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We present a theory of dark soliton dynamics in trapped quasi-one-dimensional Bose-Einstein condensates,
which is based on the local-density approximation. The approach is applicable for arbitrary polynomial non-
linearities of the mean-field equation governing the system as well as to arbitrary polynomial traps. In particu-
lar, we derive a general formula for the frequency of the soliton oscillations in confining potentials. A special
attention is dedicated to the study of the soliton dynamics in adiabatically varying traps. It is shown that the
dependence of the amplitude of oscillations vs the trap frequency �strength� is given by the scaling law X0

��−� where the exponent � depends on the type of the two-body interactions, on the exponent of the poly-
nomial confining potential, on the density of the condensate, and on the initial soliton velocity. Analytical
results obtained within the framework of the local-density approximation are compared with the direct numeri-
cal simulations of the dynamics, showing a remarkable match. Various limiting cases are addressed. In par-
ticular for the slow solitons we computed a general formula for the effective mass and for the frequency of
oscillations.
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I. INTRODUCTION

One of the main properties of solitons, making them to be
of special interest for physical applications, is preserving
their localized shapes during evolution and mutual interac-
tions �1�. Due to this robustness solitons can be regarded as
quasiparticles and systems possessing large number of such
excitations can be described in terms of the distribution func-
tion governed by the kinetic equation �2�.

In the mean-field theory �3� description of the quasi-one-
dimension homogeneous Bose gas is reduced to the exactly
integrable nonlinear Shrödinger �NLS� �or one-dimensional
�1D� Gross-Pitaevskii �GP�� equation, and therefore solitons
are expected to play a prominent role in the dynamical and
statistical properties of low-dimensional condensates. When
interatomic interactions are repulsive, the GP equation pos-
sesses dark �or grey� soliton solutions �3–5�. Existence of the
dark solitons was confirmed by a number of recent experi-
ments with Bose-Einstein condensates �BEC’s� confined by
elongated traps �6�.

In practice, condensates appear to be never homogeneous,
and therefore effect of external potentials on the dark-soliton
dynamics is a subject of special interest �see, e.g., Refs.
�7–11�, and references therein�. An inhomogeneity of a sys-
tem by itself does not invalid possibilities of description of
solitons as quasiparticles �in some approximation, of course�.
In particular, one can explore the Hamiltonian approach to an
effective particle with one degree of freedom, instead of

dealing with the original equation for the macroscopic wave
function, which is a system with infinite degrees of freedom.
Moreover, one can extend the respective description on the
gas of solitons, which now will be described by a distribution
function governed either by the Fokker-Planck equation �for
the case where a soliton bearing system interacts with a ther-
mal bath, see, e.g., Ref. �13�� or by a kinetic equation with
respective collision integral, as this is shown in Ref. �7� for
the case of interaction of solitons with a noncondensed at-
oms.

A quasiparticle description of dark solitons can be ob-
tained from the perturbation theory in adiabatic approxima-
tion �9� �sometimes called the collective variable approach�.
At the same time, as was shown in Ref. �10�, a concept of a
quasiparticle naturally emerges from the Landau theory of
superfluidity and can be justified on the basis of the mean-
field theory within the framework of the local-density ap-
proximation. It turns out that a dark soliton moves in an
external potential without deformation of its density profile
as a particle of mass 2 m. The local-density approximation is
rather general, allowing direct extension to other nonlinear
equations, related to the BEC dynamics, as well as to various
�nonparabolic� types of the trap potential. Building up such a
generalized theory is the main goal of the present paper.

In real experimental conditions the external trap potential
can depend not only on the coordinate, but also on time. That
is why the second aim of the present work is the description
of the effect of adiabatic time dependence of the external
parameters on the dark soliton motion.

The paper is organized as follows. We start with the dy-
namics of a dark soliton in an adiabatically changing para-
bolic trap �Sec. II�. In Sec. III, we develop our Hamiltonian
theory for solitons described by generalized polynomial NLS
equations and show how such an approach is related to the
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mean-field approximation. In Sec. IV we consider in detail
examples of dark soliton dynamics, which include the cases
of nonparabolic trap and models with higher nonlinearity.
The consideration is provided within the framework of the
local-density approximation and is verified by direct numeri-
cal simulations of the dark soliton dynamics. In this section
we also show how one can modify the perturbation theory
for dark solitons to take into account adiabatic change of the
trap frequency �Sec. V B� and make comments on the dy-
namics of small amplitude dark solitons �Sec. V C�. The out-
comes are summarized in the Conclusion and technical de-
tails of some calculations are given in the Appendixes.

II. DARK SOLITON IN A TIME-DEPENDED PARABOLIC
TRAP

Let us start with the dynamics of a dark soliton described
by the GP equation

i � �t = −
�2

2m
�xx +

1

2
m�2x2� + g���2� − �� . �1�

Here g=2�2as / �ma�
2 �, as is the s-wave scattering length and

a� is the transverse linear oscillator length, which describes
the BEC in an elongated trap at low densities �3� �see also
Ref. �9� for the details of derivation by means of the multiple
scale expansion method�.

It has been shown in Ref. �10� �see also the details below
Sec. III� that the dark soliton dynamics in a parabolic trap
can be successfully described within the framework of the
local-density approximation. This means that, in spite of the
presence of the trap, one starts with the solution of the 1D
homogeneous �i.e., when �=0� GP equation �5� �see also
Ref. �3�, Chap. 5.5�:

��x,t� = �n0�i
v
c

+
�c2 − v2

c
tanh� x − X�t�

�
	
 , �2�

where X�t�=vt, v is the velocity of the soliton, n0 is the
unperturbed linear density, c=�gn0 /m is the speed of sound,
and �= � / �m�c2−v2� is the width of the soliton. Then the
influence of the trap is accounted by considering a general
function X�t� which dependence on time is to be obtained.

