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We show that nonadiabatic, resonant amplitude- and phase-modulated pulses can be frequency converted
with greater efficiency than adiabatic resonant pulses in a coherently prepared � system. Indeed, conversion
efficiencies close to unity, similar to those achieved using highly detuned pulses, can been obtained by using
highly nonadiabatic resonant pulses. Moreover, by solving the Maxwell-Bloch equations using Fourier trans-
forms, we derive analytical expressions for the probe and the generated four-wave mixing �FWM� pulses as a
function of time and propagation distance. From these expressions, which are valid for either adiabatic or
nonadiabatic pulses, we derive the result that starting from a nonadiabatic probe pulse, an asymptotically
matched probe-FWM pulse pair with the same shape as the initial probe pulse is obtained. In addition, we show
that, starting with a nonadiabatic matched pulse pair or a pair of matched pulse trains, we obtain propagation
of these pulses without either deformation or losses.
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I. INTRODUCTION

Coherent effects in the interaction between light and mat-
ter such as coherent population trapping �CPT� �1�,
electromagnetically-induced transparency �EIT� �2–4�, and
electromagnetically-induced absorption �EIA� �5–7� have
spawned an enormous number of theoretical and experimen-
tal investigations, as well as many exciting applications in
diverse fields such as ‘‘slow and fast light’’ �8,9�, nonlinear
optics �10�, quantum information storage �9,11�, frequency
standards �12,13�, and high-precision magnetometry �14�. In
this paper, we discuss the interaction of nonadiabatic time-
dependent fields with three-level � systems, shown in Fig.
1�a�, which have been prepared in a coherent nonabsorbing
superposition �dark state� of the lower levels. Such a medium
has been called phaseonium by Scully �15,16� and Fleis-
chhauer et al. �17�, and can be prepared in several ways
�18–20�. For convenience, we will use the four-level double
� system, depicted in Figs. 1�b�, where cw resonant fields
interacting with the lower � system consisting of the states
�1�, �2�, and �3�, prepare the system in such a superposition
�see �21,22�, and references therein�. Once the coherent su-
perposition is prepared, each leg of the upper � system con-
sisting of the states �1�, �2�, and �4� interacts with a nonadia-
batic time-dependent laser pulse which propagates in the
atomic or solid-state medium.

Adiabatic or quasiadiabatic pulse propagation in simple �
systems under EIT or CPT conditions, in double � systems
under EIT conditions, and in coherently prepared � systems
has been widely studied and a number of interesting phe-
nomena identified �for a recent review, see �4��. Of particular
interest, in the present context, is the phenomenon of
matched pulses, first discovered by Harris �20,23�, in which
two pulses with initially identical time-dependent envelopes
propagate at the vacuum speed of light, without changing
their shape, in a coherently prepared � system. If the system
is not coherently prepared but is initially in its ground state,
the front edge of the pulses will coherently prepare the sys-

tem �20�, in a manner similar to stimulated Raman adiabatic
passage �STIRAP, �18��, and the slightly deformed pulses
will then propagate without further change in shape �24�, and
without losses. It has been shown in both the adiabatic �25�
and quasiadiabatic �26� regimes that pulses with different
initial time dependences, propagating in a coherently pre-
pared medium, will eventually acquire the same shape �27�.
Other form-stable pulse pairs, such as simultons which are
analogous to self-induced transparency �SIT� in two-level
systems �27–29�, and adiabatons which have complementary
pulse shapes �26,30�, have also been identified.

If only the pulse with frequency �41 and Rabi frequency
V41 is initially present, it will be converted by four-wave
mixing �FWM� into a pulse at the corresponding frequency
�42 with Rabi frequency V42 �see Fig. 1�b��. In the adiabatic
limit �25,31–35�, for the case where �41��42 and �41
��42, where �ij is the transverse decay rate for the transition
from state �i� to state �j�, it can be shown �see Sec. II E,

FIG. 1. Energy-level scheme for �a� single and �b� double �
systems.
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below� that the maximum conversion on propagation in the z
direction is

Cmax = �V41�t�,z�/V42�t�,0��max � ��21� , �1�

when the initial pulse is resonant with the �2� to �4� transition
at frequency �42� , that is, �42=�42� −�42=0, and the two-
photon detuning �21=�31−�32=�41−�42 is zero. �We note
that Eq. �1� and all subsequent time-dependent equations are
written in the local frame where t�= t−z /c�. When, however,
�42��42

