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Stability analysis for n-component Bose-Einstein condensate
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We derive the dynamic and thermodynamic stability conditions for dilute multicomponent Bose-Einstein
condensates (BECs). These stability conditions, generalized for n-component BECs, are found to be equivalent
and are shown to be consistent with the phase diagrams of two- and three-component condensates that are

derived from energetic arguments.
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I. INTRODUCTION

Interpenetrating superfluids have intrigued physicists for
decades. The possibility of a superfluid mixture of two dif-
ferent isotopes of helium motivated many early theoretical
studies, including a hydrodynamic approach [1] and an ap-
proach using the Bogoliubov analysis [2]. (See also [3] for a
generalization of the Bogoliubov approach to mixtures in a
different context.) However, these mixtures have never been
experimentally realized in superfluid helium.

Recent advances in creating and manipulating Bose-
Einstein condensates in ultracold alkali-metal gases have
made it possible to probe the properties of interpenetrating
superfluids by studying, for instance, two internal states of a
single atom [4], different atomic species [5,6], different iso-
topes of a single atom, or a combination thereof. One such
advancement is the achievement of a condensate of ytter-
bium [7] which, with its five naturally occurring bosonic
isotopes, opens the door for the creation of interpenetrating
condensates with up to five components. Another is the de-
velopment of optical Feshbach resonance techniques [8]. Un-
like magnetic Feshbach resonance techniques, where typi-
cally only one scattering length can be tuned at a time, these
new optical methods would, in principle, allow one to tune
both the interspecies and intraspecies scattering lengths to
probe a much more significant portion of parameter space
[9].

In this paper, we investigate the fundamental stability and
phase diagrams of such multicomponent dilute condensates,
excluding effects such as external potentials and metastabil-
ity. We begin by deriving a simple relation to determine the
thermodynamic and the dynamic stability conditions of an
n-component miscible mixture, and we show that the stabil-
ity conditions, at least within our approximations, are
equivalent. Then, through an energetic approach, we discuss
these phase diagrams of two-component mixtures and those
of three-component mixtures and demonstrate that these are
consistent with the stability conditions.

II. STABILITY CONDITIONS

Let us consider a general miscible n-component conden-
sate mixture in a box of volume V with periodic boundary
conditions [10] in the thermodynamic limit described by the
following Hamiltonian:
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where, for simplicity, we assume that all species of atoms
have the same mass m. We also assume that the number of
particles of each species is fixed and cannot be converted
into a different species. The atomic interactions are charac-
terized by the interparticle contact pseudopotential where the
coupling constants g,-j=471'h2a,-j/m can be given in terms of
the two-body s-wave scattering length a;j-

Let us expand the bosonic field operators in terms of
plane waves, zAﬂi(r)=Ekd{;e"k‘r/ \«"\7, where df( annihilates a
particle of species i in state k and obeys the usual bosonic
commutation relations. Let us assume that each species is
condensed such that a macroscopic number of atoms are in
state k=0. Following the standard Bogoliubov approxima-
tion [11], we assume @}, and &f; to be commuting c-numbers
equal to \s"Nf), where N is the number of particles in the
condensate of species i. Assuming that Ni—N6<<Ni, where
N'=Ni+3, ol aj is the total number of particles in species
i (alternatively one could introduce a chemical potential in
the grand canonical ensemble with N’ given by minimizing
the thermodynamic potential), we can approximate the
Hamiltonian to leading order as

n
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where p,-:Nf)/ V. Note that the kinetic energy plays a negli-

gible role because we consider only atoms in the k=0 state.

The energy density of an n-component miscible mixture in

the mean-field approximation can therefore be written as

mi 1
& = EPingij- (3)

In this homogeneous system, thermodynamic stability im-
plies that the Hessian matrix defined by z?pic?pjé’;m is positive
semidefinite [12], i.e., all eigenvalues of the matrix are non-
negative, which is still possible in certain parameter regimes
even if the interspecies scattering lengths are negative. Be-
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cause  d,d, Em‘— gij» thermodynamic stability of this
n- component miscible mixture implies that the matrix g;
must be positive semidefinite.

Now let us consider the dynamic stability of the system.
Specifically, we investigate the conditions under which a
small density perturbation increases exponentially in time or,
equivalently, the excitation spectrum becomes imaginary. We
derive the excitation dispersion relation by expanding the
Hamiltonian of the system to the next order in the Bogoliu-
bov approximation described above to arrive at

I:I = I:IO + I:Iimra + Hinter (4)

where the intraspecies contribution to the Bogoliubov Hamil-
tonian is given by

1ntra 2 2 [Z(Ik + plgu)(di:dk) + ngn(aAijaAljk + di(a” k)]
i=1 k#O
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and #=(%k)?/2m. The interspecies contribution is given by
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In this approximation, the Hamiltonian is quadratic and, as
such, can be diagonalized by canonical transformation.
Therefore, one can transform this Hamiltonian describing
weakly interacting particles into a Hamiltonian describing
noninteracting quasiparticles with » independent modes of
oscillation. The excitation energies A, (k) can be derived by
assuming a harmonic time dependence e~“»®’ of the particle
operators. Writing the Heisenberg equations of motion for
the particle annihilation and creation operators, we obtain

n i
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The excitation energies are thus given by the eigenvalues of
the 2n X 2n matrix given by the above equations and are
given by

[f @, (k)] = £(r0 + 2\,) )

where fiw, (k) is the excitation energy and A, are the eigen-
values of the matrix A;;=p;g;. If any of these eigenvalues
are negative then the excitation energy becomes imaginary
and the system becomes dynamically unstable in the sense
that infinitesimal perturbations will grow exponentially with
time. The dynamic instability starts at low momenta, and
thus the condition for the system to remain dynamically
stable is that the matrix A;; be positive semidefinite. Since p;
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are positive and positive semidefiniteness implies that all up-
per left submatrices are positive, the condition of A;; being
positive semidefinite is equivalent to the condition of g;j be-
ing positive semidefinite.