The energy of the system can be defined as

E =� � �2

2m
��x�2 +

g

2
����2 − n0�2	dx =

4

3
� cn0�1 −

v2

c2
3/2

�3�

and for the dark soliton solution �2� can be rewritten in a
form of the conservation law

c2�X� − v2 = �GE�2/3, �4�

where G=3g / �4�m�. The introduced dependence c=c�X� is
the key point of the local-density approximation: the sound
velocity is substituted by its local value computed in the
point where the center of the soliton is located. In the
Thomas-Fermi �TF� approximation, when the atomic density
is given by n�x�= 1

g
��− m�2x2

2
�, �21� one has

c2�X� =
g

m
n�X� = c0

2 −
1

2
�2X2 �5�

with c0=�� /m. Substituting v=dX /dt in Eq. �4�, the energy
conservation can be rewritten as follows �10�:

ms

2
�dX

dt

2

+
ms�s

2

2
X2 = E*. �6�

Here we introduced the effective mass of the soliton consid-
ered as a quasiparticle

ms = 2m , �7�

the frequency of the soliton oscillations �s=� /�2 �8–12�
and the effective soliton energy

E* =
msc*

2

2
, c*

2 = c0
2 − �GE�2/3 �8�

which, altogether with E, is a constant of motion. The am-
plitude of oscillations governed by Eq. �6� is

X0 = �2E*/ms�s
2. �9�

One of the characteristic features of the introduced quasi-
particles is that their dynamics is determined not only by
their local properties �velocity and amplitude� but also by the
environment, i.e., by the unperturbed density. As a result any
change of the trap characteristics �say, trap frequency or ge-
ometry� will affect solitons not only by changing the domain
of their motion but also through the change of the density. It
turns out that the local-density approximation is a suitable
framework for description of mentioned phenomena in the
case when time variation of the parameters of the system is
slow enough.

According to a general law of the Hamiltonian mechanics,
the adiabatic invariant

I�E� =
1

2�
� pdX �10�

stays constant �14�. Time dependence of the amplitude of
oscillation can be defined from this condition. The canonical
momentum, which enters in Eq. �10�, can be computed ex-
plicitly using the formula

p = �
0

v �E

�v
dv
v

�11�

which gives

p = − 2n � �v
c
�1 −

v2

c2 + arcsin�v
c

	 . �12�

It turns out, however, for calculation of the adiabatic invari-
ant it is more convenient to use the general equation between
I and the frequency of oscillations:

dI

dE
=

1

2�
� dX

v
= ��s�−1. �13�
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Taking into account that �s=� /�2 does not depend on E
and using an obvious boundary condition I=0 at v→0, we
easily find a simple equation,

I =
�2

�
�E −

4 � m

3g
c0

3
 . �14�

It is not difficult to show �see, for example, Eq. �17.10� in
Ref. �3��, that in the TF approximation one has

c0
2 = gn�0�/m � �2/3, i.e., c0

3 � � , �15�

so the second term on the right-hand side of Eq. �14� is
constant.

Thus preserving the adiabatic integral in an adiabatic pro-
cess implies preserving E /�, which in the case of slowly
varying frequency implies E��. Taking again into account
that according to Eq. �15� in the TF approximation c0��1/3,
one deduces from Eq. �8� that E*��2/3. Finally, the scaling
law for the amplitude of oscillations, defined by Eq. �9�,
reads

X0 � �−2/3. �16�

It is worth emphasizing that this law is different than one
for a conventional harmonic oscillator, where X0��−1/2,
even though the motion of the soliton is purely harmonic.
The point is that in our case the ratio E /�, but not E* /�, is
preserved.

An important feature of the soliton dynamics is that in the
case at hand the soliton frequency does not depend on the
energy. Hence the frequency of the soliton oscillations does
not depend on the amplitude of the soliton, which corrobo-
rates with the analysis of the oscillations of the small-
amplitude solitons �see Eq. �93� below and subsequent dis-
cussion� as well with the earlier studies �10,11�.

We have checked the obtained predictions, made on the
basis of the local-density approximation, numerically. The
typical results are presented in Fig. 1.

The local-density approximation essentially uses that the
background of the condensate is static, i.e., that the dark
soliton motion does not excite the motion of the whole con-
densate. In practice, due to finiteness of the system, such a

FIG. 1. Time dependence of the soliton coordinate on the adiabatically changing frequency, modeled by the function

��t�= �1+0.001t��0.1, in logarithmic coordinates: panels �a�–�c� and �e�–�g�. Straight solid lines visualize the law X0= X̃0�−�. Dashed lines
in panels �a� and �e� show the exponents �± �see Eq. �17�� while in the rest of the panels only the average � is shown. In panels �a�–�c� the

parameters are n0=1 and v=0.1, 0.5, and 0.8, correspondingly. The respective matching parameter is X̃0=0.385, 1.93, 2.6. In panels �e�–�g�
the parameters are v=0.1, n0=0.3;0.6, and 1, correspondingly. The respective matching parameter is X̃0=0.622, 0.445, 0.385. In panel �d�
we plot dependence of � on the initial soliton velocity v for the case n0=1. In panel �h� we depict the dependence of � on the initial density
n0 corresponding to the case of the initial velocity v=0.1. In the numerical calculations we take �=1, m=1, and g=1.
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supposition strictly speaking does not hold, and the whole
condensate also undergoes oscillations with the frequency of
the condensate �, which follows directly from the Ehrenfest
theorem. The difference of the frequencies of the condensate
and of the dark soliton, i.e., between � and �s, results in the
beating of the dark soliton �9�, which are clearly observable
in Fig. 1. Respectively, one can identify the two slopes cor-
responding to the maxima and to the minima of the soliton
amplitudes. We will use the subindexes “+” and “−” for the
respective quantities. In other words, each of the results pre-
sented in panels �a�–�c� and �e�–�g� is characterized by the

two scaling laws: X0,±= X̃±�−�± shown explicitly in Figs. 1�a�
and 1�e�. The exponents �± are different �although their dif-
ference is relatively small�, which requires a definition of
some averaged exponent � which could be compared with
the theoretical predictions. We obtain such exponent numeri-
cally from the dynamics of the averaged amplitude, i.e., us-
ing the formula

X̃0

�� =
1

2
� X̃+

��+
+

X̃−

��−

 . �17�

A summary of the results for the averaged exponent � are
presented in panels �d� and �h�. As one can see from the
figures the law of the change of the amplitude of soliton
oscillations stays close to the predicted law �=2/3 for rela-
tively slow solitons and relatively large densities. Meantime
deviations are clearly seen in Figs. 1�e� and 1�f�. In the last
case the exponent � is essentially less than that predicted in
our analytical consideration. It turns out, however, that the
mentioned deviation from 2/3 law is observed for small den-
sities. This is natural from the point of view of the theory.
Indeed, our consideration was based on the TF approxima-
tion for the atomic density, when n0��2/3. This approxima-
tion fails at low densities, and must be substituted by the
Gaussian distribution, where n0��1/2. Then by repeating the
above arguments for the Gaussian distribution, instead if the
TF one, one finds

X0 � �−1/2, �18�

i.e., the law of the dependence of the amplitude of oscillation
of the conventional linear oscillator on the frequency, which
corroborates with the numerical findings.

