed curve C, we obtain that the Abelian geometric
phase associated with the Jordan block � is given by


��C� = i�
C

��E��R� ���� �D��R� ��� · dR� . �6�

This elegant generalized expression for the geometric phase,
which bears similarity to the original Berry formula �1�, is
our first main result. As expected for open systems, 
��C� is
complex, since ��E��� and ��D��� are not related by transpose
conjugation. Thus, the geometric phase may have real and
imaginary contributions, the latter affecting the visibility of
the phase.

In Refs. �9,10�, Garrison and Wright and Dattoli et al.
found an expression for the open-systems Berry phase that
resembles our Eq. �6�. Their result is


̃��C� = i�
C

����R� ���� ����R� �� · dR� . �7�

Here 
����� and 
����� are a bi-orthonormal set of eigenvec-
tors of a non-Hermitian Hamiltonian H and its Hermitian
conjugate H†, respectively. There are some important meth-
odological and technical differences between this and our
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result. First, here, instead of working with a phenomenologi-
cal non-Hermitian Hamiltonian, we started from the outset
with a fully consistent master equation approach, where the
left 
��E���� and right 
��D���� basis vectors are associated
with the dynamical superoperator L, rather than with the
non-Hermitian Hamiltonian. Second, as a result in our case,
the basis vectors span the D2-dimensional Hilbert-Schmidt
space, whereas in the non-Hermitian Hamiltonian case the
geometric phase expression involves vectors in the usual
D-dimensional Hilbert space. As we note below, this implies
that in our case 
� is a relative, not absolute, geometric
phase, and hence there is in general no connection between
the expressions �6� and �7�. Third, unlike Refs. �9,10�, where
adiabaticity is imported from the theory of closed systems,
we work within a consistent theory of adiabaticity for open
systems, as formulated in Ref. �30�.

The expression for 
��C� exhibits a number of important
properties expected from a good definition of a geometric
phase, as follows

Geometric character. 
��C� is geometric, i.e., it depends
only on the path traversed in parameter space.

Gauge invariance. 
��C� is gauge invariant, i.e., we
cannot modify �or eliminate� the geometric phase by
redefining ��E��� or ��D��� by multiplying one of them

by a complex factor ��R� �exp�i��R� ��. Indeed, let us define

��D����=� exp�i����D��� ���R� ��0"R� �. Redefinition of
right-vectors automatically implies redefinition of left-
vectors due to the normalization constraint ��E� �D���=1, so

that ��E����= ��E����−1 exp�−i��. Therefore, ��E�� ��� �D����
= ��E���� �D���+ ��� �� /�+ i�� �. Gauge invariance then follows
from the computation of 
�� using Eq. �6�, with Stokes’s
theorem leading to 
���C�=
��C�. Below, we provide a de-
tailed proof of gauge invariance in the non-Abelian case,
which includes the latter as a special case.

Closed-system limit. if the interaction with the bath
vanishes, 
��C� reduces to the usual difference of geometric
phases acquired by the density operator in the closed case.
In order to prove this, consider the expansion of the
vectors ��D��� and ��E��� in a basis 
ID ,�i � i=1, . . . ,D2−1�,
where ID is the D�D identity matrix and �i are traceless
Hermitian matrices, with Tr��i� j�=
ij. Then, by using
the normalization condition ��E� �D���=1 and the matrix
inner product ��u �v��= �1/D�Tr�u†v� �39�, we obtain in
the closed-case limit ��D���→�D��m� ��n� �equivalently,
��E���→�D��n� ��m��, with 
��m�� denoting a set of normal-
ized eigenstates of the Hamiltonian operator. Therefore, Eq.
�6� yields 
�→
m

closed−
n
closed, which is exactly the difference

of phases acquired by the density matrix in closed systems.
Note that only phase differences are experimentally observ-
able, so that the fact that our expression for the geometric
phase involves phase differences, rather than an absolute
phase, is natural. As mentioned above, this is an important
aspect in which our expressions differ from the ones derived
using non-Hermitian Hamiltonians �9,10�.

