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We investigate the color-locked twin-noisy-field correlation effects in third-order nonlinear absorption and
dispersion of ultrafast polarization beats. We demonstrate a phase-sensitive method for studying the two-
photon nondegenerate four-wave mixing �NDFWM� due to atomic coherence in a multilevel system. The
reference signal is another one-photon degenerate four-wave-mixing signal, which propagates along the same
optical path as the NDFWM signal. This method is used for studying the phase dispersion of the third-order
susceptibility and for the optical heterodyne detection of the NDFWM signal. The third-order nonlinear re-
sponse can be controlled and modified through the color-locked correlation of twin noisy fields.
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I. INTRODUCTION

Recently, studies of nonlinear optical effects in multilevel
atomic systems have received renewed interest due to the
greatly enhanced nonlinearity and, at the same time, reduced
linear absorption caused by light-induced atomic coherence
among the energy levels �1–3�. By carefully choosing the
atomic level configurations and laser fields, the efficiencies
of wave mixing can be greatly increased at optimal atomic
coherence conditions. Through directly measuring the non-
linear optical coefficients in multilevel atomic systems �4�,
one can see that the nonlinearity depends sensitively on vari-
ous experimental parameters. Large enhancement of the non-
linear index in four-level atomic systems was also demon-
strated �5�. In order to optimize certain nonlinear optical
processes, it is beneficial to have exact knowledge of the
nonlinear coefficients and their dependences on various ex-
perimental parameters. However, due to residual linear ab-
sorption and dispersion of the probe and signal beams, it is
usually difficult to measure the nonlinear coefficients, espe-
cially both the real and imaginary parts under the same con-
ditions. One of the early experiments to measure the Kerr
nonlinear coefficient in a three-level atomic system used an
optical cavity to eliminate the linear contributions �4�, which
directly gives the nonlinear refractive index n2.

In this paper we present a type of phase-sensitive detec-
tion for the third-order complex susceptibility in a multilevel
gas medium. We study two-photon nondegenerate four-wave
mixing �NDFWM� in attosecond polarization beats induced
by the third-order susceptibility. One can adjust the relative
phase between the local oscillator field of one-photon degen-
erate four-wave mixing �DFWM� and the two-photon ND-
FWM signal by changing the relative time delay ��� between
two pump beams of DFWM and NDFWM through a Mich-
elson interferometer. As the �-dependent phase difference ap-
proaches 2n� or �2n+1/2��, the attosecond polarization

beat signal evolves into the nonlinear dispersion or absorp-
tion of two-photon NDFWM separately. Here the reference
beam is another one-photon DFWM signal, which is intro-
duced by adding an additional frequency component to the
pump beams of the NDFWM scheme. The NDFWM signal
beam and the DFWM reference beam then interfere directly
at the detector. Our method is based on attosecond polariza-
tion interference between two FWM processes in a purely
homogeneously broadened �6,7� or Doppler-broadened three-
level ladder-type system �8–10�.

This method is a good way to measure the third-order
susceptibility directly. Alternative methods �in the purely ho-
mogeneously broadened and the extremely Doppler-
broadened media, respectively� are used to study the nonlin-
ear responses of the three-level ladder-type system. We
proceed in the standard manner by calculating the expression
for the density-matrix element �third-order response func-
tions �10

�3��, finding the complex susceptibility, and finally
breaking it down into real and imaginary parts to obtain the
desired results. The modified third-order absorption and dis-
persion can be controlled coherently by noisy-light color-
locking bandwidth, frequency detuning, and time delay. An-
other advantage of our system is the use of a two-photon
Doppler-free counterpropagation configuration �9,10� that al-
lows us to observe these interesting effects in a long atomic
vapor cell.

II. LIOUVILLE PATHWAYS

Nonlinear optical properties of an atomic medium can be
controlled and modified through the color-locked correlation
of twin noisy driving fields. A simply physical explanation of
this process in a three-level ladder-type atomic system can be
given in the bare-state picture. The polarization interference
of two excitation paths �0�→ �1�→ �0�→ �1� �one-photon
DFWM� and �0�→ �1�→ �2�→ �1� �two-photon NDFWM�
leads to a third-order attosecond polarization beat �ASPB�
phenomenon �7,8,10�. This polarization beat is based on the
interference at the detector between FWM signals which
originate from macroscopic polarizations excited simulta-
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neously in the homogeneously �6,7� or inhomogeneously
�8–10� broadened sample. It critically requires that all the
third-order polarizations have the same frequency.

The three-level ladder-type ASPB comes from the sum-
frequency polarization interference between one-photon and
two-photon optical processes on the attosecond time scale,
while the femtosecond polarization beat �FSPB� corresponds
to the difference-frequency polarization interference on the
femtosecond time scale �9�. A Doppler-broadened three-level
ladder-type atomic system �Fig. 1�a�� consists of a ground
state �0�, an intermediate state �1�, and an excited state �2�.
States between �0� and �1� and between �1� and �2� are
coupled by a dipole transition with resonant frequencies �1
and �2, respectively, while states between �0� and �2� are
dipole forbidden. We consider a two-color time-delay FWM
in which beams 1 and 2 consist of two frequency compo-
nents �1 and �2, while beam 3 has frequency �3 �Fig. 1�b��.
We further assume that �1��1 ��3��1� and �2��2;
therefore �1 ��3� and �2 will drive the transitions from �0� to
�1� and from �1� to �2�, respectively. There are two distinct
processes involved in this two-color ASPB. First, the �1 fre-
quency components of the twin composite beams 1 and 2
induce population grating of states �0� and �1�, which is
probed by frequency �3 of beam 3. This is a one-photon

resonant DFWM �one typical pathway �0�→
�1

�1�→
−�1

�0�→
�3

�1��
and the signal �beam 4� has frequency �3. More specifically,
the typical one-photon DFWM process indicates that one
pump photon �1 is absorbed and one pump photon �1 is
emitted first �both the ket and bra of the density operator
would be promoted to �0� �or �1�� to create a population of a
ground state �or an intermediate state��, one probe photon �3
is then absorbed, and one phase-matching coherent photon
�3 is finally emitted along beam 4 �Fig. 1�b��. Second, beam

3 and the �2 frequency component of beam 1 induce a two-
photon coherence between levels �0� and �2� �only the ket is
being promoted to create a coherence rather than a popula-
tion�, which is then probed by the �2 frequency component

of the beam 2. This is a two-photon NDFWM ��0�→
�3

�1�

→
�2

�2�→
−�2

�1�� with a resonant intermediate state and the fre-
quency of the signal equals �3 again. The two-photon ND-
FWM process indicates that the ket is promoted to the ex-
cited state �2� by two field actions, one probe photon �2 is
emitted, and then one phase-matching coherent photon �3 is
finally emitted along the beam 4 direction �Fig. 1�b��. Thus,
the first two field actions would imply that both the ket and
bra would be promoted to �0� �or �1�� to create a population
of a ground state �or an intermediate state� in chains I–IV;
only the ket is being promoted to create a coherence
�between a ground state and an excited state� rather than a
population in chain V.

