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Gauge-invariant relativistic strong-field approximation
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The problem of the choice of gauge in the relativistic strong-field approximation (SFA) is analyzed. The
main motivation is to obtain a relativistic ionization amplitude in the SFA which in the nonrelativistic limit
coincides with the conventional well-accepted results of the SFA in the length gauge. A gauge-invariant
formulation of the SFA is derived which is applicable both in the nonrelativistic as well as in the relativistic
regime of laser-induced strong-field ionization phenomena. The gauge invariance is achieved by means of
employment of an eigenstate of the physical energy operator for the initial atomic state. As an example, a
comparison of predictions of the gauge-invariant theory with conventional SFA results in the radiation gauge
is given for above-threshold ionization in the relativistic regime.
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INTRODUCTION

The strong-field approximation (SFA) is one of a few non-
perturbative analytical approaches in the field of strong-
laser-radiation interaction with atomic systems [1]. Stem-
ming from the heuristic Keldysh approximation [2], it has
been developed as a rigorous theory based on a specific ex-
pansion of the exact Green’s function, treating nonlinear ion-
ization in the nonrelativistic [3,4] as well as in the relativistic
domain [5,6]. The SFA provides a unified description of the
strong-field ionization phenomena in the multiphoton and
tunneling regimes. It proved to be very fruitful in describing
and predicting features of above-threshold ionization (ATI)
and high-order-harmonic generation (HOHG) phenomena
[7,8]. A quantum orbit theory has been developed based on
the SFA which provides a detailed insight into ATI and
HOHG phenomena [7,9-11].

The SFA is not a gauge-invariant theory, as was pointed
out a long time ago [12]. Moreover, discrepancies between
the results of different gauges can be significant [13]. Tt is
accepted that the SFA, being an approximate treatment that
neglects the influence of the atomic potential for the ionized
electron, cannot be gauge invariant, in contrast to the gauge-
invariant exact transition amplitude. Therefore, specific in-
vestigations are necessary to choose an appropriate gauge for
the treatment of processes within the SFA. This is done for
the nonrelativistic regime of interaction. Thus, recently for
the ionization of negative ions with a short-range binding
potential, a comparison has been carried out between results
of the nonrelativistic SFA in the length and velocity gauge,
and the solution of the time-dependent Schrodinger equation
[14]. It has been shown that the velocity and length gauges
can yield qualitatively different results. The solution of the
time-dependent Schrodinger equation in the considered case
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is close to the result of the SFA in the length gauge [14]. An
exact solution for the ionization from a zero-range effective
potential exists [15], which is also in favor of the SFA with
the length gauge. The same can be said about experimental
results, for instance, the experiment on above-threshold de-
tachment for the negative F~ ion [16]. Another intuitive ar-
gument in favor of the length gauge is given in [17]. In the
length gauge large distances become important in the calcu-
lation of the transition matrix element, and only at large dis-
tances can one neglect Coulomb interactions in the exact
wave function. Therefore, a conclusion has been reached that
in the nonrelativistic domain the SFA provides an adequate
description of the ionization phenomena in the length gauge.

In the relativistic regime, detailed investigations compar-
ing the SFA in different gauges with the solution of the time-
dependent Dirac and Klein-Gordon equations or experimen-
tal results are still missing. We are faced with the problem of
choosing the gauge for the SFA in the relativistic regime, and
we consider this problem in this paper. To have a unified
approach in the nonrelativistic as well as in the relativistic
regime, we proceed in the following way. Accepting that in
the nonrelativistic regime the length gauge has turned out to
be the proper gauge for the SFA, we develop a nonrelativistic
gauge-invariant amplitude which coincides with the conven-
tional SFA result in the length gauge. Then in the next step
we apply the corresponding procedure in the relativistic re-
gime. As a result we derive a relativistic SFA wave function
which is consistent with the well-accepted nonrelativistic
SFA results, that is, with the nonrelativistic SFA results in the
length gauge as well as with the intuitive physical arguments
of [14].

Let us recall the intuitive physical arguments of [14] jus-
tifying the use of the length gauge in the SFA. This will
explain the ansatz that we apply later to solve the wave equa-
tion. The main essence of the SFA is known to be the fol-
lowing two assumptions: (1) the influence of the Coulomb
field of the atomic core on the dynamics of the ionized elec-
tron is small in comparison with the laser field, and (2) the
influence of the laser field on the initial bound state of the
atomic system is negligible. To realize this physical content
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of the SFA, the exact wave function in the exact transition
amplitude is replaced by the Volkov wave function which
describes the electron in the laser field alone [18,19].