B. The non-Abelian case: Generalized holonomic connection

Let us now generalize these considerations to degenerate
one-dimensional Jordan blocks, whence the geometric phase

becomes non-Abelian. From Eq. �5� we obtain

ṗ� = − �
��	�=	�

p���E��Ḋ��� . �8�

Each decoupled subspace is associated with a different

value of 	�, and is spanned by the set 
��D��R� ��� �	�=	��.
Then, enumerating this list for each decoupled subspace
�denoted by 	�� as ��D	�

�1��� , ��D	�

�2��� , . . . , ��D	�

�G��� �the left

basis 
��E��R� ���� is similarly enumerated�, with G the degen-
eracy �dimension of the decoupled subspace�, we have that

ṗ	�

�i� =−� j=1
G p	�

�j���E	�

�i� �Ḋ	�

�j���. Writing this equation in a vector
notation, we obtain

Ṗ	�
= − �A� 	�

· R�̇ �P	�
, �9�

where P	�
= �p	�

�1� , ¯ , p	�

�G��t is a vector in Hilbert-Schmidt
space �superscript t denotes transposition� and

A� 	�
= ���E	�

�1���� �D	�

�1��� ¯ ��E	�

�1���� �D	�

�G���

] � ]

��E	�

�G���� �D	�

�1��� ¯ ��E	�

�G���� �D	�

�G���
� . �10�

Note that each element of A� is a vector in parameter space
�we use boldface and arrow superscripts to denote vectors in
Hilbert-Schmidt space and parameter space, respectively�.
The non-Abelian geometric phase in a cyclic evolution asso-
ciated with a degenerate level 	� is determined by the solu-
tion of Eq. �9�, which is formally provided by P	�

�C�=U
P	�

�0�, where

U = Pe−�CA� 	�
·dR� �11�

is the corresponding Wilson loop, and P denotes path-
ordering.

Equations �10� and �11� and �11� constitute our second
main result. They are the generalization of the concept of
non-Abelian geometric phases to the open-systems case. In

particular, the matrix A� 	�
�Eq. �10�� naturally generalizes the

Wilczek-Zee gauge potential �40�, also known as the holo-
nomic connection.

A non-Abelian geometric phase will also appear in the
case of multidimensional Jordan blocks. However, in this
case, it is not possible to obtain a general analytical solution
due to the presence of the term p�

�i+1� in Eq. �5�. One should
then solve Eq. �5� on a case by case basis for all pairs �� , i�.
This yields a set of coupled differential equations in a ladder
structure.

The geometric character of the non-Abelian geometric
phase is evident from the expression �11� for the Wilson loop
operator �it depends only on the path and not on its param-
etrization�. The closed-system limit is obtained in a manner
exactly analogous to the proof above for the Abelian case.
What is left, therefore, in order to demonstrate that our ex-
pressions for the generalized non-Abelian geometric phase
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have the desired properties, is a proof of gauge invariance of
the eigenvalues of the Wilson loop. We consider this issue
next.

C. Gauge invariance of the non-Abelian geometric phase
in open systems

Let us show that the geometric phase derived in Eq. �11�
is invariant under gauge transformations. First, we can re-
write Eq. �9� in the form

ṗ	�

�i� = − �
j=1

G

A	�

�ij�p	�

�j� , �12�

where

A	�

�ij� � ��E	�

�i� �Ḋ	�

�j��� = �
�

�A	�

�ij���

�x��t�
�t

= �A	�

�ij��� · R�̇ , �13�

where we have introduced the explicit dependence on

R� �t�= �x1�t� , . . . ,xn�t��, and

�A	�

�ij��� � ��E	�

�i� ����D	�

�j��� . �14�

Let us now apply a local gauge transformation ��R� �t�� on
the right eigenvectors,

�D	�
��a��� = �

d

�ad�D	�

�d��� , �15�

where � is an arbitrary complex matrix. Here � is taken as

a function of R� �t� instead of t because the basis vectors de-

pend on t only through the parameters R� �t�. The normaliza-
tion constraint ��E	�

� �D	�
� ��=1 implies

��E	�
��b�� = �

c

��E	�

�c���cb
−1. �16�

The gauge transformation of A	�

�ba����E	�

�b� �D	�

�a���, is then
given by

A	�

�ba�� = ��E	�
��b��Ḋ	�

��a��� = �
cd

�ad�A	�

t �dc�cb
−1 + �̇ad
cd�cb

−1

= ��A	�

t �−1�ab + ��̇�−1�ab, �17�

where superscript t denotes transposition. Therefore,

A	�
�t = �A	�

t �−1 + �̇�−1, �18�

which proves that A	�

t transforms as a gauge potential.
Now let us show that the Wilson loop has gauge-invariant

eigenvalues �a similar proof for the closed case can be found
in Ref. �41��. As a first step, consider the Wilson operator for
an open curve,

