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Relativistic quantum walks
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By pursuing the deep relation between the one-dimensional Dirac equation and quantum walks, the physical
role of quantum interference in the latter is explained. It is shown that the time evolution of the probability
density of a quantum walker, initially localized on a lattice, is directly analogous to relativistic wave-packet
spreading. Analytic wave-packet solutions reveal a striking connection between the discrete and continuous-
time quantum walks.
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The “quantum random walk,” first coined by Aharonov et
al. �1�, is a quantum generalization of the classical random
walk. Consider a walker moving on a one-dimensional lat-
tice, taking steps left or right based on the state of a coin.
Classically, if the coin is flipped after each step, this gener-
ates a diffusive random walk. If the coin is quantum me-
chanical, however, it can be put into a superposition, and
rotated by applying a fixed unitary operator. Aharonov et al.
showed that this quantum procedure �or algorithm� can gen-
erate displacements that, on average, are much greater than
the classical random walk.

This discrete-time quantum walk �DTQW� has been redis-
covered and extensively analyzed in the context of quantum
computation �2�. Two key properties are the following: �i�
the standard deviation of the walker’s position grows linearly
in time ���x�t� t�, in clear distinction to the classical random
walk ���x�t� t1/2�, �ii� for proper initial conditions the
walker spreads out symmetrically, with a nearly constant
probability distribution save for two peaks located at x±
= ±ct �where c=1/�2 for the “Hadamard walk” �2��, beyond
which the probability quickly goes to zero.

An entirely different approach to “quantizing” random
walks was initiated by Farhi and Gutmann �3�. Beginning
with the differential equation for diffusion on a lattice, they
performed an analytic continuation to yield a Schrödinger
equation with a finite-difference Laplacian operator. This
continuous-time quantum walk �CTQW� was used by Childs
et al. �4� to construct a special search algorithm that is ex-
ponentially faster than classical methods. Other local search
algorithms �with square-root speedup� have been studied us-
ing both the discrete and continuous-time quantum walks,
often with similar results �5,6�. However, to this author’s
knowledge, no physical explanation has been proposed to
explain the similar performance of these two quantum walks.

Before connecting these two walks, recall the connection
between the DTQW and the Dirac equation. As discussed by
Meyer �7�, this goes back to Feynman’s “checkerboard,” a
discrete space-time path integral that, in the continuum limit,
generates the propagator for the Dirac equation in one di-
mension �8�. This is best seen in the following unitary rep-
resentation �9�, in which the DTQW is written as the discrete
mapping:
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��R�n,� + 1�
�L�n,� + 1�

� = U��R�n,��
�L�n,��

� , �1�

�R and �L are wave functions on an infinite lattice, and U is
the product of a conditional translation operator and a spin
rotation

U = � 1
2 �I + �z�D + 1

2 �I − �z�D−1�e−i��x. �2�

Here the Pauli matrices 	I ,�x ,�z
 act on the spinor compo-
nents, and the translation operator D acts on wave functions
as �D���n�=��n−1�. The continuum limit is found by letting
the position x=n�, D=e−i�p �p is the momentum�, �=m� �m
is the mass�, and the time t=��. Using the Trotter formula,
the limit �→0 �with p ,m, and t finite� yields

U� = �e−i��zPe−i�m�x�t/� → e−iHDt, �3�

where HD is the Hamiltonian for the one-dimensional Dirac
equation �with �=c=1, p=−i�x� �10�:

i�t��x,t� = HD��x,t� = �− i�z�x + �xm���x,t� . �4�

While quite elegant, the properties of this continuum limit
have been largely ignored in the extensive analysis of the
Hadamard walk �11� �in which e−i	�y/4�z is used in place of
e−i��x in �2��. The closest related work is the continuum limit
of the Hadamard walk recently found by Knight et al. �12�,
but this and the corresponding Airy function solutions are
significantly different from the Dirac equation. Another no-
table work is that of Meyer �13�, who studied some of the
wavelike properties of quantum cellular automata, but not
the uniquely relativistic properties explored here. Under-
standing these properties may have importance for quantum
algorithms; it has already been shown that massless Dirac
operators can improve a continuous-time search algorithm
�6�.

Here I use explicit solutions of �4� to illustrate that the
quantum-walk probability distribution is analogous to the
spreading of a relativistic particle. The term “relativistic” is
taken to mean any evolution of a particle with a maximum
speed limit. The same characteristic spreading—both relativ-
istic and nonrelativistic—is found from a new solution to the
quantum-walk equations �1� and �2� without going to a con-
tinuum limit. Finally, this solution is found to be analytically
related to the continuous-time quantum walk, providing a
new link between these two relativistic quantum walks.
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First, it is important to note that, using the Heisenberg
equations of motion, wave-packet spreading for any disper-
sion relation 
�p� can be written as

��x�t
2 = ��x�0

2 + ��v�0
2t2, �5�

where ��v�0 is the standard deviation of the group velocity
v�p�=d
�p� /dp �14�. For the Dirac equation �4�, the disper-
sion relation is 
�p�=�p2+m2, and thus v�p�= p�p2

+m2�−1/2�c=1, i.e., there is a maximum group velocity,
which is, of course, the speed of light.