Thus, starting with the exact expression for the ionization
amplitude we have [7]

My=i| ax @A), )

where W ,(7) is the exact wave function corresponding to the
continuum state in the atomic potential in the remote future,
when the laser field is adiabatically switched off, W(7) is the
initial bound-state wave function in the remote past, when
the laser field is adiabatically switched on, and H,, is the
laser-atom interaction Hamiltonian: Hin,=E~rEH;]Sl in the
length gauge or H,-”,:A-f)/c+A2/2c25H§”) in the velocity
gauge, with the laser electric field E, the vector potential A,
the momentum operator p, and the speed of light c¢. Atomic
units are used throughout the paper. Then, replacing the ex-
act wave function W(7) in Eq. (1) with the Volkov wave

function ‘IILV)(T) [18,19], yields the amplitude in the SFA,

My=-i f AW (| H,, ([ Wo(7). (2)

The latter indicates the following approximate physical pic-
ture of the interaction dynamics [14]: up to the moment ¢
< 7 the electron is in the bound state of the atom W (7) not
perturbed by the laser field, while at a time 7=7 the laser-
atom interaction via H,,(¢) causes the transition of the elec-
tron to an ionized state which is a pure Volkov state of the
electron in the laser field. Only the length gauge is consistent
with this picture, as argued in [14], because only in the
length gauge is the state W () at the moment << 7, when the
laser field is already switched on, the eigenstate of the physi-
cal energy operator of the free atom [20],

E=(p+Alc) 2+ V(r). (3)

Notice that W(7) is the eigenstate of the free atomic Hamil-
tonian H,=p>/2+V(r), with the atomic binding potential
V(r), and in the length gauge the vector potential disappears,
A=0.

The exact amplitude (1) is gauge invariant while the am-
plitude (2) in the SFA is not. Thus, the conventional SFA
provides different results for different gauges. This can be
understood as that in different gauges the above-mentioned
replacement of the exact wave function by the Volkov solu-
tion corresponds in reality to different physical approxima-
tions, and that only the length gauge corresponds to the
physical requirements of the SFA as formulated in the two
points above.

At this point let us also recall a similar problem of gauge
dependence of perturbative bound-bound atomic transitions
in a laser field (see, e.g., [20-29]). In short it is the follow-
ing. In the perturbative nonrelativistic treatment of atomic
transitions, the total Hamiltonian is usually split into two
parts H=Hy+H,,,, the free atomic Hamiltonian H, and the
interaction Hamiltonian H;,,. When the free atomic Hamil-
tonian H,, is taken as an unperturbed Hamiltonian and the
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perturbed wave function is expanded in terms of eigenstates
of H, then the transition probabilities are expressed via ma-
trix elements of the interaction Hamiltonian which is equal to
either Hy) (length gauge) or HE") (velocity gauge). These
matrix elements in general are different for nonresonant tran-
sitions, yielding gauge-dependent results. A principal solu-
tion of this problem has been proposed in [22] by means of
choosing a specific basis for the initial and final states of the
atom. A statement is made that the physical transition of an
atomic system in a laser field is represented by a transition

between the eigenstates of the physical energy operator & of
Eq. (3) and not between eigenstates of the unperturbed
Hamiltonian H,, [20]. The perturbation theory based on the
expansion in terms of eigenstates of the physical energy op-

erator & proved to be gauge invariant and yields gauge-
invariant transition amplitudes [29]. Nevertheless, there is an
important difference between the SFA and the perturbative
atomic transitions. In the latter case if the laser field is adia-
batically switched on and off, then the gauge dependence of
the transition amplitude disappears [26,27]. Meanwhile, the
SFA with an adiabatically switching laser field gives gauge-
dependent results, which, as explained above, is an indica-
tion of the fact that the resultant approximations are physi-
cally different in the different gauges.

In this paper we employ the physical energy operator
eigenstates within the SFA ideology. We begin our discussion
with the nonrelativistic Schrédinger equation (Sec. I), intro-
duce a modified SFA ansatz, then generalize our treatment
for the relativistic regimes based on the Klein-Gordon equa-
tion (Sec. IT) and the Dirac equation (Sec. III), and give our
conclusion in the final section.