Cmax = �V41�t�,z�/V42�t�,0��max � 2��21� . �2�

It can be seen from Eqs. �1� and �2�, that for maximum
two-photon coherence ��21�=1/2, Cmax=1/2 for resonant
pulses whereas Cmax=1 for far-detuned pulses. This value of
��21� is achieved by applying cw beams with equal Rabi fre-
quencies to the lower � system, and is maintained provided
the Rabi frequencies applied to the upper � system are either
much weaker than the cw beams, or initially matched such
that V41�t� ,0�=V42�t� ,0�. However, the distance at which
maximum conversion is achieved is longer for far-detuned
pulses than for resonant pulses by a factor of approximately
�42/�42 so that the two-photon coherence has to be main-
tained at its maximum value for a far longer distance, which
is not easy to achieve experimentally �33,35�. Here we show
that it is possible to achieve high values of Cmax, even at
resonance, for nonadiabatic, amplitude- and phase-
modulated pulses, at distances that are shorter than those
required for far-detuned adiabatic pulses. Moreover, we
show that in the asymptotic limit, the probe pulse and the
generated FWM signal exhibit matched pulse behavior. We
also generalize the lossless and shape-conserving propaga-
tion of adiabatic matched pulses to the case of nonadiabatic
matched pulses or pulse trains. It should be pointed out that
Paspalakis and Kis �36� and Kis and Paspalakis �37� have
recently proposed an alternative method of achieving unit
conversion efficiency using resonant pulses in the adiabatic
limit in a medium with position-dependent two-photon co-
herence �38,39�.

Highly efficient frequency conversion has been observed
experimentally by Jain et al. �31�, Harris and coworkers �32�,
and Merrian et al. �33,34� in atomic Pb and by Hakuta et al.
�40� in solid H2. Recently, Bennink et al. �35� have reported
experiments in a coherently prepared double � system in Na
vapor, in which the incident optical field was amplitude and
phase modulated. They found that the field generated at the
FWM frequency, which was different from the initial fre-
quency, had almost the identical amplitude and phase modu-
lation as the incident field. This seems to be an example of
“pulse matching”�23,27�.

II. THE MODEL

A. The double � system

Let us first consider the double � system. Each �j�→ �i�
transition �with j=1,2 and i=3,4� interacts with an electro-
magnetic field

E� ij�r�,t� = �1/2�x̂ijEij�r�exp�− i��ijt − kijz + �ij�� + c.c.,

�3�

with unit polarization vector x̂ij, frequency �ij, wave-vector
kij, and initial phase �ij, whose detuning from the transition
frequency is �ij and whose Rabi frequency is 2Vij�r�
=�ijEij�r� /	.

The first step is to write the Bloch equations for the
double � system �21,41� which reduce to those of the single
� system �42� when V4j =0. The Bloch equations are given
by

�̇11 = i�V13�31� + V14�41� − V31�13� − V41�14� � − 
12�11 + 
21�22

+ 
31�33 + 
41�44, �4�

�̇22 = i�V23�32� + V24�42� − V32�23� − V42�24� � + 
12�11 − 
21�22

+ 
32�33 + 
42�44, �5�

�̇33 = i�V31�13� + V32�23� − V13�31� − V23�32� � − 
3�33 + 
43�44,

�6�

�̇44 = i�V41�14� + V42�24� − V14�41� − V24�42� � − 
4�44, �7�

�̇21� = i�V23�31� + aV24�41� − V31�23� − aV41�24� �

− ��21 + i�21��21� , �8�

�̇31� = i�V31�11 + V32�21� − V31�33 − V41�34� � − ��31 + i�31��31� ,

�9�

�̇32� = i�V32�22 + V31�12� − V32�33 − a*V42�34� �

− ��32 + i�32��32� , �10�

�̇41� = i�V41�11 + a*V42�21� − V31�43� − V41�44� − ��41 + i�41��41� ,

�11�

�̇42� = i�V42�22 + aV41�12� − aV32�43� − V42�44�

− ��42 + i�42��42� , �12�

�̇43� = i�V41�13� + a*V42�23�

− V13�41� − a*V23�42� � − ��43 + i�43��43� , �13�

where a=exp�i�� and �=�31−�32+�42−�41 is the initial
relative phase, 
kl is the longitudinal decay rate from state
�k�→ �l�, 
i is the total decay rate from state �i�, and �kl
=0.5�
k+
l�+�kl

* is the transverse decay rate of the off-
diagonal density-matrix element �kl� , where �kl

* is the rate of
phase-changing collisions. The rapidly oscillating terms have
been eliminated by the substitutions

�ij� = �ij exp�− i��ijt + kijz − �ij�� , �14�

and

�21� = �21 exp	− i���31 − �32�t + �k31 − k32�z − ��31 − �32��
 ,

�15�
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�43� = �43 exp	− i���41 − �31�t + �k41 − k31�z − ��41 − �31��
 .

