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Second-harmonic generation is studied for the case where the fundamental field is light produced in a
spontaneous parametric down-conversion process. We show that second-harmonic generation is sensitive to the
transverse correlations between signal and idler fields. In particular, when the fundamental is prepared in a state
exhibitting spatial antibunching, the second-harmonic intensity may be zero, independent of the intensity of the
fundamental field.
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I. INTRODUCTION

Second-harmonic generation �SHG� has been widely in-
vestigated in the context of nonlinear optics since its first
observation �1�. Quantum effects in SHG have also been
investigated �2,3�, but in most cases not taking into account
the transverse properties of the fields involved. On the one
hand, in the classical optics framework, the transverse prop-
erties of the fields in SHG have been investigated and it has
been demonstrated the conditions for image transfer �4� and
angular spectrum transfer �5�. On the other hand, there has
been little research interest on certain aspects of SGH pro-
cesses concerning the quantum spatial �transverse� properties
of the fundamental on the second-harmonic fields �6,7�.

Recently, quantum spatial properties of light have re-
ceived a great deal of attention from the quantum optics
community, since promising applications for so-called quan-
tum images have been proposed. Spontaneous parametric
down-conversion �SPDC�, has always been in the heart of
this research. It has been used for demonstrating the exis-
tence of quantum spatial correlations �8–10� and for under-
standing how to prepare states presenting this kind of en-
tanglement �11�. When the quantum states are properly
prepared, it is possible to observe the de Broglie wavelength
of the twin photon pair �12�, which has been considered for
applications to so-called quantum lithography �13,14�.
Though the quantum character of the spatial correlations be-
tween twin photons from the down-conversion has been a
subject of debate �15–17�, it has been proven that they can
violate classical inequalities �18–20�, therefore qualifying
them as quantum correlations.

Among the possibilities of preparing and observing the
quantum spatial correlations between twin photons from
SPDC, states presenting spatial antibunching can be prepared
in at least two different configurations �18,19�. In one of
these configurations �19�, a Dove prism is inserted in the
path of one of the two propagating twin beams before they
are combined in a single beam. Though extremely simple,
this operation is crucial to make the combined beam homo-

geneous in fourth order. Further manipulation of the pump
beam allows for the preparation of a spatial antibunched state
in the combined beam. In the present work, we will show
that the insertion of the Dove prism in the path of one of the
twin beams has further physical consequences.

We calculate the quantum state of the second-harmonic
field produced in a SHG process, where the fundamental
field is composed of twin beams originating from parametric
down-conversion. We take into account the angular spectrum
of all fields involved, the fundamental and the second har-
monic. We compare the results for two cases: when the com-
bined twin beams are directly used as the fundamental field
or when one of the twin beams is manipulated using the
Dove prism before being combined with the other beam to
form the fundamental field. It is demonstrated that the SHG
intensity is different for the two cases. In particular, when the
fundamental field is prepared in an antibunched state, the
SHG intensity may be zero, independently of the fundamen-
tal field intensity. This shows that transverse quantum corre-
lations are crucial in the SHG process.

From the experimental point of view, the main difficulty
for performing this kind of experiment is the low SHG effi-
ciency, which combined with the low intensity of the twin
beams, reduces the probable signal-to-noise ratio to the dark
count level of the currently available photon counters. Peri-
odically poled nonlinear crystals are good candidates for
such experiments, as they achieve higher conversion effi-
ciencies for the up- and down-conversion processes. The use
of twin beams as fundamental fields in the SHG process has
already been demonstrated �21�. Therefore, the implementa-
tion of an experiment for testing our theoretical results is
possible with current technology.