I. THE NONRELATIVISTIC REGIME

We consider the ionization process of an atomic system
by an arbitrarily polarized laser field. Further, the single-
active-electron approximation is applied, i.e., the interaction
of the set free electron with the ionic core plus bound elec-
trons is represented by a static effective atomic short-range
potential.

As is known the ionization dynamics is well described by
the Schrodinger equation for the wave function of the active
electron W for laser intensities up to 10'® W/cm? at a sub-
optical laser wavelength (see, e.g., [30]):

iV =[(p+Alc)/2+ V-V, 4)

where ¢ and A are the scalar and the vector potential of the
laser field, respectively, and V is the atomic short-range po-
tential. We do not specify the gauge at this point. As usual in
the nonrelativistic case the dipole approximation is applied
since the characteristic length of the electron motion in this
regime is much smaller than the wavelength of the laser.
By solving the equation of motion (4) we will make the
standard assumptions of the SFA [1]. That is, the influence of
the laser field on the ground state is neglected, particularly
the Stark shift and the depletion of the atomic ground state.
The contributions of all other bound states are assumed to be
negligible. Further, the ionized electron is assumed to be
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only affected by the laser field, not by the potential of the
atomic core.

We represent the time-dependent wave function of the
atom in the laser field in an intermediate moment ¢ of the
interaction as a superposition of the atomic unperturbed
bound state and the ionized wave:

W (1) = Wo(t) + (1), &)
where W(1) describes the electron in the bound state and

W (1) the ionized electron. The ionized wave should disappear

W(f) — 0 before the interaction ¢— —c. According to the SFA
assumption that the bound state is not disturbed by the laser
field, W () should be the eigenstate of the physical energy
operator of the free atom with a negative eigenvalue &:

[(p+A/c) 2+ V¥, =¢g,V,. (6)

At an intermediate moment of the interaction A(z) # 0 there-
fore the physical energy operator does not coincide with the
atomic Hamiltonian Hy,=p>/2+V(r). The ansatz of Eq. (5)
corresponds to the intuitive picture represented in the Intro-
duction.

The part of the wave function describing the ionization
can be in general represented via an expansion in terms of
Floquet eigenstates of the total Hamiltonian. Then we will
have the following ansatz for the total wave function:

W(r,0) = Wo(r,0) + 2 ¢, ()W, (r.0), )

n

where W (r, )= (r,t)exp(—igyt), and n indicates the quan-
tum numbers of the Floquet states. The Floquet eigenstates
W, (t)=exp(—ig, )P, (r,t) with the quasienergy &, and the
periodic quasienergy wave function ®,(r,7) (the quasienergy
wave function is periodic with the laser field period) are the
eigenstates of the total Hamiltonian

iV, =[(p+Alc)’2+V—-¢]¥,. (8)

The orthonormal set of Floquet eigenstates constitutes the set
of possible final states of the system. Later, the exact Floquet
eigenstates will be replaced by the Volkov states using the
second assumption of the SFA that the ionized state is mainly
governed by the laser field.

The Schrodinger equation (4) with the ansatz (7) yields
the following expression for the coefficients c,(¢):

c (1) = iJ e‘ieOTdTJ dr ‘I’:(r, T(Pp+1id,)Py(r,7). (9)

In the dipole approximation the vector potential is only time
dependent, A=A(r), which allows one to solve Eq. (6) ex-
actly and to find the wave function of the bound state of the
electron

®(r,1) = ¢po(r)exp[— iA(z) - r/c] (10)

where ¢(r) is the eigenstate of the Hamiltonian H,. Then,
inserting the expression for the electron initial state (10) into
Eq. (9), using the electric field definition E()=-V¢
—d,A(t)/c as well as the fact that the only time dependence
of the electric field results in a linear space dependence of ¢,
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and taking into account that at r— —o the ionized wave dis-
appears, yields for the transition amplitude

Cn(t):_if d(W,(D)[E(7) - r[Wo(7). (1

This formula for the transition amplitude is derived for an
arbitrary gauge. It is still exact, and therefore gauge invari-
ant, and is expressed via the exact Floquet eigenstate of the
total Hamiltonian. Notice that the expression of Eq. (11) co-
incides with the corresponding coefficients describing ion-
ization amplitudes in the nonrelativistic treatment of [17];
see the time integral of Eq. (A3) in [16]. In fact, both expres-
sions are gauge invariant and are identical in the length
gauge.