�16�

It is only possible to write the Bloch equations in this form
when the multiphoton resonance condition, �31−�32+�42
−�41=0, is satisfied. This condition can be rewritten in terms
of the one-photon detunings as �31−�32=�41−�42=�21,
where �21 is the two-photon or Raman detuning.

B. The coherently prepared � system

Let us consider the special case where resonant strong
fields interact with the lower � system, preparing the system
coherently. The resonant or detuned laser pulses then interact
with the �1,2�→ �4� transitions. We are interested in studying
the propagation of laser pulses with initial Rabi frequencies
V41�t ,z=0� and V42�t ,z=0�. Assuming the populations �11,
�22, and the Raman coherence �21� to be unchanged on propa-
gation, �33, �44, and �43� to be negligible, and �=0, we find
from Eqs. �11� and �12� that

�̇41� = i�V41�11 + V42�21� � − ��41 + i�41��41� , �17�

�̇42� = i�V42�22 + V41�12� � − ��42 + i�42��42� , �18�

where

�11 =
�V32�2

�V31�2 + �V32�2
, �19�

�22 =
�V31�2

�V31�2 + �V32�2
, �20�

�21� = −
V31V32

*

�V31�2 + �V32�2
. �21�

This is just one of several ways of clamping the Raman
coherence �21� to a particular value for a time that is long
compared to the other lifetimes in the system �18,19�. Its
maximum magnitude ���21� �=�11=�22=1/2� is achieved when
�V31�= �V32�. Such a medium has been called phaseonium by
Scully �15,16� and Fleischhauer and coworkers �17� although
its importance was noticed earlier in connection with coher-
ent Raman spectroscopy �43,44�.

C. Maxwell-Bloch equations for coherently prepared system

In order to study pulse propagation, we solve the
Maxwell-Bloch equations, in the paraxial approximation,
which may be written in the form �45�

� d

dz
+

1

c

d

dt
�Ṽij = i�ij

0 �ij� , �22�

where j=1,2, i=3,4, Ṽij =Vij /�31 is the dimensionless Rabi
frequency, and �ij

0 =
�ijN�ij
2 /c	�31 is four times the unsat-

urated line-center absorption coefficient for the �j�→ �4� tran-
sition �46�. In our numerical work, we solve either the full
Maxwell-Bloch equations �Eqs. �4�–�13� and Eq. �22�� for all
four fields, or the restricted set of Maxwell-Bloch equations

�Eqs. �17�, �18�, and �22�� for only the upper � system. The
restricted set of Maxwell-Bloch equations �or the equivalent
Maxwell-Schrodinger equations� have been solved analyti-
cally in the steady-state �31,33–35�, adiabatic �25–27,47�, or
quasiadiabatic �26,47� approximation, in the bare-state
�25,31,33–35� or dressed-state representation �26,27,47�,
with �25,27,31,33,34� or without �26,35,47� Doppler broad-
ening. The case where the Raman coherence is position de-
pendent has also been considered �36–39�. In addition to the
analytical solutions to these equations, there have been a
number of numerical studies in a variety of parameter re-
gimes �48,49�. According to Eberly and Kozlov �27�, this
work has led to a consensus that the final pulses must be
matched in their temporal shape �23�. In addition, the adia-
batic approximation predicts that if the initial temporal
shapes of the pulses are identical, they will remain so
throughout the propagation �23,25�.

D. Analytical solution

In order to obtain an analytical solution for the case where
the pulses propagate either adiabatically or nonadiabatically,
we take the Fourier transforms of Eqs. �17�, �18�, and �22�,
and obtain �23�

d

dz
Ṽ
ˆ

41 = − �̂41Ṽ
ˆ

41 + �̂41Ṽ
ˆ

42, �23�

d

dz
Ṽ
ˆ

42 = − �̂42Ṽ
ˆ

42 + �̂42Ṽ
ˆ

41, �24�

where x̃=x /�31, x̂ indicates the Fourier transform of x, and

�̂4j = − i�4j
0 � � j j

�̃4j − �̃ − i�̃4j
� − i

�

c
, �25�

�̂41 = i�41
0 � �21�

�̃
ˆ

41 − �̃ − i�̃41

� , �26�

�̂42 = i�42
0 � �12�

�̃42 − �̃ − i�̃42
� , �27�

and � is the Fourier variable.
The solution to these ordinary differential equations is