II. THEORY

Let us consider the situation sketched in Fig. 1. A nonlin-
ear crystal is placed at the origin of a Cartesian coordinate
system. A monochromatic and linearly polarized pump beam
interacts with the crystal giving rise to spontaneous paramet-
ric down-conversion. The pump field can be described by the
scalar function E�r , t�=Wb�� ,z�e−i�0t, where Wb�� ,z� repre-
sents the beam profile at the position � in plane z �22�. In the*Electronic address: diney@if.ufrj.br
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paraxial and thin crystal approximations, it is possible to
show that the quantum state of the signal and idler down-
converted fields, for the degenerate case, is given by �11,23�

��I� = �vac� + �� d2q�� d2q�v�q� + q�;0�
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In this expression, Lz is the length of the crystal
in the z direction, t is the interaction time, ��k ,s� is a
polarization vector, l�� ,s�= i����k ,s� /2�0n2�k ,s��1/2, and

�̃ijk
�2��� ;�� ,����−	

	 dt�−	
	 dt��ijk

�2��t� , t��ei���t�+��t��, where
�ijk

�2� are the components of the nonlinear susceptibility tensor.
This state is a perturbative series in the parameter �.

The first term is the vacuum state and the second is
an entangled state with two photons, with the same
frequency �0 /2, propagating along the z direction and
having wave vectors k�=q�+ �k0 /2��1−2q�2 /k0

2�ẑ and
k�=q�+ �k0 /2��1−2q�2 /k0

2�ẑ. Here q� and q� are transverse
wave vectors, ẑ is the unit vector in the z direction, and �vac�0
denotes the unoccupied field modes. The signal and idler
beams are also linearly polarized with polarizations s0� and
s0�, respectively. In this expression, v�q�+q� ;0� is the angu-
lar spectrum �22� of the pump beam calculated in q�+q� at
the plane z=0. As usual, terms of the order of O��2�, corre-
sponding to states with more than two photons, are
neglected.

As expected, the intensity of the idler �it is the same for
the signal� beam taken individually, at position r1=�1+z1ẑ,
with �1 being a vector perpendicular to ẑ, is given by
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k0

2

4���z1
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where

Î�r,t� � V̂†�r,t� · V̂�r,t� �6�

is the intensity operator,

V̂�r,t� �
1

�2��3/2�
s
� d3k â�k,s�ei�k·r−�t���k,s� �7�

is the photoeletric operator, and

Pb�z� =
1

2
��� d2��Wb��,z��2 �8�

is the power of the pump beam in the plane z. Here � and �
are the electric permittivity constant and the speed of light
inside the crystal, respectively.

The intensity correlations between signal and idler beams
are given by the normally and time-ordered fourth-order cor-

relation function 
�2,2��r1 ,r2 ;r2 ,r1�= �T : Î�r1 , t1�Î�r2 , t2� : ��

which is proportional to the coincidence counting rates
in experiments where signal and idler are detected with
single-photon counters. From Eq. �3�, we calculate this
fourth-order correlation function at signal and idler detector
positions r1=�1+z1ẑ and r2=�2+z2ẑ, and find


�2,2��r1,r2;r2,r1� = 
�2,2���,z� = ���2
k0

2

2���z1 + z2�2 Ib��,z� ,
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where

z =
2z1z2

z1 + z2
,

� =
z2�1 + z1�2

z1 + z2
�10�

are positions related to ��1 ,z1� and ��2 ,z2�, and

Ib��,z� =
1

2
���Wb��,z��2 �11�

is the intensity of the pump beam at the position r=�+z ẑ.
On the one hand, it is seen that the intensity of the signal

or the idler beam considered separately is proportional to the
power of the pump beam. It does not have any information
about the pump beam profile �different beam profiles may
give rise to the same value of integral in Eq. �8��. On the
other hand, the fourth-order correlation function is propor-
tional to the intensity of the pump beam at the position
� in the plane z and depends on the detection positions of
both signal and idler fields. According to Ref. �11�, this de-
pendence is a consequence of the transfer of the angular
spectrum from the pump field to the correlations between
signal and idler photons. This provides us with a way of
preparing quantum states where the transverse correlations
between signal and idler beams are controlled by the shape
of the pump beam.