Now we can apply the SFA, which from the mathematical
point of view is reduced to replacing the exact Floquet eigen-
state of the total Hamiltonian W, by the Floquet eigenstate of
the electron only in the laser field, i.e., by the nonrelativistic
Volkov wave function ‘I’l‘: with drift momentum p. The latter
satisfies the equation

i, ¥y =[(p+Alc)12- p1¥}. (12)

The explicit expression for the nonrelativistic Volkov wave
function in the velocity gauge is

o 2
. 1 i~ A(7)
‘var,t=—ex i -r+—f dT( + ) >
p(01) \"W P[ p 2), p -

(13)

which at the 7— oc limit yields a plane wave with momentum
p, interaction volume V), and

Al)=-c f E(t)dt. (14)

By a corresponding gauge transformation the explicit form
of the Volkov wave function can be easily obtained in any
gauge.

The amplitude M, for ATI yielding one electron with mo-
mentum p is given by

M, =1im ¢,(1). (15)
t—©

Finally, from Eq. (11) we obtain for the ionization amplitude
in the SFA

My=-i f AW (D|E(7) - £|Wy(7). (16)

-0

We again underline that the initial state W(z) is determined
by Eq. (10) as an eigenstate of the physical energy operator.
The Volkov state is also an eigenstate of this operator.

We can derive a more convenient expression for the tran-
sition amplitude making the time integration by parts in Eq.
(9) with the Volkov wave function and using the complex
conjugate of Eq. (13):
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My(t) =— if dTJ dr W(r, N {ey - [p - A(D/cT]H2}

X\Ifl‘:*(r, 7). (17)

Then, the transition amplitude reads

My=—i| ey

* Al o
=_,~f dt’<p+ ()|v|o>elS<P”’f>, (18)
—oo c

where (p|V|0) is the matrix element of the atomic potential,

S(p,t,t’)=f§’d7'{[p+15:(7')/c]2/2+1p} is the quasiclassical ac-
tion, and I, is the ionization potential.

The amplitude expressions of Egs. (16) and (18) are valid
for any gauge and are gauge invariant. Moreover, they coin-
cide with the ionization amplitude derived by the conven-
tional SFA in the length gauge which, as already mentioned
in the Introduction, give the adequate physical description of
the ionization process in the nonrelativistic regime [7].

II. THE KLEIN-GORDON REGIME

If spin effects [31] are not of significance then the dynam-
ics of the ionized electron may be described by the Klein-
Gordon equation for the wave function W(x):

[(id* + Al + g"VIc)? = *TW(x) = 0 (19)

with we{0,1,2,3}. A#=(¢,A) is the vector potential of an
arbitrary polarized laser field (the gauge is not fixed), x
=(ct,x,y,z) the time-space coordinates, k*=(w/c,0,0,k) its
wave vector, w=ck its angular frequency, and g#” the metric
tensor.

Analogous to the nonrelativistic case, we apply the ansatz
(7) for the wave function. The wave function of the initial
state Vo=@, exp(—i [eyd7) is an eigenstate of the physical
energy

[(gg= V)% /c* = (P + Alc)? = H]Dy(x) = 0. (20)

We assume that the atom is initially in the ground state with

the ground-state energy &,. The Floquet eigenstates W, (¢) of

the total Hamiltonian satisfy the Klein-Gordon equation (19).
Inserting Eq. (7) in Eq. (19) now yields

2 [E,(DW,(0) + 2¢,()3,¥,,(x) + 2i(V = $)é ()W, (x)]

=[(idg,+ p—V)* = (g9 - V)*1¥y(x), (21)

where the overdot indicates a time derivative. Projecting Eq.
(21) to a state Wy, integrating by time, and using the ortho-
normality relation

J dr[l(wzat\[,n - \I,nat\y;:) - Z(V_ ¢)‘~PZ‘I’H] = 5kn

(22)

yields for the transition amplitude
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M, =i | d* \If:(x){— ﬁtz(I)o(x) +2i(gg+ = V), Py(x)