given by �46�

Ṽ
ˆ

41�z� =
1

ĝ+ − ĝ−

	��̂41Ṽ
ˆ

42�0� − �ĝ− + �̂41�Ṽ
ˆ

41�0��exp�ĝ+z�

− ��̂41Ṽ
ˆ

42�0� − �ĝ+ + �̂41�Ṽ
ˆ

41�0��exp�ĝ−z�
 , �28�

Ṽ
ˆ

42�z� =
1

ĝ+ − ĝ−

	��̂42Ṽ
ˆ

41�0� − �ĝ− + �̂42�Ṽ
ˆ

42�0��exp�ĝ+z�

− ��̂42Ṽ
ˆ

41�0� − �ĝ+ + �̂42�Ṽ
ˆ

42�0��exp�ĝ−z�
 , �29�

where
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ĝ± = −
1

2
��̂41 + �̂42� ±

1

2
���̂41 − �̂42�2 + 4�̂41�̂42�1/2.

�30�

Assuming that that the two-photon coherence �21� is deter-
mined solely by the lower � system so that �11�22= ��21� �2,
and substituting Eqs. �25�–�27� and �30� in Eqs. �28� and
�29�, we find that

ĝ+ = i�/c , �31�

ĝ− = − ��̄41
0 �11 + �̄42

0 �22� + i�/c , �32�

�or vice versa, since Eqs. �28� and �29� are symmetrical with
respect to g±�, with

�̄4j
0 = �4j

0 /��̃4j − i�̃ + i�̃4j� , �33�

and

Ṽ
ˆ

41�z� =
ei�z/c

�̄41
0 �11 + �̄42

0 �22

�− Ṽ
ˆ

42�0��21� �̄41
0 	1 − exp�− ��̄41

0 �11

+ �̄42
0 �22�z�
 + Ṽ

ˆ
41�0�	�̄42

0 �22 + �̄41
0 �11 exp�− ��̄41

0 �11

+ �̄42
0 �22�z�
� , �34�

Ṽ
ˆ

42�z� =
ei�z/c

�̄41
0 �11 + �̄42

0 �22

�− Ṽ
ˆ

41�0��12� �̄42
0 	1 − exp�− ��̄41

0 �11

+ �̄42
0 �22�z�
 + Ṽ

ˆ
42�0�	�̄41

0 �11 + �̄42
0 �22 exp�− ��̄41

0 �11

+ �̄42
0 �22�z�
� . �35�

Equations �34� and �35� are crucial analytical results. On
substituting Eqs. �19�–�21�, we see that that a pair of pulses
will propagate unchanged provided they are initially matched
according to the expression

V42�t�,0�/V41�t�,0� = V32/V31. �36�

In addition, we see that if only one of the pulses is initially
present, the incident and generated pulses will be matched
asymptotically according to

V42�t�,z�/V41�t�,z� → V32/V31. �37�

These results are well-known for adiabatic pulses �25,34� but
here we see that they are also true for nonadiabatic pulses,
even if the transition frequencies and dipole moments are
unequal.

In order to simplify Eqs. �34� and �35�, let us assume that

�̃41= �̃42= �̃, �̃41= �̃42= �̃, �41
0 =�42

0 =�0, and �11+�22=1. It
can then be shown that

Ṽ
ˆ

41�z� = − Ṽ
ˆ

42�0��21� ei�z/c	1 − exp�− �0z/��̃ + i�̃ − i�̃��


+ Ṽ
ˆ

41�0�ei�z/c	�22 + �11 exp�− �0z/��̃ + i�̃ − i�̃��

�38�

Ṽ
ˆ

42�z� = − Ṽ
ˆ

41�0��12� ei�z/c	1 − exp�− �0z/��̃ + i�̃ − i�̃��


+ Ṽ
ˆ

42�0�ei�z/c	�11 + �22 exp�− �0z/��̃ + i�̃ − i�̃��
 .

�39�

E. The adiabatic approximation

The adiabatic approximation holds when �̃ can be ne-
glected in the exponentials, either because the initial pulse is
very long or because it is very detuned. In this approxima-
tion, inverting the Fourier transformations in Eqs. �38� and
�39� leads to

Ṽ41�t�,z� = − Ṽ42�t�,0��21� 	1 − exp�− �0z/��̃ + i�̃��


+ Ṽ41�t�,0�	�22 + �11 exp�− �0z/��̃ + i�̃��
 ,

�40�

Ṽ42�t�,z� = − Ṽ41�t�,0��12� 	1 − exp�− �0z/��̃ + i�̃��


+ Ṽ42�t�,0�	�11 + �22 exp�− �0z/��̃ + i�̃��
 .