U = P exp�− �
R� �0�

R� �t�
A� · dR��

= P exp�− �
0

t

dt�A��x�
dx�

dt� �
= 1 − �

0

t

dt1A�1
�t1�

dx�1

dt1

+ �
0

t

dt1A�1
�t1�

dx�1

dt1
�

0

t1

dt2A�2
�t2�

dx�2

dt2
+ ¯ , �19�

where repeated indices are summed over, and we suppress
the subscript 	� for notational simplicity. The transposed
Wilson operator then yields

Ut = 1 − �
0

t

dt1A�1

t �t1�
dx�1

dt1

+ �
0

t

dt1�
0

t1

dt2A�2

t �t2�
dx�2

dt2
A�1

t �t1�
dx�1

dt1
+ ¯ .

�20�

Note the inversion of the order of the operators due to the
transposition. Therefore, the transposed Wilson operator
W�Ut obeys the differential equation

dW

dt
+ WA�

t dx�

dt
= 0. �21�

We can determine the gauge transformation of W by impos-
ing gauge invariance of Eq. �21�.

After a gauge transformation, Eq. �21� reads

dW�

dt
+ W�A��

tdx�

dt
= 0, �22�

where primes indicate gauge-transformed operators. Note
that A�

t , which is given by

�A�
t �ab = ��E	�

�b�����D	�

�a��� , �23�

transforms, according to Eq. �18�, under a gauge transforma-
tion as

A��
t = �A�

t �−1 + ������−1. �24�

Then, using Eq. �24�, we obtain

�d�W���
dt

+ �W���A�
t dx�

dt
��−1 = 0. �25�

Since � is arbitrary, it follows from Eq. �25� that gauge
invariance of the equation of motion implies

W → W� = �̃W�−1, �26�

where �−1=�−1(x��t�) and �̃ is independent of x��t�.
The gauge transformation of a product of paths allows us

to further restrict �̃: we can show that �̃=�−1�x0�, where

here and below xi�x��ti� �x��t0� is the initial position R� �0��.
To see this, consider an open curve �=�1+�2, where �1 is a
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continuous curve in the interval �x0 ,xa� and �2 is a continu-
ous curve in the interval �xa ,xb�. The transposed Wilson op-
erators W��1� and W��2� associated with these curves are,
according to Eq. �20�, given by

W��1� = 1 − �
0

ta

dt1A�1

t �t1�
dx�1

dt1

+ �
0

ta

dt1�
0

t1

dt2A�2

t �t2�
dx�2

dt2
A�1

t �t1�
dx�1

dt1
+ ¯ ,

W��2� = 1 − �
ta

tb

dt1A�1

t �t1�
dx�1

dt1

+ �
ta

tb

dt1�
ta

t1

dt2A�2

t �t2�
dx�2

dt2
A�1

t �t1�
dx�1

dt1
+ ¯ .

�27�

Then, under gauge transformation, we have from Eq. �26�

W��1� → �̃1W��1���xa�−1,

W��2� → �̃2W��2���xb�−1,

W��� → �̃W�����xb�−1. �28�

Then, by applying a gauge transformation on
W���=W��1�W��2�, we obtain

�̃W�����xb�−1 = �̃1W��1���xa�−1�̃2W��2���xb�−1.

�29�

This implies �i� �̃2=��xa�, i.e., �̃ depends only on the initial

position, and �ii� �̃=�̃1 ��̃ must be independent of the path

index�. We can therefore write �̃=��x0�. Thus, for a general
open curve � in the interval �x0 ,xa�, the transposed Wilson
operator transforms as W→W�=��x0�W�−1�xa�. For a
closed curve C, we then get W→W�=��x0�W�−1�x0�, or,
expressed in terms of the Wilson loop itself

U�C� → U��C� = ��t�−1�x0�U�C��t�x0� . �30�

Thus, the Wilson loop transforms as a similarity transforma-
tion, and consequently its eigenvalues are gauge invariant, as
desired. In particular, this implies that the gauge-transformed
amplitude vector P	�

� ���t�−1�x0�P	�
obeys the same geo-

metric phase transformation rule as P	�
,

U�P	�
� �0� = ��t�−1�x0�U�t�x0���t�−1�x0�P	�

�0�

= ��t�−1�x0�P	�
�C� = P	�

� �C� . �31�

IV. APPLICATIONS

A. A distinguished time scale for open-system geometric
phases

As a first application of these general considerations, we
now show the existence of a distinguished time scale for the

observation of open-system geometric phases. To this end, it
is convenient to express the variables in terms of the dimen-
sionless time s= t /T, where T denotes the total evolution
time. Then, adiabatic dynamics in the interval 0�s�1 oc-
curs if and only if the following time condition is satisfied:
T�max�
T�

c �, where T�
c denotes the crossover time for the

Jordan block J� �30�. For the particular case of one-
dimensional blocks, we have �30,42�

T�
c = max

0�s�1
� �

���
�Q���0� − Q���s�eT����s�

+ �
0

s

ds�eT����s��dQ���s��/ds��� , �32�

where

����s� = �
0

s

����s��ds�,

����s� = 
��s� − 
��s� �33�

is the gap between Jordan eigenvalues,

V���s� = p��s���E��s��
dL�s�

ds
�D��s��� �34�

are the matrix elements of the time derivative of the Lind-
blad superoperator, and

Q���s� � V���s�/���
2 �s� . �35�

Note that a quantity analogous to Q��, namely the time de-
rivative of the Hamiltonian divided by the square of the
spectral gap, appears in the standard condition for adiabatic-
ity in closed systems �30�. In the expression for V���s�, up-
per indices in p�

�j��s� and in the basis vectors 
��D�
�j��s���� and


��E�
�i��t���� were removed because the Jordan blocks are one-

dimensional. The crossover time T�
c provides a decoupling

time scale for each Jordan block: provided T�T�
c , the Jordan

block J� is adiabatically decoupled from all other blocks
associated to a different eigenvalue. The general expression
for T�

c in the case of multidimensional Jordan blocks, as well
as a more detailed discussion of its meaning, are given in
Refs. �30,42�.

Now, the important observation is that the decoupling
time scale is finite due to the presence of complex exponen-
tials in T�

c �30�, which have real and imaginary parts in the
case of open systems. Therefore, since the geometric phases
are defined in the adiabatic regime, they will only be observ-
able during the finite time in which the Jordan blocks are
decoupled. This fact implies the existence of a distinguished,
finite time scale for geometric phases in open systems. Such
a time scale was noted in Ref. �16� in the context of a spe-
cific example, namely the case of a spin-1 /2 particle in a
magnetic field. Finite adiabaticity time -scales have been re-
vealed as a general property of open systems �26,30,43�, a
fact that has also been observed in adiabatic QC, both theo-
retically �42� and experimentally �44�. Physically, the reason
for this phenomenon is the broadening of the system energy
levels due to the presence of a dense spectrum of bath energy
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levels, until the broadened system energies overlap. When
this happens, different eigenspaces may no longer be decou-
pled �provided there are no selection rules preventing the
coupling�, and the adiabatic approximation breaks down. In
the case of static Hamiltonians, this is known as quantum
diffusion �45�.

B. Spin-1/2 in a time-dependent magnetic field under
decoherence

As an illustration of the general theory presented
above, let us consider the canonical example of a spin-1 /2
in a time-dependent magnetic field, originally considered
by Berry in the context of closed quantum systems �1�. The

renormalized Hamiltonian of the system is given by H�B� �
=−�S� ·B� , where S� = �1/2���x ,�y ,�z� is the spin operator,

with �i �i=x ,y ,z� denoting the Pauli matrices, B� �t�
= (Bx�t� ,By�t� ,Bz�t�) is a time-dependent magnetic field �in-
cluding the Lamb shift correction �33,34��, and � is a
constant. A standard evaluation of the geometric phase in
this case yields 
±

closed�C�= ±��C� /2, where 
±
closed�C�

are the geometric phases associated with the energy levels

E±= ± �� /2�B, with B= �B� �t��, and ��C� being the solid angle
subtended by the closed curve C traversed by the magnetic
field in parameter space.