+[igg+id,p—2(V — g¢) + $*]D(x)}

Xexp(—if 80d7'>. (23)

Transition amplitudes in the SFA are obtained by replacing
the exact Floquet eigenstates W,(x) in Eq. (23) by the Volkov
wave function of the electron in a laser field \Ifg(x):

My=i J d*x \I’l‘:*(x){— &tzCDO(x) +2i(gg+ p— V)3, Pp(x)

+[igg+i0,p - 2(V — g¢) + ¢* Dy (x)}

Xexp(—if 80d7'>. (24)

The Volkov wave function is described by the Klein-Gordon
equation of the electron in a laser field

[(ig"+ A#/c)* = *]Wp (x) = 0. (25)
In the velocity gauge it reads [1]

o 1
PY(x) = ——=ex (—i X
P V2Ve, P\

d7

. f = [p+A(Rc]- A(?’?)/c)’ 06
7 k-p

with g,=ve’p*+c*, p=k"x,=k-x the phase of the laser
field, and A(7) defined in Eq. (14).

Integration by parts of Eq. (23), taking into account Eq.
(25), reduces the ionization amplitude to the following ex-
pression:

o)

M,=i

-0

AW (7)|V? = 2iVa, - 2¢V|¥(7).  (27)

The expressions for the transition amplitude of Egs. (24) and
(27) are valid for any gauge. It is easy to verify that the
transition amplitude of Eqgs. (24) and (27), along with the
Klein-Gordon equation (19) and the equations for the initial
and final states (20) and (25), are invariant under the gauge
transformation

W)= elOw,, W =Owy,

A'=A-Vfx), ¢ =¢+df(x). (28)

For more simplification of the expression for the transi-
tion amplitude we need an explicit expression for the initial
state Py(x). It is an eigenstate of the physical energy operator
and obeys Eq. (20), which cannot be solved exactly. Never-
theless, one may simplify the equation for the energy eigen-
state, using a small parameter: the ratio of the atomic veloc-
ity v,=Zca to the velocity of light, where « is the fine-
structure constant and Z the ion charge. This approximation
cis easier to perform in the gauge where the canonical mo-
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mentum operator p does not differ significantly from the
kinetic momentum operator. In the nonrelativistic limit this is
the length gauge, where the canonical momentum operator
coincides with the kinetic one, while in the relativistic case,
the Goppert-Mayer gauge (the relativistic generalization of
the length gauge applicable for plane-wave fields) has this
kind of property.

In fact, let us employ the Goppert-Mayer gauge [1,32] in
Eq. (20):

Z:—;(E-r). (29)

Consequently, we obtain the following equation for the wave
function in the Goppert-Mayer gauge ®y(x):

2
[—[806‘2” —(f)—z'(E~r)>2—cz}q~>o(x)=0- (30)

Let us estimate the different terms in Eq. (30) for a hydro-
genlike atom and a moderately relativistic laser field with a
relativistic parameter £é=A,/c’>~ 1. Neglecting the Stark
shift of the atomic ground state, its energy can be approxi-
mated by gy= cz—Ip. Estimating x,z and p,,p, as the bound-
electron coordinate and momentum in the laser polarization
and propagation direction, respectively, yields x~z
~1/Zca~1/\I, and p,~p,~Zca~\1,. The vector poten-
tial estimation gives A~Ex~ éw/Za. The ratio Al Cpy
~§w/1p, which is of order 107 at é~1, w=1 eV, and Z*
~10. Therefore, the kinetic momentum approximation by
the canonical one is justified. To be more precise, for a hy-
drogenlike atom like B** with ionization potential I,
=12.5 a.u., a laser field with £=0.5 and suboptical angular
frequency w=0.05 a.u., we obtain for the terms of Eq. (30)
the estimates

O(VIc?) ~ IJc* ~ 7 X 1074,
O(p*/c*) ~ IJc* ~ T X 1074,
OQ(E -1)p./c®) ~ éwlc® ~ 1075,

O((E -1)/c") ~ E0’L /> ~ 4 X 107, (31)

Consequently, the equation for the ground-state wave func-
tion in the Goppert-Mayer gauge reduces to the nonrelativ-
istic unperturbed Schrodinger equation for the electron in the
atomic potential V(r):

(p%/2 + V+1,)Dy(x) = 0. (32)

Thus, the initial wave function can be approximated by the
nonrelativistic ground-state wave function

Do(x) = po(x)exp[— i(c® = L)IN2(c*~1,).  (33)

In any other gauge the wave function of the initial state is

derived from (IBO(x) by means of the gauge transformation.