�41�

Let us consider two cases of frequency conversion from

Ṽ42 to Ṽ41: large detuning and zero detuning. When the de-

tuning �̃��̃, Eqs. �40� and �41� reduce to

Ṽ41�t�,z� = Ṽ42�t�,0��21� �exp�− �0�̃z/�̃2�exp�i�0z/�̃� − 1� ,

�42�

Ṽ42�t�,z� = Ṽ42�t�,0���22 exp�− �0�̃z/�̃2�exp�i�0z/�̃� + �11� ,

�43�

so that for �0z��̃2 / �̃,

�Ṽ41�t�,z�/Ṽ42�t�,0�� = 2��21� ��sin��0z/2�̃�� , �44�

�Ṽ42�t�,z�/Ṽ42�t�,0�� = �1 − 4�11�22 sin2��0z/2�̃��1/2.

�45�

It can be seen from Eqs. �42�–�45�, that the Rabi frequencies
oscillate �21,22,41�, and that the maximum conversion

Cmax = �Ṽ41�t�,z�/Ṽ42�t�,0��max � 2��21� , �46�

occurs on the first oscillation at a distance

�0zmax = 
�̃ . �47�

We now consider the case of zero detuning. For this case

Ṽ41�t�,z�/Ṽ42�t�,0� = − �21�1 − exp�− �0z/�̃�� , �48�

Ṽ42�t�,z�/Ṽ42�t�,0� = ��11 + �22 exp�− �0z/�̃�� , �49�

so that
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Cmax = �Ṽ41�t�,z�/Ṽ42�t�,0��max � ��21� , �50�

and �0zmax is of the order of �̃ which is much shorter than in
the case of a far detuned field �see Eq. �47��. However, even
when the Raman coherence is maximal, the maximum con-
version is only 50%, as opposed to almost 100% in the case
of large detuning.

As we will show in Sec. III, higher conversion can be
achieved at resonance using nonadiabatic pulses. The con-
version can be improved even more by using nonadiabatic
pulse trains �50�. This occurs because for nonadiabatic pulses

V41�t�,z�/V42�t�,0� → V31/V32, �51�

at much shorter distances than those required for pulse
matching.

F. The quasiadiabatic approximation

When the detuning is zero and there are small deviations
from adiabaticity, it is possible to expand the exponentials in
Eqs. �34� and �35� or in the simpler Eqs. �38� and �39� in a
Taylor series in �̃ �51�. For example,

exp�− �0z/��̃ − i�̃�� � exp�− �0z/�̃�	1 − i�0z�̃/�̃2

+ ��0z�̃2/2i�̃3��2 − �0z/�̃� + ¯ · 
 .

�52�

The inverse Fourier transforms can then be evaluated ana-
lytically term by term.

III. NUMERICAL RESULTS FOR NONADIABATIC
GAUSSIAN AND SINUSOIDAL PULSES

We now present some numerical results for nonadiabatic
pulses. We consider two cases of frequency conversion: one
in which the incident short pulse is amplitude modulated �a
Gaussian pulse�, and one in which the incident pulse is both
amplitude and phase modulated �a short sinusoidal pulse�.
The results reported here are obtained by solving numeri-
cally either the full or restricted set of Maxwell-Bloch equa-
tions for the double � system, interacting with two strong cw

lasers with equal Rabi frequencies �Ṽ31= Ṽ32� that are reso-
nant with the lower � system, and a pulsed field with either
Gaussian or combined sinusoidal-Gaussian time dependence,
interacting resonantly with the �2�→ �4� transition. When
solving the full set of Maxwell-Bloch equations, the fields
interacting with the upper system are switched on only after
the populations of the lower states and the Raman coherence
achieve their steady-state values. Our calculations show that
these values are not modified in either time or space by in-
troducing the pulsed fields. For simplicity, we assume that

�̃4j = �̃, and �41
0 =�42

0 =�0.
The Gaussian time dependence is given by

Ṽ42�t�,0� = Ṽ42�0,0�exp��t� − t0��
2/�2� , �53�

and the sinusoidal time dependence is given by

Ṽ42�t�,0� = Ṽ42�0,0�sin�2n�31�t� − t0��� ,

0 � �31�t� − t0�� � 
 , �54�

where the time t0� is some arbitrary time after the populations
and coherence of the lower � system achieve the steady-state
values given in Eqs. �19�–�21�. In Eq. �53�, �31� is the di-
mensionless pulse width and in Eq. �54�, n is the number of
cycles within the time interval of length �31t=
. In order to
avoid oscillations that derive from sudden turning on and off
�52,53� of the sinusoidal pulse, we contain the sine pulse in a
Gaussian envelope which would display adiabatic behavior if
it were on its own.