III. GENERAL APPROACH

A. Generalized equation

The theory developed in the previous section can be gen-
eralized for NLS equation with arbitrary power-law nonlin-
earity and nonparabolic potential. More specifically, in the
present section we consider the equation

i � �t = −
�2

2m
�xx + U�x�� + g���2	� − �� , �19�

where 	 is a positive integer and g
0, which describes in-
teracting particles of mass m in an external potential U�x�.
The exponent 	 characterizes the effective interparticle inter-
actions. In particular when 	=1 and g=2�2as / �ma�

2 � one

recovers the GP equation �1� considered in the previous sec-
tion.

The chemical potential � introduced in Eq. �19� is deter-
mined by the link valid for a homogeneous condensate:
�=gn	. Thus the sound speed c connected to the chemical
potential by the relation mc2=nd� /dn can be expressed as
follows:

c2 =
	g

m
n	. �20�

There are several reasons to consider more the general Eq.
�19�. First of all, Eq. �1�, being completely integrable, pos-
sesses very specific soliton properties. It is interesting to in-
vestigate the soliton dynamics in a more general situation.
The case of 	=2 is particularly important, because a corre-
sponding equation can be used in different physical prob-
lems. Such a situation can take place near the Feshbach reso-
nance. In this case the s-wave scattering length depends on
the magnetic field as as=ag+� / �B−B0� where ag is the
background value of the scattering length, and B0 and � are
the location and width of the resonance. If the magnetic field
is equal to Bc=B0−� /ag, the scattering length turns to zero
and the dominant interaction among atoms is due to three-
body effects.

Indeed, in the higher approximations of the Bogoliubov
theory expansion of the chemical potential of a uniform gas
with respect to density n has form

� = asn�b1 + b2�nas
3�1/2 + b3�nas

3�ln
1

nas
3
 + g2n2, �21�

where b1=4��2 /m and other coefficients b can be calculated
�see Ref. �3�, Chap. 4.2�. Coefficient g2 depends on
three-body interactions and cannot be calculated explicitly.
However, it stays finite for B=Bc, while three first terms
disappear, giving �=g2n2 �15�. Correspondingly, the nonlin-
ear term in the mean-field equation has the form g2 ���4�.
The sign of g2 cannot be defined from general consider-
ations. We assume that g2
0. After averaging with respect
to the transverse motion we obtain Eq. �19� with 	=2 and
g=g2 / �3�2a�

4 �.
Another physical system where the equation of the

state with 	=2 is valid is a 1D Bose gas in the so-called
Tonks-Girardeau �TG� limit of inpenetrable particles. This
limit can be achieved for a gas of small density. It has been
shown by Girardeau �16� that there exists an exact mapping
between states of this system and an ideal 1D Fermi gas. In
particular in this case one has �=gn2 with g=�2�2 / �2m�. It
has also been rigorously shown that one can find density
distribution of such a gas in a 1D trap by minimization of the
energy functional �17�,

E =� � �2

2m
���n�x�2 +

g

3
n3 + U�x�n
dx . �22�

On the basis of these considerations the authors of Ref.
�18� suggested to use Eq. �19� for dynamics of the TG gas.
However, the hydrodynamiclike equation �19� can not give a
satisfactory description of dynamics of an ideal Fermi gas.
Nevertheless, it can be useful for a Bose gas near the TG
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limit, where equation of state approximately follows the
	=2 law, but dynamic is still not an ideal gas type.

The case 	=2 is often referred to also as a quintic non-
linear Schrödinger �QNLS� equation. For the sake of brevity
in what follows we use this terminology. We mention that
other polynomial models are also considered in the literature
�19�.

B. Soliton in the generalized equation

Let us consider now a condensate in the absence of exter-
nal field, U�x�=0. Equation �19� takes the form

i � �t = −
�2

2m
�xx + g���2	� − �� �23�

and is subject to the finite density boundary conditions

lim
x→±�

��x,t� = �n0e±i, �24�

where the constant  can be considered without restriction of
generality in the interval �0,� /2�: � �0,� /2�. Then dark
solitons, �s�x , t�, will be associated with traveling-wave so-
lutions, characterized by the following dependence of the
density on the spatial coordinate and time:

��s�x,t��2  �2�x − vt� , �25�

where v is the soliton velocity. Below such solutions will
also be referred to as unperturbed.

The energy of the soliton solution can be defined as

E =� E�x�dx �26�

where the energy density E�x� is given by

E�x� =
�2

2m
��x�2 +

g

	 + 1
����2	+2 − n0

	+1� − gn0
	����2 − n0� .

�27�

The energy is an integral of motion. Hence taking into ac-
count that the dark soliton depends on the two parameters
�n0 ,v� and connecting the mean density with the speed of
sound by Eq. �20�, one concludes that the energy of the dark
soliton is a function of c and v:

E = E�c,v� . �28�

C. Local-density approximation

Consider now propagation of a dark soliton in a conden-
sate with the density, varying due to the external trap poten-
tial: n=n�x� with n�0�=n0 �for the sake of definiteness the
trap potential will be assumed having minimum at x=0:
U�0�=0�. In particular, in the TF approximation the function
n�x� is given by

n�x� = nTF�x�  g−1/	�� − U�x��1/	. �29�

This formula determines the dependence of the sound veloc-
ity on the spatial coordinate �cf. Eq. �5��:

c2�x� = c0
2 −

	

m
U�x� , �30�

where c0 is expressed through n0 by the link �20�.
Now we define the local-density approximation as an as-

sumption that the conservation law �28� is valid for a soliton
in the inhomogeneous condensate, i.e., that c can be changed
to its local value c�X�, where X is the position of the center
of the soliton, computed using the unperturbed soliton wave
function �s�x , t�. Respectively, X and v are considered as
functions of time related by the equation dX /dt=v�t�.

