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Some nonclassical properties of a particular state of light are demonstrated by computing the Wigner
function. A quantum model of generating this state is proposed. A criterion called the distance variation
difference is introduced to measure how far any state is from its corresponding coherent state.
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I. INTRODUCTION

We recently demonstrated that a random point process
�RPP� derived from a Poisson process �PP� can show non-
classical properties. This RPP, a random distribution of time
instants �i, denoted here by E2, is of a renewal type and
called an Erlang process of order 2. An example is given by
the times of detection of photons. The E2 process can simply
be generated by regularly deleting one point over two of the
initial PP. The criteria utilized to characterize its nonclassical
properties were established from semiclassical theory,
namely, the second-order statistics of the random variables
�RVs� �i� N��i ;T�, the number of points registered within a
fixed finite time interval ��i ,�i+T�, and �ii� ti=�i+1−�i, the
time intervals.

The purpose of this paper is mainly to treat the E2 process
quantum mechanically.

It is well known that in order to characterize nonclassical
properties of a state, the criterion that is widely utilized in
the literature is the Wigner function defined in the phase
space. For a nonclassical state, this function is a quasiprob-
ability. That is, although it is a probability density function
�PDF�, it has a negative part that the Q function does not
have.

In Sec. II, we first briefly review the basic equations of
phase space in quantum mechanics. We then write the den-
sity matrix in the number representation taking into account
only diagonal elements.

In Sec. III, we calculate the relevant Wigner and Q func-
tions numerically and approximate them analytically for our
particular model. In Sec. IV we deal with the nondiagonal
elements of the density matrix and the corresponding Wigner
and Q functions, in order to obtain interference contribu-
tions. The analytical and numerical results are summarized in
several curves. A quantum model yielding the diagonal ele-
ments of the density matrix is briefly analyzed in Section V.
Finally, the variation distance difference, a criterion to mea-
sure the deviation of any state from its corresponding coher-
ent state, is introduced in Sec. VI. This criterion is calculated
for some classical and nonclassical states including en-
tangled ones such as the superposition of two coherent states.

II. BASIC FORMALISM

Let H be a Hilbert space of dimension D→� spanned by
��n�� a set of infinitely denumerable vector states which form

a complete orthonormal basis �	m �n�=�m,n, 
n=0
� �n�	n � =1̂�,

where 1̂ is the identity operator. These ��n�� are the eigen-

states of the number operator N̂.

A. Density operator

We consider a positive, Hermitian, and trace class density
matrix having the canonical decomposition

�̂ = 

n=1

�

��n��n	�n�, �n � 0, 

n=1

�

�n = 1, �2.1�

where ���n�� forms a complete orthonormal basis. Each ��n�
appearing in Eq. �2.1� admits the expansion ��n�
=
q=0

� �qn �n�, so that

�̂ = 

m=0

�



n�m

�

P�m,n��m�	n� + 

n=0

�

p�n��n�	n� + conj. �2.2�

where P�m ,n�=
q=1
� �qm�q�qn

* = 	m � �̂ �n�, 
m,nP�m ,n�=1.
For a pure state, Tr �̂2=1; otherwise Tr �̂2	1.

An important set of mixed states are those given by �̂
=
n=0

� �n�̂n where the set of pure-state density matrices are
those based on �n� such that �̂n= �n�	n� are projection opera-
tors �̂n

2= �̂n.
Another representation based on the coherent state uses

the so-called P function such that

�̂ =
1



� P������	��d2� , �2.3�

where �1/
�� ���	� �d2�=1. The relations connecting both
representations are

��� = 

n

e−���2/2 �n


n!
�n�, �n� =

1



� e−���2/2 �*n


n!
���d2� .

�2.4�

In the following, we will be using both representations. We
start with the number representation of the density matrix in
order to study two types of quasiprobability functions,
namely, the Q and the Wigner functions �1,2�.