FIG. 1. �Color online� Signal-idler beams filtered from the pump
in degenerate SPDC.
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In the following we will be interested in spatial transverse
properties of light fields, such as spatial photon bunching and
antibunching. According to Ref. �18� one light beam presents
spatial antibunching if the following Schwarz inequality is
violated:


�2,2��r;r + ��  
�2,2��r;r� , �12�

with � being an arbitrary spatial displacement. However, in
order to derive the above inequality, and to associate its vio-
lation with the nonclassical character of a light beam, it is
necessary to start from a homogeneous field.

Let us consider the special case where signal and idler
detector planes are located at the same distance from the
crystal. In this case z1=z2=Z, and Eq. �10� reduces to

z = Z ,

� =
�1 + �2

2
, �13�

leading to


�2,2���1,�2;z� = ���2
k0

2
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2
,Z
 . �14�

From Eq. �14�, it is easy to see that the combined signal-
idler field would not be homogeneous in the fourth-order
correlation function, as the sum of the coordinates �1+�2
appears in its argument. In Ref. �19�, it is shown how this
problem can be circumvented by simply using Dove prisms
to perform the transformation q�→−q� on the tranverse
wave vector of one of the twin fields, keeping the other un-
changed before combining them, as sketched in Fig. 2.

As a result, the quantum state that describes the fields
after such manipulation is equal to Eq. �3� with the transfor-
mation

�q� +
k0

2
	1 −

2q�2

k0
2 
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and the fourth-order correlation function becomes


�2,2���1,�2;z� = ���2
k0

2

8��z2 Ib	�1 − �2

2
,Z
 . �16�

Now this function depends only on the difference between
the detection coodinates so that if we combine signal and

idler beams, the resulting field is now tranverse homoge-
neous to second and fourth order. Note that the joint prob-
ability of registering photodetections of signal and idler pho-
tons at the same point in the plane Z is proportional to the
intensity of the pump beam at the origin of that plane. In Ref.
�19� it is shown how this result can be used to obtain spatial
antibunching. The second-order homogeneity comes from
the fact that signal and idler fields are mutually incoherent
and therefore their superposition will not give rise to inter-
ference. In the following, we will analyze the use of the
combined signal and idler beams as the fundamental field in
the SHG process.

A. SHG with SPDC beams

Let us consider now, the situation sketched in Fig. 3. Two
identical nonlinear crystals are located at the origin and at
position rc=zcẑ, respectively, of a Cartesian coordinate sys-
tem. A monochromatic beam is used to pump the first crystal
and the produced signal and idler beams filtered out from the
pump are sent to the second crystal. The second-harmonic
generation in the second crystal will be analyzed for two
cases: �i� when the combined signal-idler beam is directly
used as the fundamental and �ii� when the signal �idler� beam
is manipulated via the use of Dove prisms before being sent
to the second crystal.

Treating the SHG as the Hermitian conjugate process of
the degenerate SPDC, we can follow �24–27�, and write the
second-harmonic quantum state as

���t�� = exp	−
i

�
�

0

t

dt�V̂I�rc,t��
��F�0�� , �17�

where ��F�0�� is the state of the fundamental field, and

FIG. 2. �Color online� A Dove prism performs the operation
kx→−kx in one of the beams.

FIG. 3. �Color online� Combined signal-idler beam: �a� free
propagation; �b� manipulation by the Dove prism.
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Here V̂I�rc , t�� is the Hamiltonian operator that describes the
interaction at the position rc at time t�. V is the quantization
volume, t is the interaction time, ��k ,s�, â�k ,s�, and â†�k ,s�
are, respectively, the polarization vector, photon annihilation
operator and photon creation operator. Furthermore, l�� ,s�
and �̃lmn

�2� �� ;�� ,��� are defined in the same way as in Eq. �4�.
The second-harmonic field is labeled by the index 2, and the
fundamental by the index 1, where the primes � and ��
stand for the signal and idler fields, respectively.