Thus in the local-density approximation the equation of
motion of the soliton is determined from Eq. �28�:

E„c�X�,v… − E = 0. �31�

Here E is the constant energy of the soliton.
Equation �31� can be viewed as an equation of motion of

a quasiparticle, which can be associated to the dark soliton.
Then E(c�X� ,v) must be associated with the Hamiltonian of
the quasiparticle after expressing the velocity v through the
canonical momentum p according to the formula �11�. After
inverting this formula, one obtains the Hamiltonian of the
quasiparticle:

H�p,X�  E„c�X�,v�p,X�… . �32�

Finally, the adiabatic invariant and the frequency are com-
puted according to formulas �10� and �13�, which are obvi-
ously valid in the general case.

D. Justification of the local-density approximation

In the present subsection we show that equation for the
energy of a soliton, obtained for a uniform condensate, is
actually valid also for a trapped condensate in the local-
density approximation. Thus the trapping potential does not
enter explicitly in the expression for the energy of a soliton.

To this end we define a real-valued wave function of the
background F�x� such that n0�x�=n0F2�x� is the density of
the condensate in the absence of the soliton and F�x� solves
the equation �9�

−
�2

2m
Fxx + gn0

	F2	+1 + �U�x� − ��F = 0, �33�

where n0=n0�0� subject to the normalization conditions
F�0�=1 and Fx�0�=0.

The density of the “grand canonical energy” of the inho-
mogeneous condensate can be written down as follows:

E��x� =
�2

2m
��x�2 +

g

1 + 	
n	+1�x� + �U�x� − ��n�x� . �34�

Here n�x�= ���2. Let the soliton center be at x=X, � be a
soliton width, and L0 be the spatial extension of the conden-
sate. Then we introduce � such that L0���� and separate
the integration on two domains,
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E� = �
�x−X�
�

E�dx + �
�x−X���

E�dx . �35�

Next, we add to the first term an integral ��x−X���E0�dx where
E0� is the energy density of the background and, correspond-
ingly, deduct it from the second term in E�.

For the case of a dark soliton solution, which is exponen-
tially localized around x=X, the first integral can be approxi-
mated �with the exponential accuracy� as follows

�
�x−X�
�

E�dx + �
�x−X���

E0�dx � �
−�

�

E0�dx = E0, �36�

where E0 is the energy of the unperturbed condensate.
In order to compute the other two integrals we represent

E��x� − E0��x� =
�2

2m
��x�2 +

g

1 + 	
�n	+1�x� − n0

	+1�x�� − gn0
	�x�

��n�x� − n0�x�� +
�2

2m

Fxx

F
n�x� −

�2n0

4m
�F2�xx.

�37�

As it is shown in Appendix A the last two terms can be
made as small as necessary by choosing the potential large
enough, while in the rest of the terms related to the back-
ground x can be securely substituted by X �due to their
smoothness in the region of the soliton motion�. This leads
us to the final expression for the energy of the soliton:

Es = �
�x−X���

�E� − E0��dx

� �
�x−X���

� �2

2m
��x�2 +

g

	 + 1
����2	+2 − n0

	+1�X��

− gn0
	�X�����2 − n0�X���dx . �38�

The obtained integral does not depend �in the leading or-
der� on the particular choice of the parameter �. Then com-
paring the expression �38� with Eqs. �26� and �27� one can
verify that they lead to the same expression for the soliton
energy, where the only substitution n0 by n0�X� must be
made.

IV. EXAMPLES OF LANDAU DYNAMICS OF DARK
SOLITONS

In the present section we consider two examples relevant
in different ways to the BEC dynamics in low dimensions.

A. Dark soliton of the GP equation in a polynomial trap

1. General approach

Let us now turn to the case where the “polynomial” trap

U�x� =
m

2
�2rx2r �39�

with r being a positive integer, r=1,2 , . . ., and � being a
function slowly depending on time: �=��t�. If r=1, then

U�x� is transformed in the conventional parabolic trap con-
sidered in Sec. II. Then � is the trap frequency. For this
reason and for the sake of brevity of notations in what fol-
lows � is referred to as a frequency independent on the value
of r.

The question we are interested in is the dependence of the
amplitude of the soliton oscillations on the frequency, subject
to the adiabatic change of the last one. The explicit form of
p, given by Eq. �12�, allows one to solve the problem ana-
lytically in a general case, i.e., for the arbitrary integer r.

Now the link between the velocity and the coordinate �4�
reads

v2 +
1

2
�2rX2r = c*

2 �40�

�c* was defined in Eq. �8�� and the expression for the ampli-
tude of the oscillations of the soliton, X0 is given by

X0 =
21/�2r�c*

1/r

�
. �41�

Next one can compute the following quantities:
�i� The normalization condition

N = �
−xTF

xTF

n�x�dx =
2r�2n0�1+1/�2r�

2r + 1
� g

m

1/�2r� 1

�
, �42�

where N is the total number of atoms and we introduced the
TF radius

xTF = �2gn0

m

1/�2r� 1

�
. �43�

�ii� The adiabatic invariant

I =
�m1−1/�2r�c*

2+1/r

g�
Gr, �44�

where the constant Gr is defined in Eq. �C2� and the details
of calculations are presented in Appendix C.

�iii� The frequency of the soliton �using Eq. �13��

�s = Rrc*
1−1/r� , �45�

where

Rr =
�

21/�2r���
−1

1 dx
�1 − x2r
−1

. �46�

The obtained relations as the well as the constancy of the
total number of particles N and of the adiabatic invariant I
subject to slow change of the frequency readily allow one to
get the scaling relations �they follow from Eqs. �42� and
�44�, respectively�:

n0 � �2r/�1+2r� and c* � �r/�1+2r�. �47�

Finally, taking into account the link �41� we arrive at the
general scaling relation determining the dependence of the
amplitude of the soliton oscillations on the frequency

X0 � �−�, � =
2r

1 + 2r
�48�
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2. GP dark soliton in an x4 trap

Let us consider in more details the dynamics of a soliton
in a nonparabolic trap with the potential energy

U�x� =
m

2
�4x4 �49�

�i.e., the case r=2�. Now R2=�21/4K�1/�2��0.847, K�·� be-
ing the complete elliptic integral of the first kind, and the
frequency of soliton oscillations depends on the energy of
the condensate �see Eqs. �40� and �45��. The exponent de-
fined by Eq. �48� is �=0.8.