B. Q„�… function

The Q function can be defined as*Electronic address: Bendjaballah@lss.supelec.fr
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Q��� =
1



	���̂��� = Qd��� + Qi��� �2.5�

where we set

Qd��� =
1



e−���2


n=0

� ���2n

n!
p�n� , �2.6�

Qi��� =
2



e−���2


m,n
P�m,n�

����m+n�


m ! n!
cos���m − n�� .

�2.7�

These functions have the main properties Q����0,
�Qd���d2�=1, �Qi���d2�=0, d2�= �� �d �� �d� where �
= �� �ei�, �� � � �0, � �. The phase has the PDF p���d�
=d� /2
, �� �0,2
�. In the following, most of the calcula-
tions are restricted to the case �=0.

C. Wigner function

The form that will be used here is given by

W�x,p� =
2



� d
 e−2ip
	x + 
��̂�x − 
� , �2.8�

such that �W�x , p�dx dp=1, Im�W�=0. Note that we may
obtain the elements of the density operator using the inverse
Fourier transform of W�x , p�,

	x + 
��̂�x − 
� =� dp W�
,p�e2ip
. �2.9�

After inserting �2.2� into �2.8�, the Wigner function becomes

W�x,p� =
2






m�n

P�m,n� � d
 e−2ip
	x + 
�m�	n�x − 
� .

�2.10�

The scalar product appearing in the integral is known �3�:

	z�n� =
1


2nn ! 


e−z2/2Hn�z� �2.11�

where x2+ p2=2 ���2 and Hn�z� are the Hermite polynomials.
Therefore

W��� = Wd��� + Wi��� , �2.12�

Wd��� =
2e−2���2





n=0

�

�− 1�np�n�Ln�4���2� , �2.13�

Wi��� =
4e−2���2





m=0

�



n�m

�

P�m,n��− 1�m
m!

n!
�2����n−m

�Lm
n−m�4���2�cos���n − m�� , �2.14�

where �4�

L�
r�z� = 


k=0

�
�− z�k

��− k�!
�� + r�!

�r + k� ! k!
�2.15�

are the associated Laguerre polynomials L��z�=L�
0�z� and

where �Wi���d2�=0.
Clearly, both Wd��� and Wi��� can be negative because of

the �−1�n and �−1�m terms in Eqs. �2.13� and �2.14�. Due to
this negativity, the Wigner function is a quasiprobability. It
then characterizes the nonclassical properties of the state.

III. DIAGONAL APPROXIMATION

Within this approximation, only the diagonal terms of the
density operator are taken into account,

�̂ = 

n=0

�

p�n��n�	n� , �3.1�

yielding �2.6� and �2.13�.
As soon as p�n� is given, e.g., for a particular state of

light, the calculations of both functions are straightforward.
This has been done for various types of states including the
squeezed and the entangled states which, as known, have
nonclassical properties.

Now, among the states that exhibit nonclassical proper-
ties, we wish to examine the particular state denoted here by
E2 and defined by its PDF p�n� �5�.

A. Erlang state of order 2

This state is most conveniently defined by its density ma-
trix in the number presentation. Hence, the needed photon
number probability density is expressed as �5�

p�n� = � �2n

�2n�!
+

1

2
� �2n+1

�2n + 1�!
+

�2n−1

�2n − 1�!��e−�. �3.2�

We recently calculated the first two moments of the RV n
obeying �3.2�. We obtained

E�n� =
�

2
, �3.3�

E�n2� =
��� + 2���2 + 6� + 6���2 + � + e−�sinh ��

�2�2 + 4� + 3�2 + 4�4� − 1��� + 3/2�2 ,

�3.4�

and pointed out that h�E�n2�−E�n�2−E�n��−�2 /12, for
��1, and h�−� /4 for ��1, showing a nonclassical prop-
erty.

Let us examine the quasiprobability functions. For ��4
and up to ���4, the Qd��� function is easily shown to be

Qd��� �
e−���2−�



�a0 + a1���2 + a2���4� = Qd

a��� , �3.5�

where a0=1+� /2, a1= �� /2��1+��, and a2= ��3 /12��1
+� /2�. As expected, Qd�0 " �.