Having derived an approximate expression for the initial-
state wave function (33), we can proceed by simplifying the
ionization amplitude. The expression for the ionization am-
plitude of Eq. (24) reduces to
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M,=i f d'x W O[E-r)?-2(c*-1,+V)E-r

—iwE - r]¥(x) = - 2ic? J d*x ‘I’g*(x)(E T)Wy(x),

(34)

where the prime denotes a derivative by the laser phase.
Likewise, the ionization amplitude of Eq. (27) reduces to

o

My=i| dxW (D|V?-2V(c*~1,) +2(E - r)V|¥(7)

~ - 2ic? f AW VW (7). (35)

The last expression for the amplitude after the transformation
of coordinates (z,r)— (7,r) can be written in the following
form:

¢ expliS(p, . 7')]

Mpz—ilimf dn

n—e J o \J/sp(c2 -1,)w
A7) k
X <p+ (n)——(ep+1p—c2)|\/|0>, (36)
c w

where S(p, 7, n’):led‘f;[é"p(;i])—cﬂlp]/w is the quasiclas-
sical action and the electron energy in the field is given by

2c (37)

_ o)
sp(n)=8p+m P+
The ionization amplitudes in the gauge-invariant SFA of
Egs. (34)-(36) differ from the standard SFA result in the

velocity gauge by an additional term of A(n)/ c in the argu-

A7)
ment of the matrix element <p+%—%(sp+lp—c2)|V|0>.
Accordingly, the ratio of the preexponential factors for the
gauge-invariant SFA to the conventional SFA is of the order

~p./ (p+A) ~ V"UP/ 1,~ 1/, because from the approximate
saddle point condition (p,+A)*=21, _whereas p, is of the
order of VU, where U,=(A%/2), k=\2I,; y=11,/2U, is the
Keldysh parameter, and can be small in the relativistic tun-
neling regime.

In fact, the region of parameters & and Z where the tun-
neling ionization regime of a hydrogenlike ion takes place is
shown in Fig. 1 as a shaded region. This region is defined by
two conditions; the first is y<<1,

E>N21/c?, (38)

and the second that the laser intensity must be not so large as
to sweep the atomic electron over the barrier [33], i.e.,

N (1)
< - 39
¢ 81TrOZ<c2) (39)

where \ is the laser wavelength and 7 is the classical radius
of the electron. We can see that in the relativistic regime it is
possible to realize the tunneling ionization with y<<1 when
the discrepancy between the gauge-invariant SFA and the
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0.75
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0.25
v=1 7
1 2 3 4 5 6

FIG. 1. The region of parameters ¢ and Z where different ion-
ization regimes of a hydrogenlike ion take place. The thin curve at
the bottom corresponds the condition of y=1. The tunneling ion-
ization (TI) regime takes place for the parameters of the shaded
region [see Eqgs. (38) and (39)], and the over-the-barrier ionization
(OBI) for the parameters above the thick curve.

conventional SFA with the velocity gauge is large.

To evaluate the difference of predictions of the ionization
probability by these two versions of the SFA more precisely,
we have carried out numerical calculations of the direct ion-
ization amplitude of Eq. (36) applying the saddle point
method. The atomic potential in Eq. (36) is approximated by
the Lewenstein short-range potential [9] with its matrix ele-
ments

3/2
K
(p|V|0) = Py
p

yoK
P 4mpg

In Fig. 2 we compare the ionization probability calculated
by means of the gauge-invariant SFA of Eq. (36) with the
result of the conventional SFA in the velocity gauge [i.e., the
amplitude of Eq. (35) where as an initial state a free-atomic
wave function is used]. We see that the difference can be
significant, the ratio of the amplitudes reaching two orders of
magnitude.