The twin composite stochastic fields of beam 1 �Ep1� and
beam 2 �Ep2� can be written as

Ep1 = E1 + E2� = �1u1�t�exp�i�k1 · r − �1t��

+ �2�u2�t − ��exp�i�k2� · r − �2t + �2��� , �1�

Ep2 = E1� + E2 = �1�u1�t − ��exp�i�k1� · r − �1t + �1���

+ �2u2�t�exp�i�k2 · r − �2t�� . �2�

Here, �i, and ki ��i� and ki�� are the constant field amplitude
and the wave vector of the �i component in beam 1 �beam
2�, respectively. ui�t� is a dimensionless statistical factor that
contains phase and amplitude fluctuations. It is taken to be a
complex ergodic stochastic function of t, which obeys com-
plex circular Gaussian statistics in a chaotic field. � is the
relative time delay between the prompt �unprimed� and de-
layed �primed� fields. To accomplish this arrangement the
frequency components of the �1 and �2 lights are split and
then recombined to provide two double-frequency pulses in
such a way that the �1 component is delayed by � in beam 2
and the �2 component delayed by the same amount in beam
1 �Fig. 1�b��. The time delay � is introduced in both beams,
which is quite different from the FSPB scheme studied ear-
lier �9�. On the other hand, beam 3 is assumed to be a quasi-
monochromatic light �u3�t��1�, the complex electric field of
beam 3 can be written as E3=A3�r , t�exp�−i�3t�
=�3u3�t�exp�i�k3 ·r−�3t��. Here, �3, �3, and k3 are the
frequency, the field amplitude, and the wave vector,
respectively.

In the bare-state picture, the atomic polarization and
population equations of motion �atomic response� are consid-
ered up to different orders of Liouville pathways. To proceed
further, and to simplify the mathematics, we will neglect the
ground-state depletion ��00

�0��1� and not consider the propa-
gation characteristics of the pulsed pump, probe, and FWM
fields. Also, we only retain the resonant dipole interaction
terms in the derivation of the complex susceptibility, known
as the rotating-wave approximation �RWA�. Because of the
selectivity imposed by the RWA, each pulse interaction con-
tributes in a unique way to the phase-matching direction of

FIG. 1. �a� The ladder diagrams of two-state one-photon DFWM
and three-state two-photon NDFWM for perturbation chains I–V in
Liouville space. The solid, dashed, and dash-dotted vertical lines
correspond to ket and bra interactions, and the FWM signal, respec-
tively, and time evolves from left to right. �b� Phase-conjugation
geometries of ASPB and FSPB.
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the nonlinear signal. We shall employ perturbation theory to
calculate the density-matrix elements by the following per-
turbation chains �Fig. 2� �10�:

�I� �00
�0�→

E1

�10
�1� →

�E1��*

�00
�2�→

E3

�10
�3�,

�II� �00
�0� →

�E1��*

��10
�1��*→

E1

�00
�2�→

E3

�10
�3�,

�III� �00
�0�→

E1

�10
�1� →

�E1��*

�11
�2�→

E3

�10
�3�,

�IV� �00
�0� →

�E1��*

��10
�1��*→

E1

�11
�2�→

E3

�10
�3�,

�V� �00
�0�→

E3

�10
�1�→

E2�

�20
�2� →

�E2�*

�10
�3�.

Chains I–IV correspond to the one-photon DFWM pro-
cesses, while chain V corresponds to the two-photon ND-
FWM process. They have phase-matching conditions ks1
=k1−k1�+k3 and ks2=k2�−k2+k3, respectively. Since the
DFWM and NDFWM signals propagate along slightly dif-
ferent directions, the interference between them leads to the
spatial oscillation �6–10�. Physically, DFWM is one sum of
two grating diffraction contributions �a small-angle static
grating induced by �1 and −�1 and a large-angle static grat-
ing induced by �3 ���1� and −�1�, while NDFWM comes
from the other sum of the two grating diffraction contribu-
tions �a small-angle static grating induced by �2 and −�2 and
a large-angle moving grating induced by �3 and −�2�.

The third-order response functions ��10
�3�� of the perturba-

tion chains I–V �relevant to the three-pulse FWM� are given
using double-sided Feynman diagrams �DSFDs� in Fig. 2
�7,10�. The time evolutions of the density-matrix elements of

the optically driven atoms or molecules can be represented
schematically by either the Liouville space coupling repre-
sentation �chains I–V�, the DSFDs �Fig. 2�, or the ladder
diagrams �Fig. 1�a��. Each diagram represents a distinct
Liouville space pathway. We show the diagrammatic repre-
sentations corresponding to the lowest three orders of the
resonant dipole interactions applied to a system with two or
three electronic states. In the Liouville space coupling repre-
sentation �chains I–V� the state of the system is designated
by a position in Liouville space, with indices corresponding
to the ket-bra “axis.” Up and down transitions on the ket are
excited by positive- and negative-frequency fields, whereas
negative- and positive-frequency fields induce up and down
transitions on the bra. The DSFDs shown in Fig. 2 can be
described as follows. The vertical left and right lines of the
diagram represent the time evolution �bottom to top� of the
ket and bra, respectively; the applied electric fields are indi-
cated with arrows oriented toward the left if propagating
with a negative wave vector and toward the right for a posi-
tive wave vector. Each interaction with the electric field pro-
duces a transition between the two electronic states of either
the bra or the ket. The ladder diagrams are shown in Fig.
1�a�. In this representation, the solid and dashed lines corre-
spond to ket and bra interactions, respectively, and its time
evolves from left to right. The ability to track the evolution
of the bra and ket simultaneously makes the density-matrix
representation a most appropriate tool for the description of
many dynamical phenomena in nonlinear optical processes.

Generally, there are 48 terms in the third-order density
operators for a given FWM process. In time evolution of the
density-matrix element �ab

�j�, each specified field action trans-
forms either the “ket” or the “bra” side of the density-matrix
element. Thus, for any specified jth-order generator, there
can be 2 j detailed paths of evolution. In addition, evolution
for each of the j! generators corresponding to all possible

FIG. 2. Pulse sequence control of third-order
response functions representing the Liouville
pathways for P1, P2, P3 P4, and P5, respectively.
�a� One-photon DFWM of ASPB and FSPB; �b�
two-photon NDFWM of ASPB and FSPB. The
left and right vertical lines represent the ket and
bra, respectively; the applied electric fields are
indicated with arrows oriented toward the left if
propagating with a negative wave vector and vice
versa for a positive wave vector. Time evolves
from the bottom to the top of the diagram.
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field orderings must be considered. One then has total 2 j j!
paths of evolution. Thus, at third order, where beams 1, 2,
and 3 are distinct, there are 2 j j!=48 �j=3� different Liouville
pathways at the polarization level. Often the experimental
constraints reduce the number of diagrams to a significantly
smaller subset which dominate the behavior of the signal.
Under the RWA, phase-matching and frequency selections of
the FWM signals along ks greatly restrict the number of
third-order perturbative pathways �Fig. 2�. Moreover, polar-
ization beat is based on the interference at the detector be-
tween multi-FWM signals, which originate from the macro-
scopic polarizations excited simultaneously in the sample. It
requires that all the polarizations have the same frequency.
Now, we consider the other possible density-operator path-
ways:

�VI� �00
�0�→

E3

�10
�1� →

�E1��*

�00
�2�→

E1

�10
�3�,

�VII� �00
�0� →

�E1��*

��10
�1��*→

E3

�00
�2�→

E1

�10
�3�,

�VIII� �00
�0�→

E3

�10
�1� →

�E1��*

�11
�2�→

E1

�10
�3�,

�IX� �00
�0� →

�E1��*

��10
�1��*→

E3

�11
�2�→

E1

�10
�3�,

�X� �00
�0�→

E1

�10
�1�→

E2�

�20
�2� →

�E2�*

�10
�3�,

�XI� �00
�0�→

E1�

�10
�1�→

E2�

�20
�2� →

�E2�*

�10
�3�.

where the population grating �a large-angle static grating�
induced by beam 3 and the �1 frequency component of beam
2 is responsible for the generation of the FWM signal. These
large-angle static gratings have much smaller fringe spac-
ings, which equal approximately one-half of the wavelengths

of the incident lights ��i / �2 sin�� /2�� →
��180°

�i /2	. For a
Doppler-broadened system, the gratings will be washed out
by the atomic motion. In addition, the wave vectors k2�−k2
+k1 and k2�−k2+k1� of the density-operator pathways X and
XI propagate along dramatically different directions com-
pared with ks1=k1−k1�+k3 and ks2=k2�−k2+k3. Therefore,
it is appropriate to neglect the FWM signals from these
density-operator pathways. The more strict requirements on
phase matching also make these processes �VI–XI� unimpor-
tant.