In the weak-coupling regime, it is common to consider
decoherence in the eigenbasis of the renormalized system
Hamiltonian �36,46,47�. Let us now analyze the effects
of decoherence in this basis, assuming that open-systems
dynamics is described by the master equation �2�. We
consider two important sources of decoherence, namely
dephasing and spontaneous emission in the eigenenergy
basis. The Lindblad operators modeling these processes

are given, respectively, by �z=�zW�B� ��zW
†�B� � and

�−=�−W�B� ��−W†�B� � ��−�1�=2�0� ,�−�0�=0�, where �z and

�− are the error probabilities per unit time and W�B� � is the

unitary matrix that diagonalizes H�B� �. The Lindblad super-

operator is then given by L�B� �=H�B� �+R�B� �, where H�B� � is

the Hamiltonian superoperator �obtained from H�B� �� and

R�B� � is the superoperator containing the decoherence contri-
bution �obtained from �z and �−�. In this case, explicit cal-
culation reveals that �i� H and R are diagonalizable, �ii�
�H ,R�=0. Hence L, H, and R have a common eigenstate
basis, and in particular it follows that L has only one-
dimensional Jordan blocks, whence it is diagonalizable.

Thus, bearing in mind that the eigenstate basis for H�B� � is
independent of �z and �−, it follows that the eigenstate basis

for L�B� � is also independent of �z and �−. This implies that
the adiabatic geometric phases, which can be computed here
from Eq. (6), are robust against dephasing ��z� and sponta-
neous emission ��−�. In this case, integration in parameter
space, which is the relevant space for adiabatic geometric
phases, is not affected by decoherence. Nevertheless, the
adiabaticity crossover time T�

c does depend on �z and �−
through the eigenvalues of L.

The robustness against dephasing is in agreement with
Ref. �18�, but obtained here in a totally different framework.
A microscopic derivation of the geometric phase for a spin-
1 /2 in a magnetic field was developed in Ref. �17�, with no
robustness against dephasing detected. However, note that
the robustness of the geometric phase obviously depends on
the basis in which the environment acts. As is clear from Eq.
�4� of Ref. �17�, Whitney et al. consider dephasing in a fixed
�time-independent� basis, where robustness is absent. In this
basis, our approach is in agreement with this lack of robust-
ness. However, in the example we discuss here, we consider
decoherence in the instantaneous eigenenergy basis. In the
weak-coupling regime, one should consider decoherence in
the eigenbasis of the system Hamiltonian �see, e.g., Refs.
�46,47��. This follows from the fundamental Davies deriva-
tion of the quantum Markovian master equation �35�, which
was recently reviewed and generalized in a context relevant
to ours in Ref. �36�, and which shows that in the Markovian
limit time-dependent system Hamiltonians are always
coupled to the Lindblad operators. This difference in basis
explains the apparent disparity between Ref. �17� and our
result. Then, in the instantaneous eigenbasis, we obtain ro-
bustness against both dephasing and spontaneous emission
for adiabatic evolution as a simple consequence of the com-
mutation relation between the Hamiltonian superoperator H
and the corresponding decoherence superoperators R. In
fact, the commutation between H and R provides a general
sufficient condition for robustness of adiabatic geometric
phases against R. Note also that the nonadiabatic geometric
phase is usually affected by corrections due to the system-
bath interaction, in particular in the case of spontaneous
emission �18�. Remarkably, by imposing adiabaticity on the
open system, robustness of the geometric phase against this
decoherence process is obtained.

We stress that, to the best of our knowledge, the approach
presented here for dealing with geometric phases is the first
to predict robustness against both dephasing and spontaneous
emission for a spin-1 /2. We expect that such a robustness
will serve as a useful protection mechanism in holonomic
QC �see, e.g., Ref. �8� for difficulties in the correction of
spontaneous emission�. The robustness is reminiscent of the
emergence of a decoherence-free subspace �DFS� �48�, but
unlike the symmetry-driven appearance of the latter, here the
robustness is due to a, fundamentally different, adiabatic
mechanism. Related observations were made, using very dif-
ferent methods, in Ref. �49�, for a system in a DFS, coupled
to a cyclically evolving reservoir.