Note that this very simple approximation appears excel-
lent " � ,�. Note also that Qd is symmetrical against �, and
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exhibits an extremum for �=0 and a maximum for �m

� ±
2−3/2a2 which has been evaluated for moderate �.
With the help of a Gaussian approximation of the PDF, the
asymptotic form of Qd for ��1 can be expressed as

Qd��� =
1

��� + 1

2
� ����e−���2, �3.6�

where ��z+1/2�= �

 /2z��2z−1� ! !. Note that even in the
limit of large �, Qd��� differs from the classical limit
�Gaussian shape�.

On the other hand Wd���, which is symmetrical in � and
has a minimum for �=0, is

Wd��� =
2e−2���2



�e−��1 +

�

2
� + 


n=1

�

�− 1�np�n�Ln�4���2�� ,

�3.7�

where p�n� is given by �3.2�. To evaluate the conditions re-
quired for Wd��� to have a negative region, it is convenient
to approximate it for ��2 as

Wd��� �
2e−2���2−�



�1 + 2 tan �

6 + 12� + 7�2 + �3

6 + 6� + �2 ���2

− 2�1 +
�

2
��� − tan �����4�cos �

= Wd
a��� , �3.8�

which is obtained from the expansion up to �4 of Wd given
by Eq. �3.7� and for ��Re. Now, it can be shown that there
is an area −����� where Wd��� is negative. The value of
� can be approximated by �0 which is such that Wd

a���=0.
We obtain �0�1/
� for ��
 /2. Note finally that �3.8� is
an excellent approximation of the exact Wd��� in the condi-
tions of the present study.

Now, the best asymptotic form ���1� we obtained for Wd

is

Wd��� �
2e



e−2���2−�I0�2
2�����

�
e−�





2�

e−2���2+2���
2�


���
, �3.9�

where I0�z�=
k=0
� �z /2�2k / �k ! �2 is the modified Bessel func-

tion of the first kind. However, this approximation, although
not of a Gaussian shape, does not appear good enough.

On the other hand, it is of interest to point out that the
nonclassicity is verified by the generalized Erlang processes.
However, the extension to order r �r points are omitted in the
initial PP instead of one as in Fig. 1� is simple only in cal-
culations involving the diagonal representation. The photon
number distribution has recently been expressed as �5�

pr�n� =
e−�

r
� 


�=rn

rn+r−1

�rn + r − � �
��

�!
+ 


�=rn−r+1

rn−1

��− rn + r�
��

�!
� .

�3.10�

The results for Wd, the semiclassical part of the Wigner func-
tion, are drawn in Fig. 6 for the density �=9. It is seen that
the negativity of Wd��� holds for all values of r�1.

IV. INTERFERENCE CONTRIBUTIONS

To complete the expressions established for E2, it is nec-
essary to take into account terms obtained from off-diagonal
elements of the density operator. To do so, we need to extend
the results recently published �5� for the relaxed distribution
p�n� to the twofold relaxed distribution P�m ,n�.

A. Twofold relaxed distribution P„m ,n…

The twofold relaxed distribution is more easily estab-
lished for successive times of registration of the E2 with the
help of the scheme and diagram shown in Figs. 1 and 2.

We start with the stationary Poisson process of density �.
This process is registered within �� �0, � �. We set �=��,

FIG. 1. Scheme for generating an Erlang pro-
cess of order 2 from the initial Poisson process
and notations for multicounting.

FIG. 2. Diagram for enumerating the terms of
the twofold PDF.
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�=�T1, �=��, �=�T2, z�=e−��� / � !, u�=e−��� / � !, v�

=e−��� / � !, and w�=e−��� / � !. Most of the calculations will
be done here for �=�.

Let k be the number of points within �0,�� taken by the
RV K of the random Poisson process �P�. The E2 process is
obtained by omitting one point on the previous process as
depicted in Fig. 1. We have

P�m,n� � � = lim
�→�



k=0

�

P�m,n�k, � �

= lim
�→�



k=0

�

z2kP+�m,n� � � + z2k+1P−�m,n� � �

=
1

2
�P+�m,n� � � + P−�m,n� � �� , �4.1�

which depends on �, the time interval where � points have
been registered �Fig. 1�.