III. COLOR-LOCKING STOCHASTIC CORRELATION

Lasers are inherently noisy devices, in which both the
phase and amplitude of the field can fluctuate. A noisy laser
beam can be used to probe atomic and molecular dynamics,
and it offers a unique alternative to the more conventional
frequency-domain cw spectroscopies and ultrashort-pulse
time-domain spectroscopies �11�. Typical Markovian noisy

fields include chaotic fields, phase-diffusion fields, and
Gaussian-amplitude fields �7,10�. The color-locking noisy-
light technique is an intermediate way between cw and short-
pulse methods. The color-locking technique results in com-
plete cancellation of the spectrally broad noise carried by the
noisy light beams �11�. The fundamental difference is that
the transform-limited femtosecond laser pulse is phase co-
herent �phase locked� while noisy light is phase random and
nontransform limited. For the “biatomic” model �11� of the
macroscopic system where phase matching takes place, the
FWM signal must be drawn from the third-order polarization
P�3� �having time variable t� developed on one “atom” mul-
tiplied by �P�3��* �having time variable s� that is developed
on another “atom” which must be located elsewhere in space
�with summation over all such pairs�. The third-order re-
sponse functions �P�3�� relevant to three-pulse FWM are
given using double-sided Feynman diagrams as shown in
Fig. 2. The homodyne-detected ASPB signal is proportional
to the average of the absolute square of P�3� over the random
variable of the stochastic process 
�P�3��2� �having both t and
s time variables�, which involves fourth- or sixth-order co-
herence functions of ui�t� in phase-conjugation geometry.
Unlike the second-order coherence function in field-level av-
eraging, the expansions of fourth- and sixth-order coherence
functions in intensity-level averaging strongly depend on
three different Markovian noisy fields �7,10�.

The characteristics of the ASPB interferogram are a result
of two main components: the material response and the light
response along with the interplay between the two responses.
In general, ASPB �at the intensity level� can be viewed as the
sum of five contributions: �i� the resonant-resonant,
nonresonant-nonresonant, or resonant-nonresonant types of
�-independent autocorrelation terms, �ii� the purely resonant
�-dependent autocorrelation terms, �iii� the purely nonreso-
nant �-dependent autocorrelation terms, �iv� the resonant-
nonresonant �-dependent autocorrelation terms, and �v� the
resonant-resonant, nonresonant-nonresonant, or resonant-
nonresonant types of �-dependent cross-correlation terms.
When the ASPB signal is dominated by the case that the
u1�t� and u2�t� �field 3 is quasimonochromatic� field actions
on single atom are correlated, and the cross-atom-correlated
actions are not important �which is usually true for atomic
vapor systems�, the ASPB signal intensity can be approxi-
mated by the absolute square of the nontrivial stochastic av-
erage of the polarization �
P�3���2 �averaging at the field
level�, which only involves second-order coherence func-
tions of ui�t�. This works because for this particular spectro-
scopic technique the �-dependent terms have only intra-
atomic correlations and no interatomic correlations in the
�-dependent terms. In dealing with a gas-phase atomic me-
dium, we made an approximation by averaging at the field
level, which only needs second-order correlation functions
for the noise fields. The time-space second-order coherence
function of a noisy field is 
ui�t1�ui

*�t2��=exp�−	i�t1− t2�� for
a Lorentzian line shape and 
ui�t1�ui

*�t2��=exp�−�	i�t1

− t2� /2�ln 2�2	 for a Gaussian line shape. Here, 	i=
1
2
�i

�with 
�i being the linewidth of the �i frequency compo-
nent� is the autocorrelation decay of the noisy field. On the
other hand, noisy light is color locked, because each color is
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coherent only with itself �it is uncorrelated with any other
color�. Color locking is a consequence of the Wiener-
Khintchine theorem, which is expressed mathematically
�most conveniently� by examining a second-order coherence
function in the frequency domain, i.e., 
ũi�� j�ũi

*��k��=
�� j

−�k�Ji�� j�, where ũi is the Fourier transform of the broad-
band light field envelope and Ji is the spectral density of the
stochastic function ui �11�. The form of the second-order
coherence function, which is determined by the laser line
shape, is a general feature of three different Markovian sto-
chastic models: a chaotic field, phase-diffusion field, and
Gaussian-amplitude field �7,10�. In the cw limit �ui�t��1�,
the ASPB signal can then be written as I� �P�3��2= �
P�3���2

= 
�P�3��2�.
The nonlinear polarization Pn responsible for the phase-

conjugate FWM signal is given by stochastic averaging over
the velocity distribution function W�v�. Thus Pn

=N�1�−

+
dv w�v�
�10

�3��v��. Here v is the atomic velocity and
N is the atomic density. For a Doppler-broadened atomic
system, we have w�v�=exp�−�v /u�2� /��u. Here, u
=�2kBT /m with m being the mass of an atom, kB the Boltz-
mann constant, and T the absolute temperature. The polariza-
tions of DFWM �PA= P1+ P2+ P3+ P4� and NDFWM �PB

= P5� are given in the bare-state basis. P1, P2, P3, P4, and P5

correspond to third-order polarizations of the perturbation
chains I, II, III, IV, and V, respectively. The formulas below
indicate how the initial density-matrix elements are trans-
formed into higher-order elements through interactions with
the electric fields:

P1 = S1�r�exp�− i��3t + �1��� 
 w�v�exp�− i�I�v��H1�t1�

�H2�t2�H3�t3�
u1�t − t1 − t2 − t3�u1
*�t − t2 − t3 − ���d� ,

�3�

P2 = S1�r�exp�− i��3t + �1��� 
 w�v�exp�− i�II�v��H1
*�t1�

�H2�t2�H3�t3�
u1�t − t2 − t3�u1
*�t − t1 − t2 − t3 − ���d� ,

�4�

P3 = S1�r�exp�− i��3t + �1��� 
 w�v�exp�− i�I�v��H1�t1�

�H4�t2H3�t3��
u1�t − t1 − t2 − t3�u1
*�t − t2 − t3 − ���d� ,

�5�

P4 = S1�r�exp�− i��3t + �1��� 
 w�v�exp�− i�II�v��H1
*�t1�

�H4�t2�H3�t3�
u1�t − t2 − t3�u1
*�t − t1 − t2 − t3 − ���d� ,

�6�

P5 = S2�r�exp�− i��3t − �2��� 
 w�v�exp�− i�III�v��H3�t1�

�H5�t2�H3�t3�
u2�t − t2 − t3 − ��u2
*�t − t3��d� . �7�

here

S1�r� = − i�N��1

�
�4

�1��1��
*�3 exp�i�k1 − k1� + k3� · r� ,

S2�r� = − i�N��1

�
�2��2

�
�2

�2���2�*�3 exp�i�k2� − k2 + k3� · r� ,

�I�v� = v · �k1�t1 + t2 + t3� − k1��t2 + t3� + k3t3� ,

�II�v� = v · �− k1��t1 + t2 + t3� + k1�t2 + t3� + k3t3� ,

�III�v� = v · �k3�t1 + t2 + t3� + k2��t2 + t3� − k2t3� ,

H1�t� = exp�− ��10 + i�1�t�, H2�t� = exp�− �0t� ,

H3�t� = exp�− ��10 + i�3�t�, H4�t� = exp�− �1t� ,

H5�t� = exp�− ��20 + i�2 + i�3�t�;

