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Pairing in a three-component Fermi gas
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We consider pairing in a three-component gas of degenerate fermions. In particular, we solve the finite-
temperature mean-field theory of an interacting gas for a system where both interaction strengths and fermion
masses can be unequal. At zero temperature, we find the possibility of a quantum phase transition between
states associated with pairing between different pairs of fermions. On the other hand, finite-temperature be-
havior of the three-component system reveals some qualitative differences from the two-component gas: for a
range of parameters it is possible to have two different critical temperatures. The lower one corresponds to a
transition between different pairing channels, while the higher one corresponds to the usual superfluid-normal
transition. We discuss how these phase transitions could be observed in ultracold gases of fermionic atoms.
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I. INTRODUCTION

Recently, the possibility of fermion pairing in a two-
component system with unequal Fermi surfaces has attracted
a considerable amount of attention �1�. In an electronic sys-
tem, nonmatched Fermi surfaces could be due to the mag-
netic field interacting with electron spins and in color super-
conductivity, due to unequal quark masses. The newly
realized strongly interacting superfluid Fermi gases �2–10�
offer a promising playground for the study of pairing and
superfluidity, also with imbalanced Fermi energies.

In ultracold degenerate gases, different components are
typically atoms in different internal states of an atom, but
different isotopes or elements can also be considered. In ul-
tracold gases, the mismatch of the Fermi surfaces can be due
to having an unequal number of atoms in different states.
After the first experimental studies using a mixture of two
internal states of 6Li atoms �11,12�, the properties of such
systems, in a harmonic trapping potential, have been exten-
sively discussed in the recent literature �13–23�.

In principle, many different types of fermions can be
trapped in the same trap. In order to reach long lifetimes, the
atoms should have favorable collisional properties, but cur-
rent knowledge of these collisional properties is limited.
However, mixtures of either Bose condensed or fermionic
atoms in a variety of different internal states have been ex-
perimentally demonstrated �24–28�, and experimental effort
toward realizing three-component Fermi gases is in progress.
For this reason we explore the novel possibilities in a three-
component Fermi gas by generalizing the BCS �Bardeen-
Cooper-Schrieffer� theory into three components.

A related three-component Fermi system has been previ-
ously studied by Honerkamp and Hofstetter �29,30� and
more recently by Bedaque and D’Incao �31�. The first refer-
ence employs a Hubbard lattice Hamiltonian and is focused
on the rather special case in which all fermions have the
same mass and interact with different fermions �as well as
with fermions of the same type� with a single interaction
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strength. The setting used in the latter reference includes the
possibility of unequal interaction strengths between various
components. Bedaque and D’Incao draw general qualitative
conclusions on the symmetries of the possible zero-
temperature phases, but all fermion masses are assumed
equal.

In this paper, we discuss pairing in a three-component
system both at zero as well as nonzero temperatures. Further-
more, we allow for the possibility that the third fermion type
has a different mass from the other two, and since a priori
there is little reason to expect identical scattering properties
between different fermion components, we formulate our
theory assuming different interaction strengths between the
components. In ultracold gases, such a system could be real-
ized by trapping, for instance, 6Li and 40K using atoms in
two internal states for one of these and one internal state for
the other. In order to restrict the parameter space somewhat,
we make one simplifying assumption in our Hamiltonian.
Generally, one expects three different interactions in a three-
component system: one between the first and the second
component, one between the second and the third compo-
nent, and one between the third and the first component. In
this paper, we assume that the interaction between the third
and the first component is weaker than the other two inter-
actions and can be ignored next to the dominant contribu-
tions. This restriction is simply a matter of convenience as it
restricts parameter space to manageable proportions, but
does not affect the qualitative picture we find.

We find that, within the BCS theory, the possible pairing
always gives rise to just one order parameter of broken U�1�
symmetry. Whether the pairing takes place between the first
and the second component �1−2 channel� or between the
second and the third component �2−3 channel� depends on
the strengths of the interactions, atomic masses, as well as on
the differences between the chemical potentials of different
components. The unpaired component constitutes a normal
Fermi sea. At zero temperature there is a possibility of a
quantum phase transition from a phase with pairing in the
1−2 channel into a phase with pairing in the 2−3 channel as
chemical potential differences are varied appropriately. This

transition is of the first order. Furthermore, as the tempera-
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ture increases it is possible to have a second-order transition
from a paired phase in the 2−3 channel into a paired phase
in the 1−2 channel. At even higher temperature, there is
another transition from the paired state into the normal state.

This paper is organized as follows. In Sec. II, we discuss
the normal three-component Fermi gas and the possibility of
phase separation in such a system. In Sec. III, we present the
BCS-style mean-field theory and discuss the qualitative be-
havior of the associated grand potential at zero temperature.
Also, we present the energy landscape of the grand potential
for several different scenarios. In Sec. IV, we find the solu-
tions to the gap equations that correspond to the global mini-
mum of the grand potential for fermions where the third
component has a different mass from the other two compo-
nents. We end with some concluding remarks in Sec. V.

