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Ionization of Rydberg alkali-metal atoms in quasistatic electric fields:
A classical view of the n−5 scaling of the threshold field
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The ionization of low angular momentum Rydberg states of alkali-metal atoms in a linearly polarized low
frequency monochromatic microwave field is described in the literature as a classical diffusion process initi-
ated by a quantum rate-limiting step. We find here the classical equivalent to this quantum step, which is
responsible for the nonhydrogenic n−5 scaling of the threshold field. This allows a fully classical explanation of
the ionization process.
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I. INTRODUCTION

Laboratory experiments �1,2� have shown that while the
ionization threshold of high angular momentum Rydberg
alkali-metal atoms in a linearly polarized monochromatic mi-
crowave field with intensity F and frequency ��n0

−3, where
n0 is the initial principal quantum number, follows the hy-
drogenic behavior Fthresold��16n0

4�−1, the threshold for low
angular momentum states behaves as �3n0

5�−1. The quantum
numerical simulations of Buchleitner and Krug �3–5� have
substantially confirmed this picture, even though they were
not able to definitively rule out for low angular momentum
states a Fthreshold��90n0

4�−1 behavior �5� for which on the
other hand no theoretical explanation is known.

In the literature it is often found the opinion that this
�3n0

5�−1 threshold behavior is nonclassical: see, e.g., Ref. �6�
where the process is described as an essentially classical dif-
fusion one, initiated on the other hand by a rate-limiting step
which is a Landau-Zener transition at a quantum avoided
crossing. On the other hand we are in a regime where clas-
sical behavior can be expected on the relatively short time
scales of the experiments: ionization of high angular momen-
tum states follows the classical hydrogenic behavior
Fthreshold��16n0

4�−1; dynamical quantum localization has no
relevance at such low frequencies, as the quantum delocal-
ization border is below the experimental ionization threshold
�7,8�; tunneling �9� and multiphoton processes happen at
much longer time scales; and finally avoided crossings—the
quantum resonances which are the foundation of the quan-
tum explanation given for the �3n0

5�−1 threshold—are in most
cases clearly related to easily identifiable classical reso-
nances, the magnitude of the splitting being proportional to
the width of the classical resonance zone �10�. The aim of the
present paper is to show that, instead of the half-classical
half-quantum explanation hitherto given, a fully classical ex-
planation of the �3n0

5�−1 threshold exists and thus add to the
evidence in favor of such a scaling: on the energy surface of
a Rydberg alkali-metal atom in a static electric field the
atomic core potential induces resonances; their overlap—
which we shall show happens at a field intensity F
��3n0

5�−1—brings chaos �11� and if the system is chaotic, a
slowly varying field cannot be followed adiabatically �12,13�
by the system and energy diffusion will ensue.

The paper is thus organized: Sec. II summarizes the

“quantum” explanation found in the literature; in Sec. III
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classical numerical simulations are presented which suggest
that a classical explanation is also possible; in Sec. IV the
numerical results of Sec. III are explained through a study of
the phase space structures on the constant energy surfaces of
an alkali-metal atom in a static electric field. Finally in Sec.
V the results of Sec. IV are applied to the case of a slowly
oscillating harmonic field to derive the experimentally ob-
served ionization threshold. Section VI summarizes the re-
sults obtained.

II. THE QUANTUM PICTURE

The standard quantum explanation of the �3n0
5�−1 behavior

is given �6,14� in terms of core-induced Landau-Zener inter-
actions �15� between states of Stark manifolds with a princi-
pal quantum number differing by one and field-induced
Demkov-like interactions �16� within each manifold, as ex-
emplified in the qualitative plot shown in Fig. 1, which

FIG. 1. �Color online� The optimal ionization path for a n0�1 s
state in a quasistatic microwave field oscillating between ±Fmax

��3n0
5�−1. The rectangular box indicates the Demkov-like interac-

tion region for the n0 manifold; circles mark instead the Landau-
Zener interaction regions �to avoid overcrowding the picture, only
the extreme relevant avoided crossings between the n0 and �n0+1�

manifolds have been shown�.
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shows the optimal ionization path for a n0�1 s state as the
electric field slowly oscillates at the threshold amplitude F
= �3n0

5�−1. Interactions which can be approximated by the
Landau-Zener model �characterized by field dependent diag-
onal matrix elements and constant off-diagonal ones� are
marked by circles; interactions which instead can be approxi-
mated by a Demkov-like model �characterized by constant
diagonal matrix elements and field dependent off-diagonal
ones� are marked by squares. As the field rises the n0 ,s state
first undergoes an avoided crossing of the Landau-Zener type
with the highest energy state of the �n0−1� ,m=0 manifold
and then, at F= �3n0

5�−1, with the lowest energy state of the
n0 ,m=0 manifold; when the field decreases the population
distributes among these three states and—as the field ap-
proaches zero—among all the states of the two manifolds,
due to Demkov-like interactions. When the field rises again,
the peak field is not high enough to couple the �n0−1� ,m
=0 manifold to the �n0−2� ,m=0 one; on the other hand sev-
eral states of the n0 ,m=0 get to be coupled to the �n0

+1� ,m=0 manifold, so that diffusion toward higher energies
and eventually ionization ensues. The actual ionization rate
cannot be easily evaluated quantum mechanically, as the
population fraction exchanged at each avoided crossing de-
pends in a nontrivial manner on the oscillation frequency of
the field and its peak intensity �17�; classical diffusion is
therefore invoked �6�.