The numerical study of the soliton dynamics in a quartic
trap are presented in Fig. 2. While the predicted exponential
law �−0.8 is now also obtained with reasonable accuracy,
there are several features which distinguish the present case
from the case shown in Fig. 1. First, one does not observe
beatings �while they are well pronounced in the case of a
parabolic trap�. This fact can be explained by the absence of
the unique frequency of the background oscillations: in the

case at hand the Ehrenfest theorem does not result in a
coupled equation for the averaged coordinate of the center of
mass of the condensate. Second the dependencies of the ex-
ponent � of the soliton velocity and on the density appear to
be decreasing functions, as it is shown in Figs. 2�d� and 2�h�.

B. Dark soliton in the QNLS limit

As the next example we consider the equation

i � �t = −
�2

2m
�xx +

1

2
m�2x2� + g���4� − �� . �50�

Now 	=2 and r=1. Although the general approach, similar
to the one developed in the preceding section, is also avail-
able in the case at hand, it becomes rather involved and
cumbersome. That is why here we consider the physically
relevant case of the parabolic potential which reveals the
main physical features of highly nonlinear models.

The dark soliton solution has the following form �18�:

�s�x,t� = �ns�x,t�eis�x,t�, �51�

FIG. 2. Dependence of the soliton coordinate on the frequency in the logarithmic scale. Adiabatic change of the frequency is modeled by

the law ��t�= �1+0.001t��0.1. The dashed lines visualize the law X0= X̃0�−�. In panels �a�–�c� the parameters are n0=1 and v=0.1, 0.3, and

0.6, respectively. The matching parameter is X̃0=0.49, 0.98, 1.52. In panels �e�–�g� the parameters are v=0.1, and n=0.4, 0.7, and 1,

respectively. The matching parameter is X̃0=0.38, 0.445, 0.49. In panel �d� we show the dependences of the exponent � vs soliton velocity
v at the density n0=1. In panel �h� we show the dependences of the exponent � vs density n0 at v=0.1. In the numerical calculations we used
�=1, m=1, and g=1.
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ns�x,t� = �gn0 −
12�gn0�c2 − v2�e�x−X�t��/�

c2�4 + e�x−X�t��/��2 − 12�c2 − v2�
, �52�

s�x,t� = − arctan� c2e�x−X�t��/� − 2c2 + 6v2

6v�c2 − v2 
 , �53�

where X�t�=vt+x0, x0 is a constant, and �= � / �2m�c2−v2�.
The TF distribution now acquires the form

nTF�x� =
1
�g
�� −

1

2
m�2x2 �54�

and the normalization conditions defines the chemical poten-
tial �=�2mg�N /�.

The energy is computed from Eqs. �26� and �27� to be

E = ��m

g

�3

4�2
�c2 − v2�ln

2c + �3u�c2 − v2

2c − �3u�c2 − v2
. �55�

Taking into account that due to Eq. �29� now

c2 = c0
2 − �2x2 �56�

and introducing the notation

E0 = � n0c0 �57�

we obtain

E = E0

�3

4
�1 −

�2x2

c0
2 −

v2

c0
2


� ln
2�c0

2 − �2x2 + �3�c0
2 − �2x2 − v2

2�c0
2 − �2x2 − �3�c0

2 − �2x2 − v2
. �58�

Respectively, the energy of the zero velocity dark soliton is
E0=E�v=0��1.14E0.

In Fig. 3�a� we present a typical trajectory of the QNLS
dark soliton in a constant trap. One of the main features
observed is that the dynamics is not strictly periodic, but
undergoes slow modulations �see Fig. 3�. The averaged fre-
quency of the dynamics shown is approximately 0.07 �this

corresponds to the relation �s�0.7�� while the frequency of
the large oscillations of the period is approximately five
times less. It is worth pointing out that the theoretical pre-
diction for the frequency of the large amplitude �slow� dark
solitons in the QNLS model gives �s�0.6572� �see Table I
below� while small amplitude solitons should oscillate with
the frequency close to �s�� �see the discussion in Sec.
V C�.

For the next step we studied the adiabatic dynamics of the
QNLS dark soliton in a slowly varying trap. The respective
results are shown in Fig. 4.

Like in the case of the NLS dark soliton in a parabolic
trap one can observe the beating of the solution. From the
left column �panels �a�–�c�� one detects increase of the fre-
quency with increase of the initial value of the velocity,
which is expected in view of the above discussion. The right
column �panels �d�–�f�� show that the frequency of soliton
oscillations decay when the background density increases.
This last fact is also explained in view of the above discus-
sion, by the fact that increase of the local density subject to
constant velocity v results in increase of the relativistic fac-
tor c2−v2, and thus in bigger difference between the speed of
sound and soliton velocity. In all the cases, however, one
observes well pronounced scaling law with the exponent
�=0.5 for a relatively large range of the parameters.

V. LIMITING CASES

A. Small-velocity solitons

1. General relations

As we have seen above, increase of the power of the
nonlinearity �i.e., of the exponent 	� makes the problem of
the computing the frequency and dependence of the fre-
quency on the amplitude of oscillations rather complicated,
not allowing one to obtain a general formula linking X0 and
� for arbitrary 	. It turns out, however, that the problem can
be solved in the limit of small velocities: v�c. To this end
we take into account that the static dark soliton for any
	
0 has zero amplitude in its center, and hence the limit of
small velocities corresponds to the limit of small X. Then,
expanding Eq. �31� with respect to v2 and X2, one obtains in
the leading orders

E = E0 +
�E0

�v2 v2 +
�E0

�X2X2, �59�

where the subindex “0” stands to indicate that the respective
quantities are computed in the point X=0 and v=0. This
formula must be viewed as a standard expression

Es =
ms

2
�v2 + �s

2x2� �60�

for the energy of a harmonic oscillator having mass ms and
frequency �s. Comparison of Eq. �59� with Eq. �60� gives
the expressions for the effective mass,

ms = 2
�E0

�v2 , �61�

and for the frequency of oscillations

FIG. 3. �a� Dependence of the position of the center of the
QNLS dark soliton on time for �=0.1, n0=1, and v=0.1 �b� Time
dependence of the half period T /2 substracted from �a�. As before
we take �=1, m=1, and g=1.
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�s = � �E0