�1 ��2� is the dipole-moment matrix element between �0�
and �1� ��1� and �2��; �0 ��1� is the population relaxation rate
of state �0� ��1��. By considering contributions of nonradia-
tive processes in such a gas-phase medium, we assume �0 to
be small, but nonzero. �10 ��20� is the transverse relaxation
rate of the transition from �0� to �1� ��0� to �2��, which con-
tains material dephasing dynamics; �1=�1−�1, �2=�2
−�2, �3=�1−�3; �d� is defined as the fourfold integration
�d�=�−


+
dv�0

dt3�0


dt2�0

dt1.

IV. THE PURELY HOMOGENEOUSLY BROADENED
MEDIUM

A. ��0

1. Nonlinear response at field level

In lifetime-broadened three-level atoms �Doppler-free
approximation ki ·v�0 and ki� ·v�0� and ��0, Eqs. �3�–�7�
reduce to

P1 = S1�r�exp�− i��3t + �1���
1

�10 + i�3

1

�0
� e−	1�

�10 − 	1 + i�1

−
2	1e−��10+i�1��

��10 + i�1�2 − 	1
2� , �8�

P2 = S1�r�exp�− i��3t + �1���
1

�10 + i�3

1

�0

e−	1�

�10 + 	1 − i�1
,

�9�
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P3 = S1�r�exp�− i��3t + �1���
1

�10 + i�3

1

�1
� e−	1�

�10 − 	1 + i�1

−
2	1e−��10+i�1��

��10 + i�1�2 − 	1
2� , �10�

P4 = S1�r�exp�− i��3t + �1���
1

�10 + i�3

1

�1

e−	1�

�10 + 	1 − i�1
,

�11�

P5 = S2�r�exp�− i��3t − �2���
1

�10 + i�3

1

�10 + 	2 + i�3

�
e−	2�

�20 + i��3 + �2�
. �12�

Thus P1 and P3 with radiation-matter detuning oscillation
�RDO� show both atom and light responses together, but P2,
P4, and P5 without RDO show light response alone �without
e−��10+i�1�� or e−��20+i�2+i�3�� �-dependent decay factors�. In
the limit of weak noisy fields and in the limit of zero corre-
lation time of the noisy lights, the decay of the DFWM sig-
nal yields the dephasing time �10 of the atomic medium. The
one-photon DFWM and two-photon NDFWM complex sus-
ceptibilities �A and �B at �3 ��3��1� are obtained from the
third-order polarizations PA and PB, respectively, as follows:

�A��,�i,	1� =
PA

�0
E1�E1��
*�E3

=
�1��0 + �1�

��10 + i�3��0�1
� 1

�10 + 	1 − i�1

+
1

�10 − 	1 + i�1
−

2	1e−��10+i�1−	1��

��10 + i�1�2 − 	1
2 � ,

�13�

�B��i,	2� =
PB

�0
E2
*E2��E3

=
�2

�10 + i�3

1

�10 + 	2 + i�3

1

�20 + i��3 + �2�
,

�14�

where �1=−iN�1
4 /�0�3 and �2=−iN�1

2�2
2 /�0�3.

The complex susceptibilities are greatly modified by the
color-locked noisy fields. Specifically, �A and �B strongly
depend on the linewidth 	i and time delay � in broadband,
while they become independent of 	i and � in narrowband.
In the cw limit �	i=0�, the imaginary part and real part of �A

or �B can correspond to nonmodified nonlinear absorption
and dispersion. For the absorption curves, positive �negative�
values indicate gain �absorption�. The signal response of
FWM has also been calculated previously in four-level
double-� cold atoms �3�. The anomalous dispersion gener-
ally corresponds to strong absorption of the medium. Close
inspection of Eq. �14� shows that when 	2 /�10

a controllably
decreases to the cw case �	2 /�10

a =0�, the absorption will

increase, and the slope of the normal dispersion curve will
dramatically increase at near resonance �2 /�10=0 too
�Fig. 3�. Moreover, near the two-photon transition, there is
large induced nonlinear amplification �Im �B negative� and
Re �B is large and can have either sign.

The expression for �B, which is responsible for the modi-
fication of the nonmodified nonlinear absorption-dispersion
profile, arises in the bare-state formalism from a two-photon-
induced coherence between levels �0� and �2�, i.e., a nonzero
matrix element �20

�2�. Clearly, even for an atom at rest �v=0�,
the color-locking characteristic of the noisy light modifies
the normal susceptibility in a nontrivial way, which cannot
be simply characterized as either a mere level shift or a
broadening of the resonances. The phase dispersion

�B��2,�3,	2�

= tan−1� ��10
2 − �3

2��	2 + �20� − 2�10�3��2 + �3�
2�10�3�	2 + �20� + ��10

2 − �3
2���2 + �3�

�
of �B= ��B�ei�B can be obtained simply from Eq. �14�.

FIG. 3. Nonlinear dispersion �a� and absorption �b� versus
�2 /�10 for Eq. �14�. �20/�10=1.3, �3 /�10=−0.001, and 	2 /�10

=0 �cw case� �dash-dotted curve�, 700 �dotted curve�, 1200 �dashed
curve�, and 2000 �solid curve�.
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2. Nonlinear response at intensity level

The phase-sensitive detection of two-photon NDFWM is
based on the polarization interference between two FWM
processes. Since optical fields oscillate too quickly for direct
detection, they must be measured by beating with another
field with similar frequency. There are two ways to measure
the nonlinear susceptibility of NDFWM experimentally. One
is the conventional detection in which the NDFWM polar-
ization PB is measured at its own absolute square, PB�PB�*.
The two-photon NDFWM signal intensity is proportional to
��B�2 and all phase information of �B has been lost. The
second way to measure �B is to introduce another polariza-
tion PA �called a reference signal or local oscillator� designed
in frequency and wave vector to conjugate in its complex
representation with the PB polarization of interest. Thus, in
this heterodyne case, the signal photons are derived from
�PA+ PB���PA�*+ �PB�*� or Iheterodyne��B �the signal is linear
rather than quadratic�. In heterodyne-detected FWM, phase
information is retained and one can take a full measure of the
complex susceptibility, including its phase. The phase of the
induced complex polarization P�3�= PA+ PB determines how
its energy will partition between the absorbed or emitted ac-
tive spectroscopy and the passive spectroscopy with a new
launched field spectrum �11�. The ASPB intensity can be
obtained as follows:

I��,�i,	i� � PAPA
* + PBPB

* + PAPB
* + PA

* PB

= �1��A�2e−2	1� + �2��B�2e−2	2�

+ 2�12��A���B�e−�	1+	2�� cos��A − �B + �R� .

�15�

Here �A= ��A�ei�A = ��A�cos �A+ i��A�sin �A, �B= ��B�ei�B

= ��B�cos �B+ i��B�sin �B, �R=�k ·r− ��1+�2��; �k= �k1

−k1��− �k2�−k2�, �1=�0
2�1

2���1�2�3
2, �2=�0

2�2
2���2�2�3

2, and �12

=�0
2�1���1�*��2�2

*�3
2.