The fact that the dynamic stability condition, which indi-
cates whether a state is metastable or not, and the thermody-
namic stability condition are the same implies that the energy
density function’s local and global extrema are the same. The
energy surface is therefore downward convex for stable sys-
tems and upward convex for unstable systems [13]. The sta-
bility condition of this system, namely that g;; must be posi-
tive semidefinite, has another important consequence. If the
condition is met then the determinant of all upper left sub-
matrices are positive implying that, for an n-component mis-
cible system to be stable, all subsets of the species compris-
ing the system must also independently satisfy the relevant
stability conditions. A restrictive hierarchy of stability condi-
tions is thus defined.

II1. PHASE DIAGRAMS

To illustrate these stability conditions, we will now dis-
cuss the ultimate fate of these mixtures when they are un-
stable; we consider one-, two-, and three-component systems
in that order. We shall rely on purely energetic arguments in
the mean-field approximation. We shall make the assumption
that the system has been allowed a sufficiently long time to
relax to its lowest energy state and ignore metastable states
such as molecules. We ignore all effects from the thickness
of the interface between regions and surface tension [17] as
we assume that the kinetic energy plays a negligible role. We
also assume that the coupling constants remain unchanged in
the presence of other atoms whose effects we briefly discuss
below.

For the one-component case, the stability conditions yield
the well-known result that g,;>0 must be positive in order
for the condensate to be stable. If g;; <0 then one can for-
mally prove that the system will collapse in density space in
a finite time if H(r=0)<0 (where H is the full classical
Hamiltonian) and in the thermodynamics limit [14]. In real-
istic systems, however, other effects such as three-body re-
combination will become important [15].

For a system of two components, in this simplified mean-
field approximation we can safely make the assumption that
only two stable states exist: the miscible case given by

mi_ 811P1 822P2

257, 2 +812P1P2, (10)

and the completely immiscible case given by

im _ guPl gzsz

= + 11
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This last equation can be easily derived if we assume that the
total energy of the immiscible case is given by

_ gnN% + gzzNg

Em
2V, 2V

(12)

where V, and Vj are the volumes of regions where species 1
and species 2 exist, respectively. We can simplify E3" by
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noting that the total volume is fixed, i.e., V4+Vp=V, and, by
either assuming that the system is mechanically stable [16],
i.e., dE5"/dV,=JEy"1 IV, or, equivalently, minimizing the
energy with respect to V, under the constraint of V,+Vp
=V [17], we arrive at Eq. (11).

It is clear that when g%2> g1182 and g, is positive the
system will energetically prefer to be in the immiscible
phase. This condition is consistent with both stability condi-
tions of the miscible phase derived above which indicate that
if g%2>g”g22 then the miscible system is unstable. If g%z
>g1182 and g1, is negative then we would expect the system
to collapse in a finite time because it can be shown that if
H(r=0) <0 for a mixture, the system will exhibit finite-time
collapse [18].

We now turn to the rich phase diagram of systems with
three interacting species. For simplicity we will assume that
all species have an equal number of particles, i.e., Ny=N,
=Nj, leading to a uniform constant particle density p. We
also assume that the intraspecies coupling constants are nor-
malized by the interspecies coupling constants and are equal,
i.e., g11=82»=g33=1. Here, the possible stable states are the
miscible phase where energy density is given by

3+2(g12+ 83+ 813) (13)
> ;

ENp? =

the completely immiscible phase where each species is sepa-
rated from the other such that

» 9
Ep* = (14)
; 2
a phase in which species i is separated from a region where

species j and k are miscible, with an energy density given by

3+2g+2\2\ 1+ gy
- 5 :

and a phase where species i and j are miscible, i and k are
miscible, but j and k are immiscible, with an energy density
per atom given by

_ 3+2g;+28u+ g8+ 8ik/8ij
5 .

513m(1,k)/p2 (16)
As in the earlier two-species example, we have assumed the
pressures in each separate region to be equal, that is, we have
assumed mechanical equilibrium. In the stable state, 5‘3m(”k),
we have also assumed the chemical potentials of species i in
the different regions to be the same. The phase diagram for
the three-component case is shown in Fig. 1 where we have
_ _ . . . - im(l,z)
assumed g;,=g»3=¢ for simplicity. In this case, &; and
8';“03) are stable only when g,3=g. The shaded region in the
figure will collapse in density space if H(r=0)<0 [18].
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FIG. 1. The phase diagram for a three-component system is
plotted against interspecies coupling constants g;,=g,3=g¢ and g3
under the assumptions of Ny=N,=N3 and g;;=g»=g33=1. Note
that the shaded region is expected to collapse in density space if
H(t=0)<0.

IV. DISCUSSION

Throughout this mean-field analysis, we have assumed
that coupling constants are determined entirely by two-body
physics and remain unchanged in the presence of conden-
sates. If many-body effects are taken into account, i.e., that
the coupling constants may be modified in the presence of a
foreign species, many exotic phases could occur, such as the
possibility of a three-component condensate having a stable
state with three distinct regions, each with different pairs of
miscible species. In addition, other interesting effects would
be possible, such as the presence of a third species making
two otherwise immiscible species miscible, or the destabili-
zation of a previously stable two species miscible mixture by
the introduction of a third species. Finally, effects not con-
sidered in this paper, such as metastable states [19] and a
nonuniform trapping potential [20], enrich the picture even
further and come into play in realistic experiments involving
trapped dilute condensates.
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