As for closed systems, B plays an important role in setting
the time interval for the observation of the geometric
phase. The reason is that the Zeeman effect further splits the
system energy levels, thus postponing the breakdown of
adiabaticity due to overlap caused by environmentally in-
duced broadening. This behavior is illustrated in Fig. 1 for
the case of dephasing, where we take �z=0.1 �in units such
that �=1� and use the following spherically symmetric con-
figuration for the magnetic field: Bx�s�=B cos�2�s�sin �,
By�s�=B sin�2�s�sin �, and Bz=B cos �, with � denoting the
azimuthal angle, set at � /3. The initial state of the system is
chosen to be an equal superposition of energy eigenstates.
Due to the commutation relation �H ,R�=0, we find that the
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four Jordan blocks are associated with the set of Hilbert-
Schmidt space vectors 
��m���n�� �m ,n=1,2�, where 
��m��
are the normalized eigenstates of the system Hamiltonian.
Then, direct computation of 
� from Eq. �6� �for s=1� yields

�= ±2� cos � for the vectors ��m���n� with m�n. Up to an
unimportant 2� factor, these are exactly the differences of
geometric phases ±2��1−cos �� appearing in the density op-
erator for these states in the closed case. As suggested from
the analytical treatment above, similar results hold for spon-
taneous emission.

It should be noticed, however, that robustness is, natu-
rally, not universal; e.g., it does not hold for the bit-flip chan-

nel �x�B� �=�xW�B� ��xW�B� �†, since �x does not commute with
the Hamiltonian superoperator. This result is illustrated in
Fig. 2, where it is shown that the real part of the geometric
phase under bit-flip is slightly affected by the decoherence
process. This is in contrast with the robustness of dephasing
and spontaneous emission. The corresponding imaginary part
of the geometric phase �not shown� has negligible variation,
which means that the visibility of the phase is not signifi-
cantly affected by the bit-flip channel for the decoherence
strengths considered in the plot.

V. CONCLUSIONS

We have introduced a general framework for geometric
phases in open systems undergoing cyclic adiabatic evolu-
tion. Expressions which naturally generalize the familiar
closed systems’ �Abelian� Berry phase and �non-Abelian�
Wilczek-Zee gauge potential and Wilson loop were derived,
and their gauge invariance proven. An important feature of
our approach is the existence of a distinguished time scale
for the observation of the adiabatic geometric phase. This
property imposes time constraints on realistic schemes for
holonomic QC based on adiabatic phases. Remarkably, ro-

bustness against dephasing and spontaneous emission was
found for the geometric phase acquired by a spin-1 /2 in a
magnetic field. This robustness is, however, not universal;
e.g., it does not hold for the bit-flip channel, since the latter
does not commute with the Hamiltonian superoperator. The
development of methods for overcoming decoherence affect-
ing geometric phases is therefore of significant interest
�8,50�.
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APPENDIX A

We define the right 
�D�
�j��R� �t����� and left 
��E�

�i��R� �t����
basis vectors associated with L�R� �t�� and prove their bi-
orthogonality and completeness. Instantaneous right and left
eigenstates of a general time-dependent superoperator L�t�
are defined by

L�t��P��t��� = 	��t��P��t��� , �A1�

��Q��t��L�t� = ��Q��t��	��t� , �A2�

where possible degeneracies correspond to 	�=	�, with
���. In other words, we reserve a different index � for
each independent eigenvector since each eigenvector is in a
distinct Jordan block. It follows from Eqs. �A1� and �A2�
that, on the one hand,

FIG. 1. �Color online� Maximum value of the ratio T�
c /T of the

crossover time to the total evolution time, taken over all the Jordan
blocks, as a function of T for a spin-1 /2 particle in a magnetic field
undergoing dephasing. Parameter values are given in the text. The
adiabatic interval requires T�

c �T. Observe that the stronger the
magnetic field �at fixed decoherence rate�, the better the adiabatic
approximation, and hence the longer we can observe the geometric
phase.