Although the complex susceptibilities �nonlinear re-
sponses� are greatly modified by the color-locked noisy
fields, they can still be obtained effectively in the ideal limit.
In the heterodyne detection, we assume that �PA�2� �PB�2 at
the intensity level ���A�� ��B� at the field level�, so the refer-
ence signal �DFWM� originated from the �1 frequency com-
ponents of the twin beams 1 and 2 is much larger than the
NDFWM signal originated from the �2 frequency compo-
nents of the twin beams 1 and 2:

I��,�i,	i� � �1��A�2e−2	1� + 2�12��B���A�e−�	1+	2��

�cos��A − �B + �R� . �16�

Equation �16� indicates that the sum-frequency ASPB signal
of heterodyne detection is modulated with a frequency �1
+�2 as � is varied. The phase-coherent control of the light
beams in ASPB is subtle. The phase of the ASPB signal
strongly depends on the phase angle �B of �B. Such an ASPB
can effectively be employed via optical heterodyne detection
to yield the real and imaginary parts of �B. If we adjust the
time delay � and r such that �A+�R=2n� �i.e., �= ��A���
+�k ·r−2n�� / ��1+�2�, �k ·r=0, and the value of integer n
depends on the sign of � sensitively	, then

I��2� � �1��A�e−2	1� + 2�12e
−�	1+	2�� Re��B��2�� . �17�

However, if �A+�R= �2n+1/2�� �i.e., �= ��A���+�k ·r
−2n�−� /2� / ��1+�2�, �k ·r=0	, we have

I��2� � �1��A�e−2	1� + 2�12e
−�	1+	2�� Im��B��2�� . �18�

In other words, by changing the time delay � between differ-
ent frequencies �1 and �2 we can obtain the real and the
imaginary parts of �B��2 ,�3�. The subtle value of � is gen-
erally determined by the gradual approach method from
�A���+�R���=2n� or �2n+1/2��. Since �1��3, this proce-
dure is not good for determining �A��1 ,�3�, which is dra-
matically different with the polarization interference between
two two-photon NDFWM processes �10�.

B. ��0

In a homogeneously broadened three-level ladder-type
system, when ��0, Eqs. �3�–�7� can be reduced to

P1 = S1�r�exp�− i��3t + �1���
1

�10 + i�3

1

�0

e	1�

�10 + 	1 + i�1
,

�19�

P2 = S1�r�exp�− i��3t + �1���
1

�10 + i�3

1

�0
� e	1�

�10 − 	1 − i�1

−
2	1e��10−i�1��

��10 − i�1�2 − 	1
2� , �20�

P3 = S1�r�exp�− i��3t + �1���
1

�10 + i�3

1

�1

e	1�

�10 + 	1 + i�1
,

�21�

P4 = S1�r�exp�− i��3t + �1���
1

�10 + i�3

1

�1
� e	1�

�10 − 	1 − i�1

−
2	1e��10−i�1��

��10 − i�1�2 − 	1
2� , �22�

P5 = S2�r�exp�− i��3t − �2���
1

��10 + i�3�2

�� 2	2e���20+i�2+i�3�

	2
2 − ��20 + i�2 + i�3�2 −

e	2�

− �20 + 	2 − i�2 − i�3
� .

�23�

Thus P2, P4, and P5 can show atom and light responses
together, but P1 and P3 show only the light response. It is
then straightforward to obtain �A and �B, as follows:
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�A��,�i,	1� =
PA

�0
E1�E1��
*�E3

=
�1��0 + �1�

��10 + i�3��0�1
� 1

�10 + 	1 + i�1

+
1

�10 − 	1 − i�1
−

2	1e��10−i�1−	1��

��10 − i�1�2 − 	1
2� ,

�24�

�B��,�i,	2� =
PB

�0
E2
*E2��E3

=
�2

��10 + i�3�2� 2	2e��20+i�2+i�3−	2��

	2
2 − ��20 + i�2 + i�3�2

−
1

− �20 + 	2 − i�2 − i�3
� . �25�

The one-photon DFWM and two-photon NDFWM complex
susceptibilities �A and �B show atom and light responses
together. When 	2 /�10

a controllably decreases �12� in Eq.
�25� for ��0, the slope of the NDFWM dispersion curve
will increase at near resonance; this term �the controllable
slope of normal dispersion �d�Re �B��2�� /d�2��2=0�0	 can
lead to the slow propagation of the phase-matched coherent
NDFWM field and therefore the longer interaction length
makes NDFWM more efficient �Figs. 3�a� and 4�a��. More-
over, the NDFWM absorption curve becomes deeper as
	2 /�10

a decreases �Figs. 3�b� and 4�b��. On the other hand,
the RDO contrast of the NDFWM dispersion curve dramati-
cally improves with increasing 	2 /�10

a . The RDO periods in
the NDFWM dispersion and absorption curves also increase
with reduction of �10��� �Fig. 4�c��.

Although the complex susceptibilities are greatly modi-
fied by the color-locked noisy fields, they can still be ob-
tained effectively in the ideal limit by employing heterodyne
detection as

I��,�i,	i� � �1��A�2e2	1� + �2��B�2e2	2�

+ 2�12��A��B�e�	1+	2�� cos��A − �B + �R� .

�26�

If ��A�� ��B� at field level, we then obtain

I��,�i,	i� � �1��A�e2	1� + 2�12��B�e�	1+	2�� cos��A − �B + �R� .

�27�

If we adjust the time delay � and r such that �A+�R=2n�
�i.e., �= ��A���+�k ·r−2n�� / ��1+�2�	, then

I��2� � �1��A�e2	1� + 2�12e
�	1+	2�� Re��B��2�� . �28�

However, if �A+�R= �2n+1/2�� �i.e., �= ��A���+�k ·r
−2n�−� /2� / ��1+�2�	, we have

I��2� � �1��A�e2	1� + 2�12e
�	1+	2�� Im��B��2�� . �29�

The one-photon DFWM �PA�2 exhibits hybrid radiation-
matter terahertz detuning damping oscillations at ��0 and
��0, while two-photon NDFWM �PB�2 shows RDO at �

FIG. 4. NDFWM �B�� ,�i ,	2� response and its Fourier trans-
form in a homogeneously broadened medium for ��0 processes.
Nonlinear dispersion �a� and absorption �b� versus �2 /�10.
�20/�10=1.3, �3 /�10=−0.001. 	2 /�10=800 and �10�
=−0.000 644 2 �dash-dotted curve�, 2000 and −0.000 644 2 �dotted
curve�, 5000 and −0.000 644 2 �dashed curve�, 2000 and −0.0015
�solid curve�. �c� Fast Fourier transform �FFT� of dispersion and
absorption curves; �10�=−0.000 644 2 �high peak� and −0.0015
�low peak�.
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�0 only �Table I�. In the limit of the narrowband �	1��10,
	2��20�, and tail approximation ��10����1�, it is then
straightforward to obtain

�A = ��A�ei�A = �1
�10 + i�3

�10
2 + �3

2

�0 + �1

�0�1

2�10

�10
2 + �1

2

from Eqs. �13� and �24�,

�B = ��B�ei�B =
�2

��10 + i�3�2

1

�20 + i��3 + �2�

from Eqs. �14� and �25�, where �A=tan−1��10/�3�. The real
and imaginary parts of �A��1 ,�3� or �B��2 ,�3� are com-
pletely independent of 	i of the color-locked noisy lights and
time delay �, and correspond to the nonmodified nonlinear
dispersion-absorption expressions. If n=0, we can obtain �
=tan−1��10/�3� / ��1+�2� for Re �B��2� in Eqs. �17� and
�28�, and �=tan−1���10/�3�−� /2� / ��1+�2� for Im �B��2�
in Eqs. �18� and �29� �Figs. 3 and 4�.