II. NORMAL THREE-COMPONENT FERMI GAS

We study a homogeneous three-component Fermi gas
whose components are either atoms in different internal
states or different elements. For now we assume that an in-
teraction between the first and the third component is suffi-
ciently small, so that it is justified to focus on only the inter-
actions between the first and the second component and the
second and the third component. The second quantized
Hamiltonian for this system is therefore

H =� dr� �
�=1,2,3

�̂�
†�r��−

�2�2

2m�

− ��	�̂��r�

+ g̃12� dr�̂1

†�r��̂2
†�r��̂2�r��̂1�r�

+ g̃ dr�̂†�r��̂†�r��̂ �r��̂ �r� , �1�
23� 3 2 2 3
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where �̂��r� and �̂�
†�r� are the usual field operators which

annihilate and create particles in state �. In addition, m� is
the atomic mass, g̃12 is the interaction strength between the
first and the second component, and g̃23 is the interaction
strength between the second and the third component. In
terms of the scattering lengths aij, these interaction strengths
are given by g̃ij =2��2aij /�, where �=mimj / �mi+mj� is the
reduced mass of the scattering atoms.

Let us first discuss a mixture of three normal fermion
components. If the mixture of normal three-component gas
phase-separates spatially, it is clear that there is no possibility
of a superfluid where all three components are mixed to-
gether and the problem is that of a two-component Fermi gas
surrounded by the normal third component. Since the tem-
peratures of interest are very low compared to the Fermi
energies of the various components, we can consider the
zero-temperature limit, in which the free-energy density f of
the mixture of normal Fermi gases is given by

f =
3�2

10
�6�2�2/3�n1

5/3

m1
+

n2
5/3

m2
+

n3
5/3

m3
	 + g̃12n1n2 + g̃23n2n3,

�2�

where ni are the component densities.
If both interaction strengths g̃12, g̃23, are positive, then all

three components separate. The reason for this is that then
the positive definite free energy Eq. �2� is minimized when
the interaction terms give vanishing contributions. If one of
the interactions is positive and the other is negative, the com-
ponents with attractive interaction mix and the third compo-
nent separates. Therefore, the case in which all three compo-

FIG. 1. �Color online� The free-energy land-
scape as a function of �12 and �23 when all three
components have the same mass. The dash-dotted
line in �a� and the filled circles in �b�–�d� show
the location of the global minimum. We used
equal coupling strengths g12=g23=−0.50, and
�a�–�c� were calculated at zero temperature while
�d� was calculated at kBT /�F=0.08, which is
above the critical temperature. The chemical po-
tentials were such that in �a� �1=�2=�3=1; in
�b� �1=1.01, �2=1, �3=0.99; in �c� �1=0.99,
�2=1, �3=1.01; and finally in �d� �1=�2=�3

=1.
nents can coexist spatially occurs only when both
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interactions are attractive. If one of the interactions is attrac-
tive, then formally Eq. �2� has a global minimum at infinite
density of the interacting components. This global minimum
is not physically relevant since there is an energetic barrier
separating this solution from the physically relevant regime
of densities. In fact, the height of this barrier increases as the
interactions become weaker. From now on we will focus on
the most interesting region where both interactions are fairly
large and negative.

III. GRAND POTENTIAL OF THE THREE-COMPONENT
FERMI GAS

The BCS theory involves approximating the Hamiltonian
by the mean-field Hamiltonian density �in k space�

HBCS =
1

V
�
k

�
�=1,2,3

��2k2

2m�

− ��	�̂�k
† �̂�k + �12�̂1,k

† �̂2,−k
†

+ �12
* �̂2,−k�̂1,k + �23�̂3,k

† �̂2,−k
†

+ �23
* �̂2,−k�̂3,k −

��12�2

g12
−

��23�2

g32
, �3�

where

���� =
g���

V
�
k

��̂�k�̂��−k

are the order parameters to be determined self-consistently.
As a short-hand notation, we define the vector �
= ��12,�23� characterizing the state of the system.

Since the mean-field Hamiltonian is of second order in the

operators, it can be easily diagonalized with a canonical
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transformation. In this way, we can calculate the grand po-
tential �or free energy�

	��12,�23� = − kBT log�Tr�exp�− 
HBCS��� , �4�

where kB is the Boltzmann constant and 
=1/kBT. In the
continuum limit, the grand potential is ultraviolet-divergent.
This divergence is caused by the unphysical short distance
behavior of the contact interaction and is removed, in the
usual way, by subtracting the divergent contribution from the
grand potential. We have done the diagonalization of the
mean-field Hamiltonian which can be done analytically, but
in the general case formulas are inconveniently long and not
very informative. In order to get an overview of the expected
system behavior, it is rather more instructive to focus on the
behavior of the free energy.