FIG. 2. �Color online� Geometric phase �in units of �� of a spin-
1 /2 in a magnetic field, as a function of the decoherence strengths
�n �n is chosen as z, �, or x depending on the decoherence process,
as indicated in the legend�. The magnetic field is applied in a spheri-
cally symmetric configuration whose parameters are chosen as in
Fig. 1. The geometric phase 
−+�C� plotted is for the Jordan block
associated—in the limit of vanishing decoherence—with the
closed-system geometric phase difference 
−

closed�C�−
+
closed�C�,

which equals −2��1−cos��=� /3��=−�.
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��Q��t���L�t��P��t���� = 	��t���Q��t��P��t��� , �A3�

while on the other hand this equals

���Q��t��L�t���P��t��� = ��Q��t��P��t���	��t� . �A4�

Therefore, for 	��	�, we have ��Q��t� �P��t���=0.
The left and right eigenstates can be easily identified

when the Lindblad superoperator is in the Jordan form
LJ�t�=S−1�t�LS�t�. Denoting �P��t���J=S−1�t��P��t���, i.e.,
the right “Jordan basis” �note the J subscript� eigenstate of
LJ�t� associated to a Jordan block J�, then Eq. �A1� implies
that �P��t���J is time-independent and, after normalization, is
given by

��P���J�J�
= �1,0,0, . . . ,0�t, �A5�

where only the vector components associated to the Jordan
block J� are shown, with all the others vanishing. In order to
have a complete basis we shall define new states, which will
be chosen so that they preserve the block structure of LJ�t�.
A suitable set of additional vectors is

��D�
�1���J�J�

= �0,1,0, . . . ,0�t, . . . ,

��D�
�n�−1���J�J�

= �0,, . . . ,0,1�t, �A6�

where again all the components outside J� are zero. This
simple vector structure allows for the derivation of the ex-
pression

LJ�t��D�
�j���J = �D�

�j−1���J + 	��t��D�
�j���J, �A7�

with �D�
�0���J��P���J and �D�

�−1���J�0. The set 
�D�
�j���J ,

j=0, . . . , �n�−1�� can immediately be related to a right vec-
tor basis for the original L�t� by means of the transformation
�D�

�j��t���=S�t��D�
�j���J which, applied to Eq. �A7�, yields

L�t��D�
�j��t��� = �D�

�j−1��t��� + 	��t��D�
�j��t��� . �A8�

Equation �A8� exhibits an important feature of the set

�D�

�j��t����, namely, it implies that Jordan blocks are invari-
ant under the action of the Lindblad superoperator, i.e., the
index � denoting the Jordan block is preserved under L.

An analogous procedure can be employed to define the
left basis. Denoting by J��Q��t��= ��Q��t��S�t� the left eigen-
state of LJ�t� associated to a Jordan block J�, Eq. �A2� leads
to the normalized left vector

�J��Q���J�
= �0, . . . ,0,1� . �A9�

The additional left vectors are defined as �note that these are
just the transpose of the right vectors in the Jordan basis�

�J��E�
�0���J�

= �1,0,0, . . . ,0� ,

¯

�J��E�
�n�−2���J�

= �0, . . . ,0,1,0� , �A10�

which imply the following expression for the left basis vec-
tor ��E�

�i��t��= J��E�
�i��S−1�t� for L�t�:

��E�
�i��t��L�t� = ��E�

�i+1��t�� + ��E�
�i��t��	��t� , �A11�

or, equivalently,

L�t�†�E�
�i��� = 	�

*�t��E�
�i��� + �E�

�i+1��� . �A12�

Here we have used the notation J��E�
�n�−1��� J��Q�� and

J��E�
�n����0.

We can now derive the orthogonality and completeness
relations. First, the left and right basis vectors are orthonor-
mal,

��E�
�i��t��D�

�j��t��� = J��E�
�i��S−1�t�S�t��D�

�j���J = 
��
ij .

�A13�

Second, it is clear that �since it is a standard basis� the Jordan
basis is complete in the sense that ��,�;i,j�D�

�j���JJ��E�
�i��= I.

Applying S�t� to the left and S−1�t� to the right of this equa-
tion, we therefore find the completeness relation

�
�,�;i,j

�D�
�j��t�����E�

�i��t�� = I . �A14�

As a final point of clarification, note that, even though in
the stationary Jordan basis left and right basis states coincide
�up to transposition�, this is not the case in the time-
dependent basis. This difference between left and right vec-
tors is due to the nonunitarity of the similarity matrix S. To
see this, note that for a one-dimensional Jordan block,
�D���J= �E���J, so instead of ��E��t��= J��E��S−1�t� we can
write ��E��t��= J��D��S−1�t�. Then �E��t���= �S−1�†�t��D���J,
which does not equal �D��t���=S�t��D���J since S is not
unitary.
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