Since the phase-matched coherent NDFWM signal inten-
sity IB� �EB�2��i�B�2= �Re �B�2+ �Im �B�2 �2�, it makes the
propagation characteristics of two-photon NDFWM pulse
more complicated. Three key contributions are involved in
the propagation characteristics of the NDFWM pulse �13�: a
linear response term, a cross-Kerr �or self-Kerr� nonlinear
term, and a phase-matched coherent NDFWM term
�the dominant term�. That is to say that the propagation char-
acteristics of the NDFWM pulse are determined by all three
of these contributions together. Re�B and Im �B may corre-
spond to the phase-matched quasi cross-Kerr nonlinear index
and the quasi two-photon absorption coefficient, respectively.

V. THE EXTREMELY DOPPLER-BROADENED
LIMIT

When the atomic velocity distribution cannot be ne-
glected, a straightforward semiclassical analysis shows that
the contribution of the atoms with velocity v to the complex
susceptibility of NDFWM is given by the heterodyne-
detected ASPB. Under the extremely Doppler-broadened
limit �i.e., k3u→
, in the limit of pure inhomogeneous
broadening�, we have



−


+


dv w�v�exp�− i�I�v�� � 2��
�t3 − �1t1�/k3u ,



−


+


dv w�v�exp�− i�II�v�� � 2��
�t3 + �1t1�/k3u ,



−


+


dv w�v�exp�− i�III�v�� � 2��
�t3 + t1 − ��2 − 1�t2�/k3u ,

where �1=k1 /k3, �2=k2 /k3�1 for the two-photon coherence
effect.

A. ��0

1. Nonlinear response at field level

It is then straightforward to obtain the third-order polar-
izations of DFWM and NDFWM as follows:

P1 =
2��

k3u
S1�r�exp�− i��3t + �1���

1

�0
� e−	1�

�10
a − 	1 + i�1

a

+
2	1e−��10

a +i�1
a��

	1
2 − ��10

a + i�1
a�2� , �30�

P3 =
2��

k3u
S1�r�exp�− i��3t + �1���

1

�1
� e−	1�

�10
a − 	1 + i�1

a

+
2	1e−��10

a +i�1
a��

	1
2 − ��10

a + i�1
a�2� , �31�

P5 =
2��

k3u
S2�r�exp�− i��3t − �2���

��2 − 1�e−	2�

��20
a + 	2 + i�2

a�2 ,

P2 = P4 = 0. �32�

Here, �10
a =�10+�1�10, �1

a=�1+�1�3; �20
a =�20+ ��2−1��10,

and �2
a=�2+�2�3.

Thus P1 and P3 with both atom and light responses lead to
the one-photon DFWM �P1+ P3�2 exhibiting hybrid radiation-
matter terahertz detuning damping oscillations �Fig. 5�, while
P5 with light response alone cannot cause RDO in the two-
photon NDFWM �P5�2. The corresponding complex suscep-
tibilities �A and �B are obtained from the third-order polar-
izations PA= P1+ P3 and PB= P5, respectively, as follows:

�A��,�1
a,	1� =

PA

�0
E1�E1��
*�E3

=
2���1

k3u

�0 + �1

�0�1
� 1

�10
a − 	1 + i�1

a

+
2	1e−��10

a +i�1
a−	1��

	1
2 − ��10

a + i�1
a�2� , �33�

�B��2
a,	2� =

PB

�0
E2
*E2��E3

=
2���2

k3u

�2 − 1

��20
a + 	2 + i�2

a�2 .

�34�

�B��2
a ,	2�= ��B�ei�B is completely independent of �, and

close to the nonmodified nonlinear dispersion-absorption ex-

TABLE I. RDO frequencies on the terahertz scale of the self-
coherence signal intensity of one-photon DFWM and two-photon
NDFWM for three-state atoms in the lifetime-broadened and
Doppler-broadened limits.

DFWM NDFWM

Delay ��0 ��0 ��0 ��0

Lifetime
broadening

�1 �1 No �2+�3

Large
Doppler limit

�1
a No No �2

a
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pression, where the phase dispersion �B��2
a ,	2�=tan−1���20

a

+	2� /�2
a� and modulus ��B�= i�2��2−1� / ���20

a +	2�2+ ��2
a�2�.

The real and imaginary parts of �B��2
a ,	2� are given by the

odd function �on �2
a�

Re �B =
2���2

ik3u

��2 − 1��2
a

��20
a + 	2�2 + ��2

a�2

and the even function �on �2
a�

Im �B =
2���2

ik3u

��2 − 1���20
a + 	2�

��20
a + 	2�2 + ��2

a�2 ,

respectively.

However, in the general case, �A and �B will strongly
depend on the linewidth 	i and time delay � in broadband
�that is to say that the complex susceptibilities are greatly
modified by the color-locked noisy fields�, while they be-
come independent of 	i and time delay � in narrowband. In
the cw limit �	i=0�, the real part and imaginary parts of �A

or �B can correspond to the nonmodified nonlinear disper-
sion and absorption, respectively.

2. Nonlinear response at intensity level

In the extreme Doppler-broadened ASPB, using Eqs.
�30�–�34� we obtain

I��,�i
a,	i� � �PA + PB�2 = �PA�2 + �PB�2 + PAPB

* + PA
* PB,

�35�

where

PA =
2��

k3u
S1�r�exp�− i��3t + �1���

�0 + �1

�0�1
� e−	1�

�10
a − 	1 + i�1

a

+
2	1e−��10

a +i�1
a��

	1
2 − ��10

a + i�1
a�2�

�DFWM at field level� and

PB =
2��

k3u
S2�r�exp�− i��3t − �2���

��2 − 1�2e−	2�

��20
a + 	2 + i�2

a�2

�NDFWM at field level�. Generally, the ASPB can be viewed
as the sum of three contributions: �PA�2=�1��A�2e−2	1� �one-
photon DFWM signal at intensity level�, �PB�2
=�2��B�2e−2	2� �two-photon NDFWM signal at intensity
level�, and PAPB

* + PA
* PB=2�12��A���B�e−�	1+	2�� cos��A−�B

+�R� �cross term between DFWM and NDFWM at intensity
level�.

Similar to the previous discussions in Eqs. �15�–�18�, we
can write

I��,�i
a,	i� � �PA�2 + PAPB

* + PA
* PB = �1��A�2e−2	1� + 2�12��A�

���B�e−�	1+	2�� cos��A − �B + �R� , �36�

I��2
a� � �1��A�2e−2	1�

+ 2�12��A�e−�	1+	2����B��2
a��cos��B��2

a�� , �37�

I��2
a� � �1��A�2e−2	1� + 2�12��A�e−�	1+	2����B��2

a��sin��B��2
a�� .