While this linear quantum spreading ��x�t� t is universal,
the presence of peaks of the probability distribution �at x±
= ±ct� depends on the initial localization. To show this, I
construct an explicit time-dependent solution of �4� by the
following Fourier representation:

��x,t� =
N
2	
�

−�

�

dp P+�p�
1
�2

�1

1
�eipx−�a+it�
�p�. �6�

The prefactor P+�p�� I+HD /
�p� projects the spinor onto
the positive-energy eigenstates of HD, while the parameter a
in the exponential allows arbitrary localization in position.
The integrals can be done analytically to yield

��x,t� =
mN
	

�s−1K1�ms��a + i�t + x�� + K0�ms�
s−1K1�ms��a + i�t − x�� + K0�ms�

� , �7�

where s= �x2+ �a+ it�2�1/2, the normalization factor is

N = �	/2m�K1�2ma� + K0�2ma��−1/2, �8�

and Kn is the modified Bessel function of order n �15�.
The probability density is shown in Fig. 1 for two values

of a at t=0 and t=50. The nonrelativistic wave packet �with
large a� spreads as a Gaussian, while the relativistic wave
packet �with small a� spreads near the light cone �x±= ±ct� at
the speed of light.

Another exact solution of the one-dimensional Dirac

FIG. 1. �a� Nonrelativistic �a=5� and �b� relativistic �a=0.5�
solutions of the one-dimensional Dirac equation. The probability
density ��x , t�=�†�x , t���x , t� is shown at time t=0 �dotted lines,
arbitrary units� and at t=50 �solid lines�. Other parameters are the
mass m=1 and the speed of light c=1.
equation was found many years ago �16�. These examples
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demonstrate the existence of positive-energy states of a rela-
tivistic particle localized beneath its Compton wavelength
�17�, despite well-known claims to the contrary. Such states
appear to require entanglement between the spatial and
spinor degrees of freedom �18�—this is shown for �7� below.

While the resemblance between the probability distribu-
tion of the Hadamard walk �see, e.g., �2�� and the relativistic
wave packet in Fig. 1 is quite strong, it begs the question:
what about the nonrelativistic case? For the quantum walk,
this requires an initial superposition over the lattice. A larger
spread in the position leads to slower spreading, as expected
by the uncertainty principle.

An analytic solution to the walk equations �1� and �2�,
covering both the relativistic and nonrelativistic limits, can
be found using a similar procedure as above. I use the Fou-
rier analysis of �1� and �2� and let D=e−ik, in which case

U = �e−ikcos � − ie−iksin �

− ieiksin � eikcos �
� . �9�

This matrix has eigenvalues e±i
�k�, where 
�k� satisfies the
dispersion relation �13�

cos 
�k� = cos � cos k . �10�

The wave packet corresponding to �6� and �7� is

��n,t� =
N

2	
�

−	

	

dk P+�k�
1
�2

�1

1
�eikn−�+it�
�k�. �11�

The prefactor P+�k���ei
�k�−U� projects the spinor onto the
“positive-energy” eigenstates of U, while the parameter  in
the exponential allows arbitrary localization on the lattice.
This solution can be written as

��n,t� =
N
�2

�In�t − 1 − i� − e−i�In−1�t − i�
In�t − 1 − i� − e−i�In+1�t − i�

� , �12�

where the function In�z� is defined by

In�z� =
1

2	
�

−	

	

dk exp�ikn − i
�k�z� , �13�

with 
�k� given by �10�, and the normalization factor is

N = �2I0�− i2� − ei�I1�− 1 − i2� − e−i�I1�1 − i2��−1/2.

�14�

At this point, a crucial approximation can be made: if
cos � is small, replace 
�k� by its lowest order expansion
from �10�: 
�k�	 /2−cos � cos k. This replacement conve-
niently yields the same maximum group velocity �cos �� and
allows the following approximation to �13�:

In�z�  ei	�n−z�/2Jn�z cos �� , �15�

where Jn is the Bessel function of order n �15�. Using this
approximation in �12�, as shown in Fig. 2, compares quite
favorably to a numerical calculation of �1� and �2�. The anal-
ogy between this and Fig. 1 is remarkable, taking the “speed
of light” for the quantum walk as cos �.

A few comments are in order. First, I have shown that

evolution on the line for the DTQW, in the relativistic case,
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has fronts that propagate at the maximum speed c=cos �, in
close analogy to a solution of the Dirac equation. Heuristi-
cally, the criterion for a relativistic walker is for the initial
localization ��x�0 to be less than the effective Compton
wavelength �=1/ �mc�=1/sin �, where the effective mass is
given by m= �d2
�k� /dk2�k=0

−1 =tan �. To approximate the
Hadamard walk, the appropriate choice is �=	 /4, leading to
c=1/�2, m=1, and �=�2�1. Thus, the initial condition
most widely studied �11�, with the walker localized at one
position, has ��x�0�1��, leading to a relativistic quantum
walk.