�X2� �E0

�v2 
1/2

�62�

of a small amplitude dark soliton.
Thus to compute frequency dependence of the amplitude

of the soliton oscillations from Eq. �23� we have to expand
the energy E(c�X� ,v) for small X and v. It is convenient to
do this in dimensionless variables which we define as fol-
lows:

� = n0
−1/2�, � =

mc0

�
�2

	
x, � =

c0
2m

�	
t , �63�

allowing one to rewrite Eq. �23� in the dimensionless form

i�� = − ��� + ����2	 − 1�� �64�

�here we used the relations �20��. Also we will use the
notation V=�	

2
v
c0

. Then looking for the dark soliton solution,
i.e., one having the form �25� and thus depending only
on the running variable x−vt �which in dimensionless
variables means dependence on �−2V��, and representing
�=� exp�i� one obtains �see Appendix B� the link

� = − V
1 − �2

�2 �65�

and the equation for � �notice that according to Eq. �24� the
boundary conditions now are �→1 and �→0 as �→ ±��,

��� + �1 − �2	�� − V21 − �4

�3 = 0. �66�

The last equation can be integrated with respect to � which
gives

P2 =
1

	 + 1
��2	+2 − 1� + 1 − �2 − V2 �1 − �2�2

�2 , �67�

where we designated ��= P P���.
Now the energy of the soliton can be rewritten in the form

�see Appendix D�

E = E0
2�2
�	

�
�m

1 �P2��� +
�1 − �2�2

�2 V2	 d�

P���
, �68�

where E0 was introduced in Eq. �57� and �m determines the
soliton amplitude in its center and solves the equation

P��m� = 0. �69�

For a particular case of the zero-velocity dark soliton one
has

E0 = E0Q	, �70�

where

Q	 =
2�2

�	�	 + 1�
�

0

1
��2	+2 − �	 + 1��2 + 	d� .

�Notice that in this case �m=0, but P��=0�=�	 / �	+1�
�0.� Particular values of the energy for some relevant mod-
els are presented in Table I.

FIG. 4. Dependence of the soliton coordinate on the frequency adiabatically varying according to the law ��t�= �1+0.001t��0.11.
Straight lines show the law X0��−�. In panels �a� and �d� we show also the laws X0,±��−�± �see Eq. �17�� by dashed lines. In �a�–�c�
parameters are n0=1, and v=0.14, 0.42, and 0.85, correspondingly. In �d�–�f� parameters are v=0.14, and n0=0.4, 0.6, and 1, correspond-
ingly. In the numerical calculations we take �=1, m=1, and g=1.
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2. Effective mass of a dark soliton

Let us consider now a soliton moving with a small veloc-
ity, V�1. To execute the expansion of the energy we first
notice that from Eqs. �69� and �67� it follows that in the
leading order

�m ��	 + 1

	
V . �71�

Next, we introduce a constant �0 which satisfies the
condition �m��0�1 and split the integral in Eq. �68� in
two: E=E1+E2 where

E1 = E0
2�2
�	

�
�0

1

�¯�
d�

P���
, E2 = E0

2�2
�	

�
�m

�0

�¯�
d�

P���
.

As it follows from Eq. �67�,

�P

�V2 = −
1

2P

�1 − �2�2

�2

and thus in the limit V→0

dE1

dV2 = E0
2�2
�	

�
�0

1 � 1

	 + 1
��2	+2 − 1� + 1 − �2	 �

�V2

1

P
d�

� E0

�2
�	
�

�0

1 �1 − �2�2

P0���
d�

�2

� E0

�2
�	
�

0

1 d

d�
� �1 − �2�2

P0���

d�

�
+ E0

�2�1 + 	�
	�0

�72�

�to obtain the last line where P0 is P at V=0 we substituted
the lower limit by zero, due to fast convergence of the inte-
gral, and integrated by parts�.

To calculate the derivative of E2 we take into account that
� is small over the whole range of integration. Thus

E2 � E0
2�2

�	 + 1
�

�m

�0 �

��2 − �m
2

d�

�E0
2�2

�	 + 1
�0 − E0� 2

	 + 1

�m
2

�0

and in the limit V→0 �due to Eq. �71��,

dE2

dV2 = − E0

�2�	 + 1�
	�0

. �73�

The sum of Eqs. �72� and �73� gives us the derivative that we
are looking for:

dE0

dV2 = E0F	, F	 =�2

	
�

0

1 1

�

d

d�

�1 − �2�2

P0���
d� . �74�

�We recall that the subindex “0” on the left-hand side stands
for v=0 and X=0.� Finally, the definition of the effective
mass �61�, the explicit expression for the momentum P0 �12�,
and the last formula �74� yields the general expression for the
mass of the dark soliton:

ms = 	F	

E0

c0
2 . �75�

In order to relate the mass of the soliton to the atomic
mass m, we recall that −dE /d�=N where N is the negative
“total number of particles” associated with the soliton. Thus
m*=−ms /N can be considered as the effective mass of a
“solitonic” particle. In the limit V→0 the above quantities
can be easily calculated to give

N =
E0

mc0
2N	, N	 = �2	�

0

1

�1 − �2�
d�

P0���
�76�

and

m* =
	F	

N	

m . �77�

In Table I we present examples of the effective mass for
two relevant cases. From the provided values one can see
that the effective mass of the soliton particle is bigger than
the mass of a free particle: m*
m.

3. Frequency of oscillations of a dark soliton

To conclude this subsection we compute the frequencies
of oscillations of dark solitons in a trap, which can be done
using the relation �62�. To this end we notice that including
the trap potential into the scheme developed in the preceding
subsection can be done by simply changing the chemical
potential � by �−U�X�. Thus for the parabolic trap we have

�E0

�X2 = −
�2

2

�E0

��
=

�2N

2
. �78�

This leads us to the formula

�s =
N	

	F	

� . �79�

B. Analysis based on the perturbation theory

In Ref. �10� it has been argued that the phenomenological
approach formulated above can be justified from the view-
point of the original GP equation with the help of the pertur-
bation theory for dark solitons �9,20� when motion occurs in
a constant parabolic trap. The proof was based on a possibil-
ity of effective factorization of the solution on the constant
background and the dark soliton solution moving against it.
In the case of a time-dependent trap, the background cannot

TABLE I. Characteristics �the zero-velocity energy E0, the num-
ber of particles N, the effective mass m*, and the frequency of
oscillations in the parabolic trap �s� of dark solitons with small
velocities for different powers of the nonlinearity 	.