�38�

Due to adding the local oscillator intensity in Eqs. �37� and
�38�, the dispersion and absorption profiles �Fig. 6� only
show positive values compared with Fig. 3. After one sub-
tracts the local oscillator background �PA�2 from them, they
then become in good agreement with Fig. 3. In other words,
by changing the time delay � of the heterodyne-detected
ASPB signal we can obtain the real and imaginary parts of
�B��2

a�.
The broadband limit �noisy-field coherence time �c�0, or

	i→
� corresponds to “white” noise, characterized by a

FIG. 5. Attosecond polarization beat, RDO, and their Fourier
transforms in the extremely Doppler-broadened medium. �a� ASPB
and RDO versus �10

a �. 	2 /�10
a =0.6, �2=2, �0 /�10

a =�1 /�10
a =0.5,

�20
a /�10

a =1, ��2+�1� /�10
a =37 104.535. 	1 /�10

a =0.3, �1
a /�10

a

=2000, and �2
a /�10

a =3000 �dash-dotted curve�, 0.6, 2000, and 3000
�dotted curve�, 0.6, 1000, and 3000 �dashed curve� and 0.6, 2000,
and 1500 �solid curve�. �b� FFT of ASPB and RDO for dash-dotted
and dotted curves. The line positions 
i �i=1,2 ,3 ,4� correspond to
�1

a /�10
a , �2

a /�10
a , ��2+�1� /�10

a , ��2+�1+�1
a� /�10

a , and ��2+�1

+�2
a� /�10

a values, respectively.
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-function time correlation or, alternatively, it possesses a
constant spectral density. Under the large Doppler-
broadening limit �i.e., k3u→
, inhomogeneous broadening
limit� and broadband �	1��10

a and 	2��20
a � approximation,

we can obtain

�A��1
a,	1,�� =

2���1

k3u

�0 + �1

�0�1
� 1

i�1
a − 	1

+
2	1e−��10

a −	1+i�1
a��

	1
2 − ��10

a + i�1
a�2�

and

�B��2
a,	2,�� =

2���2

k3u

��2 − 1�2

�	2 + i�2
a�2

from Eqs. �33� and �34�. These complex susceptibilities are
greatly modified by the color-locked noisy field. That is to
say that �A and �B strongly depend on the noisy-field param-
eter 	i and time delay � in broadband.

B. ��0

In an inhomogeneously broadened three-level ladder-type
system, we can obtain

P1 =
2��

k3u
S1�r�exp�− i��3t + �1���

1

�0

e	1�

�10
a + 	1 + i�1

a ,

�39�

P3 =
2��

k3u
S1�r�exp�− i��3t + �1���

1

�1

e	1�

�10
a + 	1 + i�1

a ,

�40�

P5 =
2��

k3u
S2�r�exp�− i��3t − �2���� ��2 − 1�2e	2�

�	2 − ��20
a + i�2

a��2

+
����20

a + i�2
a�2 − 	2

2� − 2��20
a + i�2

a�
�	2

2 − ��20
a + i�2

a�2�2

�2	2��2 − 1�2e��20
a +i�2

a��� ,

P2 = P4 = 0. �41�

Thus P1 and P3 with light response alone cannot cause the
RDO of the one-photon DFWM �PA�2, while P5 with both
atom and light responses leads to the two-photon NDFWM
�PB�2 exhibiting hybrid radiation-matter terahertz detuning
damping oscillations �Fig. 5�. Due to the effects of noisy-
field color locking, in the limit of zero correlation time of the
noisy light, the decay of the NDFWM signal yields a dephas-
ing time �20

a of the atomic medium. The maximum of the
Doppler-broadened NDFWM �PB�2 is shifted from zero time
delay compared with the DFWM �PA�2. Close inspection of
�PB�2 shows that the maximum of the NDFWM signal occurs
at �=1/�20

a . More specifically, the NDFWM profile becomes
asymmetric due to the �-dependent coefficient of the second
term in Eq. �41� and the degree of asymmetry is determined
by ��20

a �−1. It is then straightforward to obtain �A and �B as
follows:

�A��1
a,	1� =

PA

�0
E1�E1��
*�E3

=
2���1

k3u

�0 + �1

�0�1

1

�10
a + 	1 + i�1

a ,

�42�

�B��,�2
a,	2� =

PB

�0
E2
*E2��E3

=
2���2

k3u
� ��2 − 1�2

�	2 − ��20
a + i�2

a��2

+
����20

a + i�2
a�2 − 	2

2� − 2��20
a + i�2

a�
�	2

2 − ��20
a + i�2

a�2�2

� 2	2��2 − 1�2e��20
a −	2+i�2

a��� . �43�

One-photon DFWM �A��1
a ,	1�= ��A�ei�A shows light re-

sponse alone, while the two-photon NDFWM �B�� ,�2
a ,	2�

shows atom and light responses together, where ��A�
=2��i�1��0+�1� /k3u�0�1���10

a +	1�2+ ��1
a�2 and �A

FIG. 6. The heterodyne detection spectra versus �2
a /�10

a of the
ASPB �for the extremely-Doppler broadened three-state atoms �
�0� with �a� �= ��A���+�k ·r−2n�� / ��1+�2�, �10

a �=0.000 058 9
for the real part and �b� �= ��A���+�k ·r−2n�−� /2� / ��1+�2�,
�10

a �=0.000 039 3 for the imaginary part. The parameters are
�0 /�10

a =�1 /�10
a =0.5, �20

a /�10
a =1, ��2+�1� /�10

a =37 104.535, �2

=2, �1
a /�10

a =−0.001. 	1 /�10
a =	2 /�20

a =0 �cw case� �dash-dotted
curve�, 1 �dotted curve�, 2 �dashed curve�, and 5 �solid curve�.
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=tan−1���10
a +	1� /�1

a�. The nonlinear dispersion slope de-
creases and absorption dip gets deeper, and their RDOs show
strong competition versus the bandwidth increase of the
color-locked noisy fields in Fig. 7. The strong RDO can wash
out the slope reduction effect, or change its variation direc-
tion �Fig. 7�a�� and suppress the nonlinear absorption �Fig.
7�b��. The color-locked noisy effects of incoherent fields can

lead to controllable change for third-order nonlinear response
and obvious hybrid radiation-matter terahertz oscillation.
Figure 8 shows the phase dispersion of the two-photon ND-
FWM including the influence of the color-locked noisy field.

Similar to Eqs. �26�–�29�, we can obtain

I��,�i
a,	i� � �1��A�2e2	1� + �2��B�2e2	2� + 2�12��A�

���B�e�	1+	2�� cos��A − �B + �R� , �44�

I��,�i
a,	i� � �1��A�2e2	1� + 2�12��A���B�e�	1+	2��

�cos��A − �B + �R� , �45�

I��2
a� � �1��A�2e2	1� + 2�12��A�e�	1+	2����B��2

a��cos��B��2
a�� ,

�46�

I��2
a� � �1��A�2e2	1� + 2�12��A�e�	1+	2����B��2

a��sin��B��2
a�� .

�47�

Because of the local oscillator intensity in Eqs. �46� and �47�,
the dispersion and absorption profiles �Fig. 9� have been up-
shifted by an amount �PA�2 compared with Fig. 7. After sub-
tracting the local oscillator background from them, they be-
come in good agreement with Fig. 7.

The one-photon DFWM �P1+ P3�2 exhibits hybrid
radiation-matter terahertz detuning damping oscillations at
��0, while the two-photon NDFWM �P5�2 shows RDO at
��0 �Table I�. The modified two-photon third-order absorp-
tion and dispersion can be controlled coherently by noisy-
light color-locking bandwidth, frequency detuning, and time
delay. In the narrowband and tail approximation �	1��10

a ,
	2��20

a , and �10
a ����1�, it is then straightforward to obtain

�A��1
a� = ��A�ei�A =

2���1

k3u

�0 + �1

�0�1

1

�10
a + i�1

a

from Eqs. �33� and �42�,

FIG. 7. NDFWM �B�� ,�i
a ,	2� response and its Fourier trans-

form in the extremely Doppler-broadened three-state atoms for �
�0. Nonlinear dispersion �a� and absorption �b� versus �2

a /�10
a .