(40)

logo( |Mp|2 [arb. units] )

06 08 [ 12 14

electron energy [Up]

FIG. 2. Photoelectron spectrum in a linearly polarized laser field
with angular frequency w=0.05 a.u. and electric field strength E
=34 a.u. via logo(|[My[*) in Eq. (36), with final electron momen-
tum p=(p,,0,p,) and emission angle f=arccos(p,/p)=0.18. The
model potential is adapted to B*" with ionization potential I,
=12.5 a.u. The electron energy is scaled in multiples of the pon-
deromotive energy U p=<A2/ 2). The photoelectron spectrum in gray
is evaluated via the standard SFA in the velocity gauge, the one in
black via the gauge-invariant SFA.
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III. THE DIRAC REGIME

In this section we generalize the gauge-invariant SFA for
the relativistic regime based on the Dirac equation

oW =[ca-(p+Alc)— ¢+ V+ BV, (41)

where a and B are the corresponding Dirac-matrices.

Analogous to the Schrodinger and the Klein-Gordon
cases, we employ the ansatz of Eq. (7) with the Floquet
eigenstates of the total Hamiltonian W ,(x) =exp(—ig, )P, (x),
the quasienergy ¢,, and the periodic quasienergy states
®,(x), yielding

0V, =[ca-(p+Alc)— ¢+ V+BY,. (42)

The initial state W((x)=exp(—iggt)Py(x) with the energy &,
is an eigenstate of the physical energy operator:

[ca- (p+Alc)+ V+ By =g,D,. (43)

Using the orthonormality of the Floquet -eigenstates
(®,| D=5, we receive the following expression for the
coefficients c,(1):

c,,=ift dtfdr W;(x)[(d)+i(?,)(Do(x)]exp(—if80d1>.

(44)

In the SFA the exact eigenstate of the total Hamiltonian
W, (x) is replaced by the eigenstate of the electron in the laser
field, i.e., by the relativistic Volkov wave function \I’g (x) [1],

i&,\lfg(x) =[ca-(p+Alc)— P+ Bcz]‘lfg(x). (45)

We obtain for the amplitude of ionization in the relativistic
regime

Mpz—in4x ‘I’Xi'(x)[(d>+i&,)q)o(x)]exp(—ifsodt).

(46)

The explicit expression for the amplitude (46) can be derived
when we employ the initial-state wave function. In the
Goppert-Mayer gauge, it obeys the quadratic Dirac equation

2 2
{@_(f)_z(}g.r)) _52—2-H+ia-E}q~)o(x)

=0, (47)

where ¥, is the spin matrix [18] and E and H the laser elec-
tric and magnetic fields, respectively. Equation (47) differs
from the corresponding Klein-Gordon equation (30) by the
last two terms of the spin interaction. The spin terms can be
estimated by éw. Consequently, the ratio of the spin term to
the p? one gives £w/c? and the spin terms can be neglected
along with the other terms proportional to the laser field [see
Eq. (31)]. As a result, the wave function for the initial state in
the Goppert-Mayer gauge can be approximated by the four-
spinor of the ground state of a free atom ®g(x). Inserting the
latter in Eq. (46), we derive for the amplitude

My=-i f d'x W) (x)(E - r)Wo(x). (48)

053411-6



GAUGE-INVARIANT RELATIVISTIC STRONG-FIELD...

We may derive another expression for the amplitude by
applying partial time integration in Eq. (46) and using also
Eq. (45),

My=~i f d*x W:T(x) VW(x). (49)
Thus, Egs. (48) and (49) provide a gauge-invariant descrip-
tion of the ionization process in the fully relativistic regime
within the SFA approach.

CONCLUSION

We have analyzed the choice of gauge in the relativistic
SFA. The requirement to have a relativistic amplitude con-
sistent with the conventional nonrelativistic SFA amplitude
in the length gauge stipulates the use of the Goppert-Meyer
gauge in the conventional relativistic SFA amplitude. To be
able to use any gauge in the relativistic SFA, we have modi-
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fied the standard SFA and obtained a gauge-invariant version
of the relativistic SFA employing the eigenstate of the physi-
cal energy operator for the unperturbed bound state of the
atomic system during the interaction. A comparison of the
gauge-invariant SFA with the standard SFA in the radiation
gauge, based on the numerical evaluation of the correspond-
ing amplitudes, shows that the difference of the results can
be significant, at some parameters in the relativistic regime
approaching two orders of magnitude. Meanwhile in the non-
relativistic and weakly relativistic regimes the difference is
not substantial. The nonrelativistic limit of the obtained am-
plitude of ionization coincides with the well-accepted con-
ventional SFA amplitude in the length gauge.
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