	 E0 �N� m* �s

2 2�3 ln 1+�3
�2

E0 4�3 ln 1+�3
�2

E0

mc0
2

�3+2 ln��1+�3�/�2�

2 ln��1+�3�/�2� m 0.6572�

1 4�2
3 E0 2�2

E0

mc0
2

2m �
�2

BRAZHNYI, KONOTOP, AND PITAEVSKII PHYSICAL REVIEW A 73, 053601 �2006�

053601-10



be considered as a constant, and the theory requires revision.
The goal of the present subsection is to develop the modifi-
cation of the perturbation theory and to obtain from it the
exponent � which describes change of the amplitude of os-
cillations of the GP dark soliton in a parabolic trap.

To this end we start with the dimensionless form of the
�1D� GP equation �the variable are introduced in Eq. �63�,
see also Eq. �64��,

i�� + ��� −
1

2
�2�2� − ���2� = 0, �80�

where �����= � / �21/2c0
2m���t�. We assume that ��t� is a

slow function of time, which is expressed by the adiabaticity
condition 1

�2 � d�
dt � �1. Accordingly, ���� is also a slow func-

tion. Notice that ��0�=�0�1 as a condition for the local-
density approximation. We look for a solution of Eq. �80� in
a form of the ansatz �analogous of the well-known lens trans-
formation�

���,�� = e−if����2 1
�L���

�„�, �̃���… , �81�

where � is a function of time and of spatial coordinate given
by �=� /�L���, while �̃ is a new temporal variable related to
the old one by the equation �̃�=1/L. The functions L��� and
f��� are to be determined below. Substitution of Eq. �81� into
Eq. �80� yields

i�� + ��� − ���2� − � f� + 4f2 +
1

2
�2
L2�2� −

i

2
�L� − 4fL��

−
i

2
�L� − 8fL���� = 0. �82�

Let us now require the trap frequency of the new equation
�i.e., the term proportional to �2�� to be constant, say 1/2�0

2,
and dissipative terms, i.e., linear with respect to �, to vanish.
This gives us two equations:

� f� + 4f2 +
1

2
�2
L2 =

1

2
�0

2 �83�

and

L� = 4fL . �84�

The obtained equations will be supplied by the natural initial
conditions f�0�=0 and L�0�=1. Then Eq. �82� takes the form

i�� + ��� − ���2� −
1

2
�0

2�2� = − 2ifL���. �85�

We emphasize that the last equation is exact with no approxi-
mation made, so far.

Before the analysis of Eq. �85�, let us consider Eqs. �83�
and �84� in more detail. They can be reduced to a single
equation for L:

L

2
L�� + �2L2 − �0

2 = 0. �86�

Due to adiabaticity the first term in Eq. �86� is small in
comparison with the other ones. Neglecting that term, we
find in the leading order

L =
1

�̃�

=
�0

����
and f = −

��

4�
. �87�

Then, simple estimates give L����2� 1
�2 � d�

dt � �2
��2 and

L��0 /��1, which justifies the approximation made.
Next we introduce the notation R for the right-hand side

of Eq. �85�: R−2ifL���. Since f is small �because of the
adiabaticity of the change of �� this term gives us a pertur-
bation, which is complementary to the perturbation intro-
duced by a constant parabolic trap, provided �0 is small, the
case considered in detail in Ref. �9�. Due to their smallness,
the effect of different perturbations on the dynamics of the
soliton center is additive, allowing one to compute only the
contribution of R to the dynamical equation of the soliton
center and add it to the equation describing soliton in a sta-
tionary potential obtained in Ref. �9� �see Eq. �32� there�. We
skip the description of tedious but straightforward calcula-
tions �25� and present only the final result: the equation for
the soliton coordinate, in terms of the rescaled by L vari-
ables, is given by

dX

d�
= V −

1

2
�0

2�
0

�

X����d�� −
1

4
��0

�



�

VX . �88�

Next we differentiate the last equation with respect to �
and eliminate the “dissipative” term by means of the substi-
tution

X = Y��̃�e���̃�, �89�

where

� = − ln� �

�0

�

, � = −
V

8
. �90�

Having done this and restoring the original variables we ar-
rive at the final formula

X0 � �−�, � =
1

2
+ � . �91�

Comparing this result with Eqs. �16� and �18� one can see
a remarkable agreement. The perturbation theory, valid for
relatively low densities of the condensate, and thus to the
Gaussian background, corrects the law �18� based on the
phenomenological approach, by means of small shift �recall
that V�1 and thus ��1� toward the larger exponent which
in the TF limit is given by Eq. �16�. Moreover, the perturba-
tion theory introduces an explicit dependence of the expo-
nent on the velocity �at this point it is relevant to recall also
that the frequency itself does not depend on the soliton ve-
locity�. Finally we mention that the obtained result corrobo-
rates the numerical results on the dependence of the expo-
nent � on the soliton velocity and on the density of the
background depicted in Figs. 1�d� and 1�h�.
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C. A comment on small amplitude solitons

Small amplitude dark solitons of the NLS equation with a
polynomial nonlinearity of any power of the nonlinearity are
described by the Korteweg-de Vries �KdV� equation �22� and
they move with the sound velocity �or more precisely with a
velocity slightly deviating from the sound velocity�. While
self-consistent reduction of the 3D GP equation to the 1D
KdV equation seems to be not possible for realistic conden-
sates �as it is explained in Ref. �23��, the KdV being aca-
demic rather than practical allows one to predict some fea-
tures of the underline GP equation.

Generally speaking one can easily argue that the small
amplitude limit of a dark soltion in a parabolic trap is not
available. Indeed, existence of a soliton in a trap implies
smallness of the soliton width � compared to the trap width
�� / �m��. Using the expression for the width of a dark soli-
ton, which is given by Eq. �2�, one immediately obtains the
limitation �� /m�c2−v2. Thus the existence of a trap does
not allow the true small amplitude limit, which would corre-
spond to v→c.

Let us now formally compute the half period of oscilla-
tions of a small amplitude soliton in a parabolic trap. Under
the half period we understand the time necessary for a soliton
to pass the distance between two turning points. To this end
associate the velocity

c�x� = ��	

2
�x0

2 − x2� , �92�

where x0=2� / �m�2�, with the velocity of the soliton. Then
direct computation gives

�sol =
�

�
−x0

x0

�dx/c�x��
=�	

2
� . �93�

Thus for the small amplitude GP dark soliton in a parabolic
trap we obtain � /�2, which coincides with the results known
for relatively large velocity for the soliton. Equation �93�
also gives �s=� for 	=2, the result recently reported in Ref.
�24�.