�20
a /�10

a =1, �2=2, �10
a �=−0.000 594, 	2 /�10=1000 �dotted curve�,

3000 �dashed curve�, and 4000 �solid curve�. �c� FFT of dispersion
and absorption curves, �10

a �=−0.000 594.

FIG. 8. Phase dispersion of two-photon NDFWM,
�B��2

a ,	2 ,����2
a. The parameters are �20

a /�10
a =1, �2=2, �10

a �
=−0.000 019 6. 	2 /�10

a =15 �dashed curve� and 5 �solid curve�.
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�B��2
a� = ��B�ei�B =

2���2

k3u

��2 − 1�2

��20
a + i�2

a�2

from Eqs. �34� and �43�, where �A=tan−1��10
a /�1

a� and �B

=tan−1����20
a �2+ ��2

a�2� /2�20
a �2

a	. The real part and imaginary

parts of �A��1
a� or �B��2

a� are independent of 	i and �, and
correspond to the nonmodified quasi cross-Kerr nonlinear
index and two-photon absorption coefficient. Due to the tran-
scendental functions, the precise value of � is generally de-
termined by the gradual approach method from �A���
+�R���=2n� or �2n+1/2��. If n=0, we can readily obtain
�=tan−1���10

a /�1
a� / ��1+�2�� for Re �B��2

a� in Eqs. �37� and
�46�, �=tan−1����10

a /�1
a�−� /2� / ��1+�2�	 for Im �B��2

a� in
Eqs. �38� and �47�.

Equations �35� and �44� contain rich dynamics of the
color-locked noisy-field correlation effects �7,10,11�, and the
competition between attosecond ultrafast modulation and hy-
brid terahertz RDO. Close inspection of Eqs. �35� and �44�
reveals four interesting observations �Fig. 5�: �a� When
	1 /�10

a of the local oscillator and 	2 /�10
a of the two-photon

NDFWM increase, the RDO contrast of DFWM and ND-
FWM will dramatically improve for �10

a ��0 and �10
a ��0,

respectively; �b� if �2
a /�10

a increases, the attosecond beat
modulation contrast will dramatically improve; �c� when
�1

a /�10
a and �2

a /�10
a increase, the RDO oscillation periods of

DFWM and NDFWM will decrease for �10
a ��0 and �10

a �
�0, respectively; �d� the frequencies of RDO and ASPB can
be read as �Fig. 5�c�� �1

a /�10
a , �2

a /�10
a , ��2+�1� /�10

a , ��2

+�1+�1
a� /�10

a , and ��2+�1+�2
a� /�10

a , which is the combina-
tion of �10

a ��0 and �10
a ��0 results �Table II�. The detailed

results of frequency analysis of RDO and ASPB are listed in
Tables I and II.

VI. DISCUSSION AND CONCLUSION

As a time-domain technique, the main advantage of the
ASPB technique over the conventional quantum beat tech-
nique is that the temporal resolution is not limited by the
laser pulse width. With a laser pulse of nanosecond time
scale duration, femto- or attosecond time scale modulations
were observed �10�. We reported studies of attosecond polar-
ization beats induced by the third-order susceptibility ��3�.
This effect was exploited to consider the phase of ��3� mea-
surements in lifetime-broadened and extremely Doppler-
broadened three-level atoms. The method presented here is
simple to employ and can be applied to a large variety of
materials in which backward FWM �phase conjugation� can
be observed �9�.

Specifically, let us consider the Na atom as a possible
FWM system. We take, for instance, �0�= �3S1/2�, �1�

TABLE II. Ultrafast oscillation frequencies �period on the attosecond scale� and terahertz-scale RDO
frequencies of the ASPB signal intensity for three-state atoms in the lifetime-broadened and Doppler broad-
ened limits.

ASPB between DFWM and NDFWM

Delay ��0 ��0 Combination of ��0 and ��0

Lifetime
broadening

�1, �1+�2,
�1+�2

�1, �2+�3, �1+�2, �1+�2,
�1+�2+�3, �1+�2+�3

�1, �2+�3, �1+�2, �1+�2,
�1+�2+�3, �1+�2+�3

Large
Doppler limit

�1
a, �1+�2,

�1+�2+�1�3

�2
a, �1+�2, �1+�2+�2�3 �1

a, �2
a, �1+�2, �1+�2+�1�3,

�1+�2+�2�3

FIG. 9. The heterodyne detection spectra versus �2
a /�10

a of the
ASPB �for the extremely-Doppler broadened three-state atom �
�0� with �a� �= ��A���+�k ·r−2n�� / ��1+�2�, �10

a �=−0.000 594
for the real part and �b� �= ��A���+�k ·r−2n�−� /2� / ��1+�2�,
�10

a �=−0.000 039 3 for the imaginary part. The parameters are
�0 /�10

a =�1 /�10
a =0.5, �20

a /�10
a =1, ��2+�1� /�10

a =37 104.535, �2

=2, �1
a /�10

a =−0.001, 	1 /�10
a =1000. 	2 /�10

a =1000 �dotted curve�,
3000 �dashed curve�, and 4000 �solid curve�. The dotted curve has
been scaled by a factor 0.03.
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= �3P3/2�, and �2�= �4D3/2,5/2�. The respective transitions are
�0�→ �1� at 588.996 nm ��1

−1�16.9 ns, �10
−1�5.7 ps�, and

�1�→ �2� at 568.822 nm, all accessible with non-transform-
limited pulsed dye lasers operated in multiple longitudinal
modes �typical color-locked chaotic fields�. The ASPB signal
in the present three-level atomic system not only exhibits
965 as ultrafast modulation �7,10,14�, but also shows hybrid
radiation-matter detuning damping oscillation at the terahertz
scale �Tables I and II�. The maximum of the two-photon
NDFWM is shifted from zero time delay, and the signal also
exhibits damping oscillations when the laser frequency is off
resonant from the two-photon transition. This method can be
useful for directly measuring ��3�.

Two-color FWM of the attosecond polarization beat has
been employed for studying the phase dispersion of ��3�. This
is a good way to measure the third-order susceptibility di-
rectly, especially its real and imaginary parts separately. Al-
though our method is somewhat similar to the femtosecond
polarization beats done in a solid by Ma et al. �6�, we have
shown that for two-photon resonance in a three-level atomic
system one can obtain the phase dispersion of ��3� by simply
measuring the phase change of the NDFWM signal modula-
tion as the �2 detuning is varied. Moreover, the technique of

using attosecond polarization beats to measure the third-
order susceptibility has advantages over other �such as
Z-scan� methods for atomic systems, because it can work
with long atomic cells �2�. Generally speaking, our method
can also be applied to study the phase dispersion of ��3� of
the femtosecond polarization beats in gas-phase media.

In summary, we demonstrated a phase-sensitive technique
to study the NDFWM in a three-level ladder-type atomic
system. The reference signal is another DFWM signal, which
propagates along the same optical path as the NDFWM sig-
nal. This point is very important since the reference signal
always travels in basically the same direction, so it is much
easier for mode matching and reducing the background �all
other fields, linear processes, scattering, etc.�. This method
was used to investigate the phase dispersion of the third-
order susceptibility and optical heterodyne detection of the
two-photon NDFWM signal under various limits and
conditions.
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