In Figs. 2–4, we plot the relative integrated intensities

I4j =



−�

�

�Ṽ4j�t�,z��2 dt�



−�

�

�Ṽ42�t�,0��2 dt�

, �55�

of the pulses with frequencies �4j, as a function of the propa-
gation distance �0z, for incident resonant pulses. In Fig. 2,

FIG. 2. Time-integrated relative intensities I41,42 of the gener-
ated and converted pulses as a function of �0z, for an incident,
resonant Gaussian pulse of length �31�=1 and initial Rabi fre-

quency Ṽ42�0,0�=0.01.

FIG. 3. Time-integrated relative intensities I41,42 of the gener-
ated and converted pulses as a function of �0z, for an incident
four-cycle sinusoidal pulse of length �31t=
 with a Gaussian enve-

lope and initial Rabi frequency Ṽ42�0,0�=0.01.
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the incident pulse is Gaussian with width �31�=1; in Fig. 3,
the incident pulse is a four-cycle sinusoidal pulse �n=4� with
a Gaussian envelope; and in Fig. 4, the incident pulse is a
eight-cycle sinusoidal pulse with a Gaussian envelope �n
=8�. We first note that, for these examples of nonadiabatic
time dependence, the pulse intensities oscillate on propaga-
tion, even although they are at resonance with the upper �
system. This is quite different from the adiabatic, resonant
case �see Eqs. �48� and �49�� where the pulse intensities vary
exponentially until pulse matching is achieved asymptoti-
cally. In addition, the maximum intensity conversion,
achieved on the first oscillation, is greater than the 25%
achievable in the adiabatic case. The maximum intensity
conversion is even greater for the sinusoidal pulses and in-
creases as the number of oscillations increases. However, the
distance at which maximum conversion is achieved also in-
creases.

In Figs. 5–7, we compare the temporal shapes of the pulse
generated at the FWM frequency, and the pulse that has been
depleted, with the original pulse, at the propagation distance
where maximum intensity conversion occurs. The Gaussian

case is shown in Fig. 5, the four-cycle pulse in Fig. 6, and the
eight-cycle pulse in Fig. 7. The first point to note is the
oscillatory behavior at the pulse tail. This is due to the nona-
diabatic nature of the incident pulses �51�. At greater propa-
gation distances, the oscillations are damped out until pulse
matching is achieved. The oscillatory behavior can be repro-
duced for Gaussian pulses by expanding the exponentials in
Eqs. �38� and �39� �see Eq. �52�� and performing the inverse
Fourier transformation analytically for the first few terms in
the expansion. Recently, Cheng et al. �54� have shown that
the inclusion of these terms is essential if the non-
instantaneous response of the nonlinear polarization is to be
treated properly. The second point to note is the increasing
resemblance of the generated pulse to the incident pulse, as
we proceed from the Gaussian to the four-cycle to the eight-
cycle pulses. This near-matching which leads to a high de-
gree of conversion, occurs at distances which are much
shorter than those required for full pulse matching. However,
the distance at which maximum conversion occurs increases
as the pulses become more nonadiabatic �compare Figs.
5–7�. It should be emphasized that the results presented here

FIG. 4. Time-integrated relative intensities I41,42 of the gener-
ated and converted pulses as a function of �0z, for an incident,
eight-cycle sinusoidal pulse of length �31t=
 with a Gaussian en-

velope and initial Rabi frequency Ṽ42�0,0�=0.01.

FIG. 5. Comparison of the initial Gaussian pulse amplitude Ṽ42

with the pulse amplitudes Ṽ41 and Ṽ42, at the value of �0z where the

integrated intensity of Ṽ41 reaches its maximum value and Ṽ42 its
minimum value. Parameters as in Fig. 2.

FIG. 6. Comparison of the initial four-cycle pulse amplitude Ṽ42

with the pulse amplitudes Ṽ41 and Ṽ42 at the value of �0z where the

integrated intensity of Ṽ41 reaches its maximum value and Ṽ42 its
minimum value. Parameters as in Fig. 3.

FIG. 7. Comparison of the initial eight-cycle pulse amplitude

Ṽ42 with the pulse amplitudes Ṽ41 and Ṽ42 at the value of �0z where

the integrated intensity of Ṽ41 reaches its maximum value and Ṽ42

its minimum value. Parameters as in Fig. 4.
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for a weak probe pulse remain valid until �V42�0,0�� / �V3j�
�0.1.