Second, the analogy between the wave packets of �7� and
�12� extends beyond the probability distribution to the en-
tanglement between the spinor and spatial degrees of free-
dom �18�. The entanglement as a function of the initial lo-
calization is shown in Fig. 3. By including only positive-
frequency terms in the wave function, the entanglement
remains constant in time. Note that here, as in Fig. 2, I have
used the correspondence between the localization parameters
a= / tan �, found by comparing the dispersion relations near
k= p=0. As discussed above, highly localized positive-
energy states become significantly entangled in the limit a
→0.

Finally, I note that the particular choice of the spin rota-
tion �coin� of the quantum walk analyzed above has simpli-
fied the calculation. As an example, the Hadamard walk’s
dispersion relation sin 
�k�=sin k /�2 �11� does not satisfy

�k�
�0�+k2 / �2m� for small k, but rather 
�k�k /�2
−k3 / �12�2�. This expansion, the essential approximation
used in �12�, does not lead to an obvious nonrelativistic limit
to the Hadamard walk.

There is, however, both types of propagation—relativistic
and nonrelativistic—for the CTQW, defined by �3�

i�t��n,t� = − ����n − 1,t� − 2��n,t� + ��n + 1,t�� . �16�

FIG. 2. �a� Nonrelativistic �=22� and �b� relativistic �=2.2�
solutions of the one-dimensional discrete-time quantum walk
�DTQW�. The probability density ��n ,��=�†�n ,����n ,�� is shown
at time �=0 �dotted lines, arbitrary units� and at �=225 �dots�,
along with the Bessel-function approximation �15� �solid lines�.
Other parameters are the rotation angle �=3	 /7, the mass m
=tan �4.38, and the speed of light c=cos �0.22. To compare
with the Dirac solution, the parameters were chosen such that c�
50 and  /m= / tan �a.
An exact solution for this walk can be found as above
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��n,t� = N�2	�−1�
−	

	

dk eikn−�+it�
�k�

= Ne−2��+it�inJn�2��t − i�� , �17�

with the dispersion relation 
�k�=2��1−cos k� and normal-
ization factor N=e2��J0�−4i���−1/2. The relativistic and
nonrelativistic evolution for this case is shown in Fig. 4. This
solution is strikingly similar to �12� �using the relation �15��,
both visually and analytically, assuming equal maximum
speeds c=2�=cos �.

A Bessel-function approximation to the DTQW similar to
�11�–�15� was recently found by an entirely different method
�19�. The physical content of this approximation, however, is
revealed by the wave-packet analysis presented here: when
cos ��1 ���	 /2�, the dispersion relations of both the
CTQW and DTQW have the common form 
�k�=
�0�

FIG. 3. The entanglement, in ebits, of the Dirac solution �solid�,
and the discrete-time quantum walk with �=3	 /7 �dashed�, as a
function of the scaling parameter a= / tan �. The entanglement
measure is the spinor entropy �18�, using a base-2 logarithm.

FIG. 4. �a� Nonrelativistic �=22� and �b� relativistic �=2.2�
solutions of the one-dimensional continuous-time quantum walk
�CTQW�. The probability density ��n , t�=�†�n , t���n , t� is shown at
time t=0 �dotted lines, arbitrary units� and at t=225 �solid lines�.

The remaining parameter is c=2�=cos�3	 /7�0.22.
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+c�1−cos k�, with the “relativistic” property of a maximum
speed �v�k�=d
 /dk�c�. This equivalence is quite unex-
pected, since it is the ��1 �cos ��1� limit of �10�, 
�k�
��k2+�2, that leads to the Dirac equation.

Despite this quantitative equivalence, there still appears to
be two qualitatively distinct approaches to quantizing a ran-
dom walk. A possible resolution is simply to consider the
CTQW as the discretization of the one-dimensional nonrela-
tivistic Schrödinger equation, and the DTQW as the discreti-
zation of the one-dimensional Dirac equation.

The Schrödinger equation can be considered the quantiza-
tion �by analytic continuation� of the diffusion equation for
the Brownian motion. The Dirac equation can also be con-
sidered the quantization �by analytic continuation� of the

two-velocity model for the telegrapher’s equation �20�. This
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model describes a particle that moves with a constant veloc-
ity left or right, switching its velocity randomly at some con-
stant rate �21�. This latter process corresponds precisely to
the coined classical random walk originally described above.
From this point of view, the two quantum walks are not two
different quantization methods, but rather equivalent quanti-
zations of two different stochastic processes: one described
by the diffusion equation and the other by the telegrapher’s
equation. That both lead to propagation with a maximum
speed is the surprising yet simple consequence of discretiz-
ing equations on a lattice.
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