We choose our units by assuming that the first and the
second components are 6Li atoms and by using the ideal gas
of the second component as a benchmark. The unit of energy
is then �F=�2kF,2

2 /2m2, where kF,2= �6�2n2�1/3 is the Fermi
wave vector. Furthermore, we use the unit of length 1/kF,2.
Using these units, we define the dimensionless coupling
strengths as g12=2kF,2a12/� and g23= �m2+m3�kF,2a23/m2�.

A. Grand potential when all fermions
have the same mass

Figure 1 demonstrates the behavior of the free-energy
landscape as a function of the gaps �12 and �23 when all
fermion components have the same mass. It is clear that
when all chemical potentials are equal, the free-energy land-
scape is only a function of �12

2 +�23
2 and at zero temperature

displays a clear minimum corresponding to the solution of

FIG. 2. �Color online� The free-energy land-
scape as a function of �12 and �23 with the mass
ratio m1 /m3=0.15 and �1=�2=1.0. The filled
circle shows the location of the global minimum.
The coupling strengths were g12=g23=−0.5, and
�a�–�c� were calculated at zero temperature while
�d� was calculated at kBT /�F=0.07. In �a� �3

=0.07, in �b� �3=0.15, in �c� �3=0.25, and in �d�
�3=0.15. �In �d� we used a logarithmic scale to
calculate the contour plot in order to enhance the
relevant features.� The results show two types of
transitions: a zero-temperature quantum phase
transition between the two pairing channels �from
�a� to �b� and from �b� to �c�� and a finite-
temperature second-order transition between the
pairing channels �from �b� to �d��.
the BCS gap equation. With the parameters used in the fig-
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ure, the minimum is located at ��12
2 +�23

2 �0.135; see the
quarter sphere in Fig. 1�a�.

Any difference in the chemical potentials �or coupling
strengths� breaks the above symmetry and makes it energeti-
cally favorable to have one of the phases �= ��12,0� or �
= �0,�23�. When interactions are the same, which of these
alternatives is chosen depends on the average chemical po-
tential between the paired components. The channel corre-
sponding to the higher average chemical potential has a
lower free energy and is therefore physically realized. At
zero temperature, the densities of the paired components are
equal, as is to be expected from the BCS state. At higher
temperatures, the normal state �= �0,0� eventually becomes
the free-energy minimum. Figure 1 also demonstrates that
generally the grand potential has several possible stationary
points.

B. Grand potential when the fermion masses differ

The different components could in principle have also dif-
ferent masses. For concreteness we assume that the first and
the second component are different internal states of 6Li at-
oms while the third component is a 40K. This corresponds,
therefore, to the mass ratio mr=m1 /m3=0.15. In Fig. 2, we
show some typical free-energy landscapes in this case, when
the chemical potential of the third component is varied. It is
clear that the grand potential again has many different sta-
tionary points.

For small values of �3, the pairing is only possible in the
1−2 channel. However, the Fermi surfaces are matched
when �3=mr and this is reflected as a possibility of pairing
in the 2−3 channel around this value. The reason why pair-
ing in this channel is favored for matched Fermi surfaces
even when coupling strengths are equal is due to the higher
density of states for atoms of higher mass. This higher den-
sity of states translates into reduction in energy. Naturally, if
g23 is reduced sufficiently we enter a parameter region where
pairing in the 2−3 channel will never take place. For the
parameters used in the figure, this happens when �g23 �
�0.33.

Again we find that at zero temperature the densities of the
paired components are always equal. It is also interesting to
observe that by increasing the temperature, one can induce a
transition from the �= �0,�23� phase into the �= ��12,0�
phase before entering a normal state.

In summary, two transitions are visible: a zero-
temperature quantum phase transition between the two pair-
ing channels �transition from Fig. 2�a� to Fig. 2�b�, and from
Fig. 2�b� to Fig. 2�c��, and a finite temperature second-order
transition between the pairing channels �transition from Fig.
2�b� to Fig. 2�d��.

IV. SOLUTIONS OF THE GAP EQUATIONS
OF THE THREE-COMPONENT FERMI GAS

For a given set of chemical potentials, the self-consistent
BCS solution is found at the minimum of the grand potential.
At the extremum value of the grand potential, the gap equa-

tions

053606
FIG. 3. The gap parameters as a function of temperature T and
of the third-component chemical potential �3. We used the mass
ratio m1 /m3=0.15, �1=�2=1, and the coupling strengths were
g12=g23=−0.5. Panel �c� shows �=��12

2 +�23
2 and demonstrates

clearly the sharp change in the order parameter at zero temperature
�the quantum phase transition� as well as the smoother transition
from the � superfluid to � superfluid at a finite temperature.
23 12
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�	��12,�23�
��12

= 0 �5�

and

�	��12,�23�
��23

= 0 �6�

are satisfied. These equations are satisfied at all extremal
points of the grand potential, including local minima, local
maxima, and saddle points. As we found out in the earlier
section, the grand potential can have several extremal points
so care must be taken in ensuring that numerics converges to
the physically relevant global minimum of the grand poten-
tial rather than to a local stationary point.