To simplify this expression, we limit � to specific values,
namely, �=0 and �→�. These values yield constant values
of g���, the time coincidence function �TCF�. To calculate
this TCF, it is better to use the method based on Laplace
transforms.

Thus, let f�s�=�0
�d� e−s�w���= �� /�+s�2, 0� f�s�

�1 " � ,s�Re, be the Laplace transform of w���=�2�e−��,
the PDF of �. Now, from the definition of g���=
k=0

� wk���
�6�, where wk��� is the PDF of the sum of k independent
intervals such that wk���=w����w���� ¯ �w��� �the symbol
� denotes the product of convolution, applied here k times�.
Hence the inverse Laplace transform of F�s�=
k=0

� fk�s�
= f�s� / �1− f�s��=1/ ��1+s /��2−1� is the TCF g���= �� /2��1
−e−2��� �5�. This TCF, which is a monotonically increasing
function of �, differs significantly from the so-called covari-
ance function c���=−��2 /4��1−e−2����0 " � �7�.

1. �=0

In what follows, the PDF P�m ,n ��=0� is denoted P�m ,n�
and P+�m ,n � � � and P−�m ,n � � � are denoted by p+�m ,n�, and
p−�m ,n�, respectively. The terms of P�m ,n� are conveniently
numbered using the diagram �Fig. 2�. We have

p+�m,n� = u2m�v2n + v2n+1� + u2m+1�v2n + v2n−1� , �4.2�

p−�m,n� = u2m−1�v2n + v2n+1� + u2m�v2n + v2n−1� , �4.3�

yielding for m ,n�0, u−1=v−1=0,

P�m,n� =
1

2
�v2n�2u2m + u2m+1 + u2m−1� + v2n+1�u2m + u2m−1�

+ v2n−1�u2m + u2m+1�� . �4.4�

Hence

p�m� = 

n=0

�

P�m,n� =
1

2
�2u2m + u2m+1 + u2m−1� . �4.5�

Hence, the expression used in this paper for �=�=� is

P�m,n� =
e−2�

2
� �2m−1

�2m − 1�!� �2n

�2n�!
+

�2n+1

�2n + 1�!�
+

�2m

�2m�!� �2n−1

�2n − 1�!
+ 2

�2n

�2n�!
+

�2n+1

�2n + 1�!���
+

�2m+1

�2m + 1�!� �2n−1

�2n − 1�!
+

�2n

�2n�!�� . �4.6�

2. Arbitrary �

The conditional distribution is given by


�n�m� =
P�m,n�
p�m�

= v2n + v2n+1
u2m + u2m−1

2u2m + u2m+1 + u2m−1

+ v2n−1
u2m + u2m+1

2u2m + u2m+1 + u2m−1
�4.7�

yielding


�n�0� = v2n + v2n+1
1

2 + �
+ v2n−1

1 + �

2 + �
, �4.8�

where 
�n �0�= p�n� for �→0. Again from �4.7�, we have for
�=�


�n�1���� = e−��v2n + v2n+1
2 + �

2�1 + � + �2/6�

+ v2n−1
��3 + ��

6�1 + � + �2/6�� , �4.9�

yielding 
�n �1��0�=v2n+v2n+1=q�n�, which is the triggered
distribution �see �8��. Furthermore, from �4.9� and for �=1,
and taking ��0 as a parameter, we obtain


�1�1���� � G��� =
�

6
e−��3� +

�2 + ��/2��6 + �2� + �2

�2/6 + � + 1
� ,

�4.10�

which increases for �	
6 and decreases for ��
6.
The function G��� is not a TCF; it is a delayed triggered

PDF �9�. However, because it can increase or decrease, in
contrast to g��� which always increases, it contains more
information than g��� about the process of measurement of
the state.