IV. CONCLUSIONS

We have shown that nonadiabatic, resonant amplitude-
and phase-modulated pulses can be converted with greater
efficiency than adiabatic resonant pulses in a coherently pre-
pared � system �see Figs. 2–4�. Indeed, conversion efficien-
cies close to unity can been obtained by using either strongly
detuned probe pulses �see Eq. �46�� or highly nonadiabatic
resonant ones. The reason for the higher efficiency is that in
both cases, dissipation is limited by avoiding occupation of
the decaying upper state due either to the large detuning of
the nonresonant probe pulse, or to the short interaction time
with the atom of the nonadiabatic probe pulse. For the same
reason, the optical length required for the high conversion
efficiency is much larger than that needed to achieve maxi-
mum efficiency with adiabatic pulses.

In this paper, we have compared adiabatic and nonadia-
batic pulse propagation for the case where the Raman coher-
ence �21 is constant in space and time. If the atomic coher-
ence is position dependent, the conversion efficiency can be
unity for adiabatic propagation at zero or small detunings
�36,37�. Note that in our method, the Raman coherence is
created by two cw laser beams, whereas the space-dependent
atomic coherence is created using STIRAP �38,39�.

Moreover, by solving the Maxwell-Bloch equations using
Fourier transforms, we have derived analytical expressions
for the probe and the generated FWM pulses as a function of
time and propagation distance. From these generally valid
expressions we derived the result that starting from a nona-
diabatic probe pulse, an asymptotically matched probe-FWM
pulse pair with the same shape as the initial probe pulse is
obtained. In addition, we showed that, starting with a non-
adiabatic matched pulse pair or a pair of matched pulse
trains, we obtain propagation of these pulses without either
deformation or losses.

�1� E. Arimondo, Prog. Opt. 35, 257 �1996�.
�2� S. E. Harris, Phys. Today 50, 36 �1997�.
�3� J. P. Marangos, J. Mod. Opt. 45, 471503 �1998�.
�4� M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod.

Phys. 77, 633 �2005�.
�5� A. Lezama, S. Barreiro, and A. M. Akulshin, Phys. Rev. A 59,

4732 �1999�.
�6� A. V. Taichenachev, A. M. Tumaikin, and V. I. Yudin, Phys.

Rev. A 61, 011802�R� �1999�.
�7� C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Fried-

mann, Phys. Rev. A 67, 033807 �2003�.
�8� R. W. Boyd and D. J. Gauthier, in Progress in Optics, edited

by E. Wolf �Elsevier, Amsterdam, 2002�, vol. 42.
�9� A. B. Matsko, O. Kocharovskaya, Y. Rostovtsev, G. R. Welch,

A. S. Zibrov, and M. O. Scully, Adv. At., Mol., Opt. Phys. 46,
191 �2001�.

�10� A. S. Zibrov, M. D. Lukin, and M. O. Scully, Phys. Rev. Lett.
83, 4049 �1999�.

�11� A. S. Zibrov, A. B. Matsko, O. Kocharovskaya, Y. V. Rostovt-
sev, G. R. Welch, and M. O. Scully, Phys. Rev. Lett. 88,
103601 �2002�.

�12� C. Affolderbach, C. Andreeva, S. Cartaleva, T. Karaulanov,
and D. Slavov, Appl. Phys. B 80, 841 �2005�.

�13� J. Vanier, Appl. Phys. B 81, 421 �2005�.
�14� P. D. D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitch-

ing, L. A. Liew, and J. Moreland, Appl. Phys. Lett. 85, 6409
�2004�.

�15� M. O. Scully, Phys. Rev. Lett. 55, 2802 �1985�.
�16� M. O. Scully, Phys. Rev. Lett. 67, 1855 �1985�.
�17� M. Fleischhauer, C. H. Keitel, M. O. Scully, C. Su, B. T.

Ulrich, and S. Y. Zhu, Phys. Rev. A 46, 1468 �1992�.
�18� K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod. Phys.

70, 1003 �1998�.
�19� Z. Kis, N. V. Vitanov, A. Karpati, C. Barthel, and K. Berg-

mann, Phys. Rev. A 72, 033403 �2005�.
�20� S. E. Harris and Z.-F. Luo, Phys. Rev. A 52, R928 �1995�.

�21� H. Shpaisman, A. D. Wilson-Gordon, and H. Friedmann, Phys.
Rev. A 70, 063814 �2004�.