We have found the global minima of the free energy by
solving the gap equations under many different circum-
stances. Figure 3 shows typical results for the gaps as a func-
tion of temperature and �3. At zero temperature there exists
a first-order quantum phase transition, as the chemical poten-
tial is varied, from the �= ��12,0� phase into the �
= �0,�23� phase. We also find that with increasing tempera-
ture there can be a second-order transition from the �
= �0,�23� phase into the �= ��12,0� phase, which then
makes a transition into the normal state at a higher tempera-
ture. However, whether this sequence of transitions takes
place or not does depend on the strength of the interactions.
For weaker interactions it is possible that the �= �0,�23�
phase is not completely surrounded by the �= ��12,0� phase
as it is in Fig. 3.

This overall behavior can be understood in the following
way: The pairing between atoms of different masses happens
around the point where their Fermi momenta are nearly equal
�following from the condition �3 /�1�m1 /m3�. This pairing
is favored over the pairing with the same mass components
due to the higher density of states for the more massive com-
ponent. At finite temperature, the Fermi surfaces of both
pairing components will be smeared out due to temperature;
however, for components with different masses, this smooth-
ing of the Fermi edge will happen differently �the higher
mass component Fermi edge spreads more�. Therefore, with
increasing temperature, it becomes increasingly difficult to
find a pairing partner with the same magnitude �but opposite
sign� momentum, and also the advantage given by the higher
density of states of the more massive component becomes
less significant. This makes the pairing between the same
mass components potentially more favorable at high tem-
peratures.

V. SUMMARY AND CONCLUSIONS

In this paper we have considered the mean-field theory of
an interacting three-component Fermi gas. We found that in
the highly symmetric case when all fermion masses as well
as interactions strengths are equal, the free energy is only a
function of �12

2 +�23
2 . However, any deviation from the most

symmetric situation, whether it is due to different atomic
053606
masses, different interaction strengths, or different chemical
potentials, breaks the above symmetry of the free energy and
makes one of the paired states ��12�0,�23=0�, ��12

=0 ,�23�0�, or the normal state ��12=0 ,�23=0� energeti-
cally favored. Magnitudes of nonzero gaps as well as the
point where the transition to the normal state occurs depend
on parameters, but we have solved the global minima of the
free energy for a fairly representative range of parameters.

When using a grand canonical ensemble, the average den-
sities are quantities derived from the grand potential through
ni=−�	 /��i. In this work, we have explored the system be-
havior as a function of the chemical potentials by minimizing
the grand potential. It is therefore useful to elaborate on what
kind of density ratios different sets of chemical potentials
actually correspond to. For the case investigated in the ear-
lier section with a mass ratio m1 /m3=0.15 at zero tempera-
ture, we find at �3=0.05 pairing in the 1−2 channel and
density ratios of n3 /n1=n3 /n2�0.26. As the third-
component chemical potential is increased to �3=0.15, we
find pairing in the 2−3 channel with density ratios n2 /n1
=n3 /n1�0.72. Finally, when �3=0.25, the pairing is re-
verted back to the 1−2 channel and the mass ratios are
n3 /n1=n3 /n2�2.9. Therefore, this transition could be real-
ized simply by varying the density of one component and
keeping the other two fixed. Note that transitions could also
be induced by changing the interaction strengths, i.e., the
scattering lengths, between the three components as dis-
cussed in �31�. However, at present the method used for tun-
ing the scattering lengths, i.e., the use of Feshbach reso-
nances, does not allow us to tune the different scattering
lengths independently, whereas the densities can be varied
completely independent of each other. The change in the
order gap related to the transitions could be observed using rf
spectroscopy of the pairing gap �8,32,33� and corresponding
condensate fraction by the pair projection method �4,5�, and
superfluidity could be directly demonstrated by the creation
of vortices �10�—all these can be studied selectively for any
choice for the pairing between the three components.

In this paper, we have limited ourselves for convenience
to the special case in which interaction between the first and
the third component is small enough to be neglected. This
requirement can be relaxed easily and one could solve the
most general case with unequal masses as well as with un-
equal interactions. We have checked that the presence of the
omitted interaction between the first and the third component
does not change the qualitative picture presented in this pa-
per. For some parameter values, the new gap function �13
can become nonzero, but otherwise the qualitative physics
remains similar to the cases discussed in this paper.
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