3. �\�

In this case, the PDFs of m and n factorize such that

P�m,n� =
1

4
�2u2m + u2m+1 + u2m−1��2v2n + v2n+1 + v2n−1� ,

�4.11�

and the interference contributions to Q and W are Qd
2 and Wd

2.
Let us concentrate on the case �=0.

B. Q„�… function

We consider first the off-diagonal part given by �2.7� for
�=0. All terms involving �−1 are set to 0. It is simple to
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prove that an excellent approximation of Q���, given by
�2.7�, is

Qap��� = Qd
a��� +

e−���2−2�



�b0 + b1��� + b2���2 + b3���3�

�4.12�

where b0=2+5� /2 ,b1=�2+5�3 /3 ,b2=�3+5�4 /6 ,b4=�5

+�6 /6 and Qd
a is given by �3.5�.

Here again Q�0 " �. Note also that Q��� exhibits ex-
trema at abscissas values very close to those of Qd �Fig. 3�.
Therefore, if we are interested only in the form of Q, it is
enough to limit �2.5� to its semiclassical counterpart Qd.

C. W„�… function

We consider now the off-diagonal part for �=0. As above,
all terms involving �−1 in P�m ,n� are set to 0. For ��1, it is
simple to prove a reasonably good approximation of Wi��� is
given by

Wap��� = Wd
a��� +

e−���2−2�



�c1��� + c2���2�2���2 − 1��

�4.13�

where Wd
a��� is given by �3.8� with c1=4�, c2=�5
2. The

second term of �4.13� has been obtained by taking into ac-
count only the terms corresponding to m=0,n=1 and to m
=1,n=2 in �2.14�. Here again, if we are interested only in
the form of W, it is enough to limit �2.12� to its semiclassical
counterpart Wd �Fig. 4�. For large values of �, it can be seen
in Fig. 5 that W��� oscillates but as � increases it tends to be
positive " ��Re. The oscillatory behavior becomes more
pronounced when � is fixed but the order r is increased as is
shown in Fig. 6.

Let us now introduce a quantum model that can help to
interpret the E2 process in terms of the state representation.

V. QUANTUM MODEL

Let A be a one-dimensional harmonic oscillator in the
Hilbert space HA spanned by the set of the number states
��n�a�, and defined by the creation and annihilation operators

â and â† with �â , â†�=1 of Hamiltonian ĤA= � â†â. Let B be
another one-dimensional harmonic oscillator in the Hilbert

space HB : ��k�b� of Hamiltonian ĤB= � b̂†b̂. The systems A
and B can be, for example, two modes of the harmonic os-
cillator.

FIG. 3. Q��� functions versus ��Re in dimensionless units for
Erlang process of order 2 with density �=4. The function Qd��� is
obtained taking into account only diagonal elements of the density
operator.

FIG. 4. Erlang process of order 2. The Wigner function W��� is
plotted versus � in dimensionless units with �=0 for the average
value of the photon number �=4. The function Wd��� is obtained
when taking into account only diagonal elements of the density
operator.

FIG. 5. Erlang processes of order 2. The Wigner function W���
is plotted versus � in dimensionless units with �=0 for various
average values of the photon number �=3,6 ,9.
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The Hamiltonian of the interaction in the Hilbert space
HW :HA � HB, is modeled by

ŴAB = � � â�b̂†�k. �5.1�

This model of interaction has already been suggested by
Yuen for number states amplification �10�. We start with the
initial state

���0�� = �n�a � �0�b �5.2�

so that at time t, the state becomes

���t�� = e−iĤt/����0�� , �5.3�

Ĥ = ĤA + ĤB + ŴAB. �5.4�

For Ĥ=ŴAB and expanding the exponential in �5.3� up to the
second order in t, it can be seen that

���t�� = �n�a � �0�b − i�t
na

kb!�n − 1�a � �k�b

−
�2t2

2

na�na − 1�
�2kb�!�n − 2�a � �2k�b + ¯ .