�22� H. Shpaisman, A. D. Wilson-Gordon, and H. Friedmann, Phys.
Rev. A 71, 043812 �2005�.

�23� S. E. Harris, Phys. Rev. Lett. 70, 552 �1993�.
�24� J. H. Eberly, M. L. Pons, and H. R. Haq, Phys. Rev. Lett. 72,

56 �1994�.
�25� J. H. Eberly, A. Rahman, and R. Grobe, Phys. Rev. Lett. 76,

3687 �1996�.
�26� M. Fleischhauer and A. S. Manka, Phys. Rev. A 54, 794

�1996�.
�27� J. H. Eberly and V. V. Kozlov, Phys. Rev. Lett. 88, 243604

�2002�.
�28� M. J. Konopnicki and J. H. Eberly, Phys. Rev. A 24, 2567

�1981�.
�29� V. V. Kozlov and J. H. Eberly, Opt. Commun. 179, 85 �2000�.
�30� R. Grobe, F. T. Hioe, and J. H. Eberly, Phys. Rev. Lett. 73,

3183 �1994�.
�31� M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris,

Phys. Rev. Lett. 77, 4326 �1996�.
�32� S. Harris, G. Y. Yin, M. Jain, H. Xia, and A. J. Merriam,

Philos. Trans. R. Soc. London, Ser. A 355, 2291 �1997�.
�33� A. J. Merriam, S. J. Sharpe, H. Xia, D. A. Manuszak, G. Y.

Yin, and S. E. Harris, IEEE J. Sel. Top. Quantum Electron. 5,
1502 �1999�.

�34� A. J. Merriam, S. J. Sharpe, M. Shverdin, D. Manuszak, G. Y.
Yin, and S. E. Harris, Phys. Rev. Lett. 84, 5308 �2000�.

�35� R. S. Bennink, A. M. Marino, V. Wong, R. W. Boyd, and C. R.
Stroud, Phys. Rev. A 72, 023827 �2005�.

�36� E. Paspalakis and Z. Kis, Opt. Lett. 27, 1836 �2002�.
�37� Z. Kis and E. Paspalakis, Phys. Rev. A 68, 043817 �2003�.
�38� J. R. Csesznegi and R. Grobe, Phys. Rev. Lett. 79, 3162

�1997�.
�39� J. R. Csesznegi, B. K. Clark, and R. Grobe, Phys. Rev. A 57,

4860 �1998�.
�40� K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, Phys.

ENHANCED FREQUENCY CONVERSION OF¼ PHYSICAL REVIEW A 73, 053805 �2006�

053805-7



Rev. Lett. 79, 209 �1997�.
�41� E. A. Korsunsky and D. V. Kosachiov, Phys. Rev. A 60, 4996

�1999�.
�42� S. Boublil, A. D. Wilson-Gordon, and H. Friedmann, J. Mod.

Opt. 38, 1739 �1991�.
�43� A. D. Wilson-Gordon, R. Klimovsky-Barid, and H. Fried-

mann, Phys. Rev. A 25, 1580 �1982�.
�44� L. J. Rothberg and N. Bloembergen, Phys. Rev. A 30, 820

�1984�.
�45� P. Weisman, A. D. Wilson-Gordon, and H. Friedmann, Phys.

Rev. A 61, 053816 �2000�.
�46� R. W. Boyd, Nonlinear Optics �Academic, San Diego, 2003�,

2nd ed.
�47� E. Cerboneschi and E. Arimondo, Phys. Rev. A 54, 5400

�1996�.
�48� S.-H. Choi and G. Vemuri, Opt. Commun. 153, 257 �1998�.
�49� E. Cerboneschi and E. Arimondo, Phys. Rev. A 52, R1823

�1995�.
�50� P. K. Panigrahi and G. S. Agarwal, Phys. Rev. A 67, 033817

�2003�.
�51� R. N. Shakhmuratov and J. Odeurs, Phys. Rev. A 71, 013819

�2005�.
�52� Y. Li and M. Xiao, Opt. Lett. 20, 1489 �1995�.
�53� A. D. Greentree, T. B. Smith, S. R. de Echaniz, A. V. Durrant,

J. P. Marangos, D. M. Segal, and J. A. Vaccaro, Phys. Rev. A
65, 053802 �2002�.

�54� J. Cheng, S. Han, and Y. J. Yan, Opt. Lett. 30, 2638 �2005�.

EILAM, WILSON-GORDON, AND FRIEDMANN PHYSICAL REVIEW A 73, 053805 �2006�

053805-8