1. Free signal-idler beam as the fundamental

In this case, the twin beams propagate freely to the second
crystal, as sketched in Fig. 3�a�. As a result, the state of the
fundamental field is given by Eq. �3�. If we use that state in
Eq. �17�, we find
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ẑs10� �

s

��q1� +
k0

2
	1 −

2q1�
2

k0
2 
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In the state ���t�� are represented the various possible out-

comes of the light interaction with the two crystals. We are
interested in the component ��� which describes the process
where two photons �signal and idler�, of frequency �0 /2, are
created in the first crystal and annihilated in the second crys-
tal, giving rise to a new photon of frequency �0, wave vector
q2+k0�1−q2

2 /2k0
2�ẑ, and linear polarization s20. This photon

is named the second-harmonic photon. If we define the
parameter
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����k1�,s10� ��n���k1�,s10� ��m��*�k2,s20��l, �21�

we can, after lengthy calculations, rewrite the quantum state
of the second-harmonic field as

��� = ���vac� � d2q2v�q2;0��q2 + k0	1 −
q2

2

2k0
2
ẑs20�

sh

.

�22�

Note the presence, in the state ���, of the angular spectrum
v�q2 ;0� of the pump beam in the plane z=0. This shows
that the SHG also transfers the angular spectrum, which is
not surprising, if we remember that SHG is the Hermitian
conjugate process of degenerate SPDC. If we now calculate
the intensity of the second-harmonic field at the position
rd=�d+zdẑ, we will find

�Î��d,zd��� = ����2
4�

��
Ib��d,zd� . �23�

We see that the intensity of the second-harmonic field is
proportional to the intensity of the pump beam at the position
�d in the plane z=zd. This result has the same dependence as
the fourth-order correlation function �9�, so we can see that
the information about the angular spectrum, shared by the
signal and idler photons is transferred to the second har-
monic photon �5�.

2. Manipulated signal-idler beam as the fundamental

Let us suppose that the twin beams are manipulated ac-
cording to the procedure described in Ref. �19� and sketched
in Fig. 3�b�. Now the state of the the fundamental field is
given by Eq. �3� with the transformation performed in Eq.
�15�. The interaction between the second crystal and this
field is treated in the same way as described in the previous
section. As a result, in this case ��� is equal to

��� = ��I�vac��
�q2���k0�

d2q2�q2 + k0	1 −
q2

2

2k0
2
ẑs20�

sh

,

�24�

where � is given by Eq. �21� and
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I �
2

�A
exp�− ik0zc� � d2q�v�q�;zc�sinc	 Lz

4k0
q�2
 .

�25�

Here A�LxLy, and v�q� ;zc� is the the propagated angular
spectrum in the plane zc �22�. The condition �q2�� �k0� as-
sures the fulfilment of the paraxial approximation. The inte-
grand in this expression is a product of two values which
decay to zero as its arguments increase: the angular spectrum
has a spectral width ��k0 that satisfies the paraxial approxi-
mation, and the cardinal sine has a spectral width � which is
given by �=�4�k0 /Lz and corresponds to the first zero of
that function. If the condition ��� is satisfied, we can
make the approximation

sinc	 Lz

4k0
q�2
 � 1, �26�

which corresponds to taking the maximum value of the car-
dinal sine in the integral Eq. �25�. In fact, this condition is
equivalent to

� ��4�k0

Lz
. �27�

For typical values Lz=0.01 m and �0=1�10−6 m, we
have ��105 m−1, which does not contradict the condition
��k0�106 m−1. Therefore, if we substitute Eq. �26� in Eq.
�25�, extend its limits to �−	 , +	�, and make some calcula-
tions, we find

I =
8

�A
exp�− ik0zc�Wb�0,zc� �28�

where Wb�0,zc� is the pump beam profile at the origin of the
plane z=zc. As a result, the quantum state of the second-
harmonic field is equal to