�5.5�

In order to simplify the presentation, we limit ourselves to
real functions. From ���t��, it is therefore possible to gener-
ate the new states

���t��=a	n − 2���t�� . �5.6�

Noticing that 
�2k�!=1/
e	�1 �2k� where ��1� is the coher-
ent state of amplitude �=1, we can form the final states

��k� = 
e	�1�2k���� = �2k� �5.7�

at a very short time t0=
2/�na�1 �na�1�, �the subscript b
referring to the harmonic oscillator B being omitted�. On the

other hand, given the operators ĉ and ĉ† acting on the space
HB, we can evaluate rk= 	k � ĉ†ĉ �k�.

These scalar values being calculated, we then simulta-
neously measure the operators ĉ†ĉ , ĉ†, and ĉ such that

1

r2k
2 �	��ĉ†ĉ��k��2 = e−� �2k

�2k�!
= p1�k� , �5.8�

1

r2k
�	��ĉ��k��2 = e−� �2k−1

�2k − 1�!
= p2�k� , �5.9�

1

r2k+1
�	��ĉ†��k��2 = e−� �2k+1

�2k + 1�!
= p3�k� , �5.10�

with �=�2. Now since for an incoherent process probabili-
ties add, we obtain

p�k� = p1�k� +
1

2
�p2�k� + p3�k�� �5.11�

which is the expression given by the Eq. �3.2�.

VI. DISTANCE VARIATION DIFFERENCE

Several functions have been defined to measure the dif-
ference between classical and quantum systems. A distance
function has recently been proposed �11�. We analyzed an-
other criterion �12�, called the distance variation difference
which we derived from the one introduced in �13� for differ-
ent purposes.

A. Definition and some properties

The distance variation difference D��� is based on the
variation distance of PDFs as

D�p�;p�� � D��� = 

n

�
p��n;�� − 
p��n;��� , �6.1�

where all the previous PDFs must be seen as functions of the
average photon number E�n�=� �T, the interval of register-
ing the RV n, is set to unity�. Here p��n ;�� is the PDF of n
in the state ���, and p��n ;�� is the PDF of n in the coherent
state ���. This distance was constructed in analogy with the
entropy difference criterion such that another convex func-
tion 
f�z� is substituted for −f�z�ln�f�z�� where 0� f�z��1.
Although D��� obeys two properties of a distance function, it
is not a distance because it can be negative. On the other
hand, we can easily show that

�i� D�0� = 0, �6.2�

�ii� D��� is a monotonically increasing �decreasing�

function with � �p� � p�� , �6.3�

�iii� lim
�→0

�

n

�
p��n;��
��

� −
1

2
�
=


2 − 1

2
� d�, �6.4�

�iv� D��� �
1

2
�p��n;�� − p��n;���, D��� � 0, �6.5�

FIG. 6. Erlang processes of order r. Wd��� functions versus � in
dimensionless units where �=0, the average value of the photon
number �=9, and for various values of r=1, . . . ,5. The function
Wd��� is obtained taking into account only diagonal elements of the
density operator.
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�v� D��� � −
1

2
�p��n;�� − p��n;���, D��� � 0, �6.6�

where �f� denotes the norm �1 of f . The inequalities �iv� and
�v� have been derived from the results demonstrated in �13�.

Therefore for

d� � lim
�→0

�

n

�
p��n;��
��

� −
1

2
�
,

we can state the criterion of nonclassicity as

C = d� − d� 	 0. �6.7�

Let us apply this criterion to some classical and nonclassical
examples of ���.

B. Classical states

As the first example of a classical state ���, let us consider
a thermal light. The PDFs needed for the calculations are
well known, p��n ;��=�n / �1+��n+1 and p��n ;��
= ��n /n ! �e−�. The exact results are plotted in Fig. 7 and the
approximate expressions are obtained as

Dt��� � �1 −

2

2
�� +

1

2
�1 −


6

3
��3/2

+
1

4
�
2 − 1 −


6

3
��2, � � 1. �6.8�

It can easily be shown that Eq. �6.7� is positive.
Another example for which �6.7� is positive is given by a

mixture of coherent and thermal states of PDF p��n ;��= �1
−b�bne−��1−b�Ln�−z� �see, for example, �14�� where we set
b=Nb / �1+Nb�, z= �1−b�2� /b and where the Ln�z� are the
Laguerre polynomials of degree n and of the variable z.