We emphasize, however, that presently there are no avail-
able results confirming the validity of the law �93� for small
amplitude NLS solitons. The main physical reason for this,
mentioned in Ref. �9�, is that in the vicinity of the turning
points the density becomes small enough making the prob-
lem linear and thus not allowing solitonic propagation due to
dominating dispersion. Mathematically, the problem occurs
due to divergence �see, e.g., the second of equations �11� in
Ref. �24�� of the small amplitude expansion near the points
where the condensate density, and thus the speed of sound, in
the TF approximation becomes zero �see also the discussion
of the failure of the small amplitude limit in Ref. �11��.

VI. CONCLUSION

In this paper we presented development of the theory sug-
gested in the earlier publication �10�, providing a detailed
description of the one-dimensional dynamics of a dark soli-

ton in a Bose-Einstein condensate confined by an external
potential. The theory is based on the local-density approxi-
mation and allows one to interpret the dark soliton as a
Hamiltonian particle. We addressed various generalizations
of the theory including the nonlinearity of a general polyno-
mial type as well as nonparabolic potential. We have ob-
tained that the dependence of the amplitude of the soliton
oscillations in an external trap depends on the adiabatically
changing frequency through the scaling law X0��−� where
the exponent � depends on the type of the nonlinearity and
on the type of the confining potential. It turns out also that
the frequency dependence of the amplitude of the oscilla-
tions depends also on the density of the condensate and on
the initial velocity, even in the cases when the frequency
itself is independent on the above quantities as in the case of
the standard nonlinear Schrödinger dark solitons. Also the
obtained scaling law in a general case appears to be very
different from the corresponding law for the linear oscillator.

We dedicated special attention to the cases of dark soli-
tons within the framework of the Gross-Pitaevskii and quin-
tic nonlinear Schrödinger models. We also have shown that
in the limiting case of slow, and thus large amplitude, soli-
tons one can obtain the general explicit expressions for the
effective mass of the dark soliton, considered as a quasipar-
ticle, and for the frequency of its oscillations in the external
confining trap.

The results have been verified numerically, showing good
agreement with theory, and were shown to be in agreement
with outcomes of the direct perturbation theory for solitons.
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APPENDIX A: ESTIMATES FOR THE BACKGROUND

In the present appendix we provide estimates for the last
two terms in Eq. �37�. For the sake of simplicity the consid-
eration will be restricted to the case of a polynomial para-
bolic trap �39�.

Let us consider the behavior of the function F�x� in the
vicinity of the point x�L0 �we recall that L0 is an effective
trap length�. The background is obviously an even function
of the trap which allows us to look for its solution in a form
of the expansion

F = 1 + �
k=1

�

Fk�
k, � = x2. �A1�

More specifically we are looking for the coefficients Fk, all
of which become zero in the homogeneous case when �=0.
It follows directly from Eq. �33� that
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� = gn0
	 −

�2

m
F1. �A2�

In the homogeneous condensate the chemical potential is
given by �0=gn0

	 and thus it should be verified that
F1�mgn0

	 /�2 for � small enough.
Next from Eq. �33� one can obtain the recurrent formulas

�2

2m
�2k + 2��2k + 1�Fk+1 =

gn0
	

k!
�dkF2	+1

d�k 

�=0

− �Fk

for k � r �A3�

�2

2m
�2r + 2��2r + 1�Fr+1 =

gn0
	

r!
�drF2	+1

d�r 

�=0

− �Fr +
m

2
�2r.

�A4�

In order to satisfy the constraint Fk=0 at �=0, we require
Fr+1�Fr. From Eqs. �A3� and �A4� we obtain the following
asymptotic relations:

Fk = O�Fr� = O��2r�, k � r ,

Fr+1 = o��2r�

which in their turn guarantee the smallness of the integrals

�
�x−X���

Fxxn�x�
F

dx � �2r and �
�x−X���

d2n0�x�
dx2 dx � �2r

when �→0.

APPENDIX B: ON THE LINK
AMONG FORMULAS (64)–(66)

In terms of the amplitude � and the phase , both depend-
ing on �−2V�, Eq. �64� can be rewritten in the form of a
system

− 2V� =
���

�
− �

2 + 1 − �2	, �B1�

2V�� = 2��� + ���. �B2�

Multiplying Eq. �B2� by �, integrating with respect to 
and using the boundary conditions �→1 and →const as
�→ ±�, one obtains the link �65�.

In order to obtain Eq. �66� it is enough to substitute �

expressed in terms of � through the relation �65� in Eq. �B1�
and multiply the result by �.

APPENDIX C: ADIABATIC INTEGRAL FOR THE GP
SOLITON IN A POLYNOMIAL TRAP

The adiabatic integral for the GP dark soliton is com-
puted, using Eq. �10� and links �40� and �20� for 	=1, as
follows:

I = − 4 � �
0

X0

n�v
c
�1 −

v2

c2 + arcsin�v
c

	dx

=
22+1/�2r�m1−1/�2r��

rg�
�

0

c* v�v2 + u2�
�u2 − v2��2r−1�/�2r�� vu

v2 + u2

+ arcsin� v
�v2 + u2
	dv =

�m1−1/�2r�u2+1/r

g�
Gr, �C1�

where the constant Gr is given by

Gr =
22+1/�2r�

r
�

0

1 y�1 + y2�
�1 − y2�1−1/�2r�� y

1 + y2

+ arcsin� y
�1 + y2
	dy . �C2�

APPENDIX D: CALCULATION OF THE ENERGY (68)

Starting with the definition �26� and �27� written as

E = E0�
−�

� �P2 +
1

	 + 1
��2	+2 − 1� + 1 − �2

+
�1 − �2�2

�2 V2
d� , �D1�

and excluding P��� with the help of Eq. �12� one obtains

E = 2E0�
−�

� � 1

	 + 1
��2	+2 − 1� + 1 − �2
d�

=4E0�
�m

1 � 1

	 + 1
��2	+2 − 1� + 1 − �2
 d�

P���
.

Formula �68� follows from the last equality.
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