��� = ��� exp�− ik0zc�Wb�0,zc��vac�

���q2���k0�d
2q2�q2 + k0	1 −

q2
2

2k0
2
ẑs20�

sh

, �29�

where ��= �8/�A��. Notice that, in this expression for the
state ���, the angular spectrum v�q2 ;0� of the pump beam is
no longer present in the superposition of states of one photon
of transverse wave vectors q2. The state ��� is now propor-
tional to the pump beam profile Wb�0,zc� projected at the
origin of the plane zc, where is located the second nonlinear
crystal. As a result, if we calculate the intensity of the
second-harmonic field at the position rd=�d+zdẑ, we find

�Î��d,zd��� = �����2
k0

2

4���zd
2 Ib�0,zc� . �30�

This intensity is proportional to the pump beam intensity
projected at the origin of the plane zc. The more intense the
projected pump beam at that point is, the stronger the inten-
sity of the second harmonic field will be. Therefore, we can
increase the second-harmonic intensity by increasing the pro-
jected pump beam intensity at the center of the second crys-
tal. This condition could be achieved, for instance, using

lenses and focusing the pump beam. However, if the pro-
jected pump beam intensity is zero at that point, the intensity
of the second harmonic vanishes, even if the intensity of the
fundamental is nonzero. This effect can be achieved, for ex-
ample, by preparing the pump beam in a Hermite-Gaussian
mode HG01 or HG10, or a Laguerre-Gaussian mode LG01 or
LG10. It is very important to remember that the pump beam
was blocked after the first crystal, so it does not reach the
second crystal. Its role is indirect, through the transfer of the
angular spectrum.

III. DISCUSSION

According to Eq. �16�, the joint probability of registering
photodetections of signal and idler photons at the same point
in the plane zc is proportional to the intensity of the pump
beam at the origin of that plane. In particular, one way of
preparing signal and idler photons spatially antibunched is
shaping the pump beam to have null intensity at that point. In
this case, Eq. �30� shows that the intensity of the second
harmonic will be zero: signal and idler photons cannot be
annihilated at the same place, with creation of a second-
harmonic photon. Therefore, our analysis shows that SHG is
sensitive to quantum transverse correlations of the funda-
mental field. It is also interesting to note that the insertion of
the Dove prism in the path of one of the twin beams has
further physical consequences: it completely changes the
second-harmonic intensity.

When twin photons are produced in spontaneous paramet-
ric down-conversion, because of the phase-matching condi-
tions, they already have quantum correlations between the
transverse component of their linear momentum. The inser-
tion of the Dove prism in one of the twin beams is a unitary
operation that changes the correlations, leading to a depen-
dence on the difference of their detection coordinates in the
fourth-order correlation function. In other words, quantum
correlations are always there, but they need to be shaped for
a given application.

The experiment for testing our theoretical results is very
simple in concept. However, there is a technical difficulty,
related to the low conversion efficiency of the usual nonlin-
ear crystals. In general, the amount of twin photons produced
with a regular nonlinear crystal is of the order of millions of
pairs, at best. If we send these beams to a second crystal
expecting to observe second-harmonic generation from the
twin pairs, we see that the up-conversion efficiency is in
general smaller than 10−6. Therefore, the number of up-
converted photons would be smaller than the dark noise
counting rate of all commercially available photon counters.
In order to overcome this difficulty, one might use periodi-
cally poled nonlinear crystals. It has been demonstrated that
it is possible to up-convert twin photon pairs, using two of
these crystals �21�. This is the first step toward the realization
of an experiment for testing our results.

IV. CONCLUSION

In conclusion, we have shown that SHG using SPDC
beams as the fundamental beam depends on their transverse
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spatial correlations, especially the quantum ones, as a result
of the transfer of the angular spectrum that also happens in
SHG. If the twin beams propagate freely and are directly
used as the fundamental beam, the second-harmonic field
intensity is proportional to the pump beam intensity. How-
ever, if the twin beams are manipulated by Dove prisms, the
intensity of the second-harmonic field will depend on the
value of the pump beam at a specific point and may even be
zero, for a nonzero intensity of the pump beam.

The realization of an experimental test of our results
could be achieved by using periodically poled crystals.
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