Here, we need to choose Nb=��c �0���1�, �c being the
coherent part of the light. For moderate values of thermal
component ���

1
3

�, it can be shown that

Dm��� � �

2

2
� + ��
6

2
− 1��3/2, � � 1. �6.9�

Asymptotic behaviors in both cases vary as 
�. Results are
plotted in Fig. 7 for such a mixture with a thermal part of
moderate average photon number �=0.1.

The deviation from a coherent state increases with the
average value � in both cases.

C. Nonclassical states

The first example of a nonclassical state we wish to treat
is the E2 for which p����n ;�� is given by �3.2�. The approxi-
mate expression for weak values of � can easily be calcu-
lated as

De��� � −

2

2
� + �1

2
+


6

3
��3/2 −

1

4
�1 +


6

3
− 
2��2,

�6.10�

for � �
1

4
.

For a comparison with the previous case, we take for ��� a
squeezed state with a squeezing parameter  chosen so that
the photon number variance Vn=�ce

−2 + �sinh2 2 � /2 is
minimum, i.e.,  = s� 1

6arg sinh�2�c�, where �c is the aver-
age photon number of the coherent part and �=�c+sinh2  s.
We thus satisfy the condition D�0�=0. The corresponding
PDF is �15�

p����n;�� =
e−�c�1+tanh  s�

cosh  s

� tanh  s

2
�n

n!
Hn

2�z�

with z2=�ce
 s / sinh�2 s� and where the Hn�z� are the Her-

mite polynomials of degree n and of the variable z�Re. An
approximate expression has been obtained as

Dsq��� � −

2

6
� +

1

3
�1 −


6

2
��

3
2 +

1

2
�
2 −

1

3
��2, � �

1

4
.

�6.11�

The expression �6.11� has been obtained by limiting the sum
of 
p����n ;�� to only a few values of n and for  s�� /3
−2�3 /9.

The third example of a nonclassical state we deal with is
the superposition of two coherent states. Its PDF is given by
p����n ;��= ��1+ �−1�n��n / �1+e−2��n ! �e−�. Here again ap-
proximations are simple. One easily obtains

FIG. 7. Variation distance function D versus �, the average
value of the photon number, in dimensionless units for various
states which are denoted T for thermal, M for mixture of coherent
and thermal ��=0.1�, C for coherent, Sq for squeezed, E for Erlang
of order 2, and S for superposition of two coherent states.
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Ds��� � − 
� +
1

2
� +

1

2
�1 −


6

3
��3/2 −

1

4
�
2 +

3

2
��2,

�6.12�

for � �
1

5
.

On the other hand, for ��1, all the functions D��� de-
scribing the nonclassical states considered here vary like
−
�.

The exact results obtained from numerical computations
are displayed in Fig. 7 for all the cases.

The calculation of the C �6.7� yields the coefficients
which are also given by lim�→0�� /���D����. We get Cc=0,
Ct=1−
2/2, Cm=�
2/2, Csq=−
2/6, Ce=−
2/2, and Cs
=−1, for the coherent state, the thermal state, the mixture
state, the squeezed state, the nonclassical state of Erlang

type, and the superposition state, respectively: Cs�Ce
�Csq�Cc�Cm�Ct.

Finally, we want to point out that the approximations
given here are reasonably good and at least they clearly show
the sign and the variation of D���.

VII. CONCLUDING REMARKS

A simple model for the generation of a state exhibiting
nonclassical statistical properties is presented. The demon-
stration, both numerical and analytical, is based on the prop-
erties of a Wigner function which has a negative part. A
model of the quantum density matrix is proposed to express
the semiclassical approximation which has been found to be
good enough to estimate the main features of both the Q and
the Wigner functions. A criterion for testing the nonclassicity
of the state is introduced. This criterion provides a scale for
several types of states that have been selected to illustrate the
theoretical results.
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