Since, in the experiments performed up to now, high an-
gular momentum states are not excited selectively in the
quantum azimuthal number m, only a small fraction of their
population is initially in the m=0, ±1 Stark manifolds,
which are those displaying significant core-induced avoided
crossings �6�, while most of the population is in the high m
manifolds where the avoided crossings are too narrow to
induce nonhydrogenic behaviors. Manifolds with the same
principal quantum number n but different m are not coupled
by the electric field; the population of high angular momen-
tum states is therefore trapped in the high m manifolds and
this explains why high angular momentum states display a
hydrogenic ionization threshold Fthreshold��16n0

4�−1.

III. PRELIMINARY CLASSICAL EXPLORATION

As we have seen in the quantum description above, be-
cause the electric field varies very slowly, most of the evo-
lution is adiabatic, and the results obtained for alkali-metal
atoms in a static electric field can be used to analyze the case
of a slowly varying field. Our first step will therefore be a
classical study of the static field case. From the discussion in
the above section it is also clear that the case m=0 is exactly
the case where the nonhydrogenic behavior we want to in-
vestigate appears most clearly; we have therefore chosen to
restrict our study to such a case.

The motion of the perturbed system being restricted to a
plane, we consider a two dimensional alkali-metal atom
model �18� in the �x ,z	 plane:

H0 =
1

�px
2 + pz

2� −
1

−
�e−�r

,

2 r r
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r = 
x2 + z2, �1�

where px and pz are the conjugate momenta to the spatial
coordinates x and z. The first two terms in Eq. �1� represent
the Hamiltonian for a hydrogen atom with zero z component
of the angular momentum: Lz=0 �that is: azimuthal quantum
number m=0� and the last term is the simplest known model
for the nonhydrogenic core potential, � being the core charge
and � a parameter proportional to the inverse of the core
radius �19�. The values of the parameters which give the best
fit to lithium have been found to be �=2.13 and �=2 �18�.

We now add to the free atom Hamiltonian �1� a static field
potential V=Fz; the system described by the Hamiltonian
H=H0+V is invariant under the scaling x→x /n0

2, z→z /n0
2,

px→pxn0, pz→pzn0, H→Hn0
2, t→ t /n0

3, F→Fn0
4, �→�n0

2,
�→�. Such a scaling would result in a hydrogenic threshold
behavior as can be easily seen from the scaling for the field
intensity F; on the other hand the core parameter � is fixed
for each atom type and therefore cannot be changed. Chang-
ing n0 without changing � means changing the relative di-
mension of the core to the orbit average radius and results in
a nonhydrogenic threshold behavior as can be seen from the
following preliminary numerical results, presented—in ac-
cordance with the current literature—in semiparabolic coor-
dinates scaled to the initial quantum number n0:

u =

r + z

n0
, �2�

v =

r − z

n0
, �3�

and in their canonically conjugate momenta pu and pv.
My findings are summarized in Figs. 2 and 3 where single

orbit Poincaré surfaces of section �SOS� for n0=40 and n0
=320 are shown. A SOS for a system orbit is given by the
points where the orbit crosses a given plane with positive
velocity. Those shown are for the �v , pv� plane at u=0 with
positive velocity u̇=du /dt�0. A comparison of the two fig-
ures clearly indicates that the fraction of the energy surface a
single orbit is able to explore depends on Fn0

5: the orbit on
5

FIG. 2. The Poincaré SOS in v and pv for n0=40 and Fn0
5

=0.04 �right� and Fn0
5=0.32 �left�. As the SOS is symmetric for

v↔−v, only half of each SOS is shown.
the right side of each figure, for which Fn0=0.04, covers
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only a small fraction of the SOS, equal in the two cases, even
if n0 differs by a factor 8 and F by a factor 1 /32 768�3
�10−5. The left side of the two figures, where Fn0

5=0.32,
confirms this, but also tells us that at the quantum threshold
field F= �3n0

5�−1 a single orbit is able to explore the entire
surface. The form taken by this exploration is on the other
hand different in the two cases: outside of the central region,
where the chaotic behavior first becomes evident �18�, the
n0=320 orbit appears much more regular than the n0=40
one; this is a consequence of the fact that far from the
nucleus the system is hydrogenlike and therefore scales as
Fn0

4.
Our aim is to now understand why this happens; we shall

do it by applying Chirikov’s resonance overlap criterion for
transition to chaos �11� in a form suitable to autonomous
systems �20�.

IV. THE CONSTANT FIELD CLASSICAL MODEL

The quantum mechanical studies quoted in Sec. II have
shown that the relevant feature in the quasistatic ionization
of alkali-metal atoms is the core-induced avoided crossing
between the highest lying state of the n0 Stark manifold with
the lowest one of the n0+1 one �in the hydrogen atom, the
levels cross because of symmetry �21��. This avoided cross-
ing takes place at an electric field strong enough that the
electric field potential dominates over the core potential; it is
therefore convenient to consider a�n� �hydrogenlike� atom
without core potential in a static electric field as our unper-
turbed system and the core itself as our perturbation; this
puts us out of the range of the weak electric field approxi-
mation used in Refs. �22,23�.

To apply Chirikov’s criterion it is convenient to write the
Hamiltonian in action-angle variables, so that we can explic-
itly calculate the characteristic frequencies of the unper-
turbed system. To do this we first write the Hamiltonian of
the unperturbed system �a two-dimensional hydrogen atom
in a static electric field�

Hh =
1

2
�px

2 + pz
2� −

1

x2 + z2

+ Fz �4�

FIG. 3. �Color online� The Poincaré SOS in v and pv for n0

=320 and Fn0
5=0.04 �right� and Fn0

5=0.32 �left�. As the SOS is
symmetric for v↔−v, only half of each SOS is shown.
in parabolic coordinates �� ,		, defined by

053405
r =
� + 	

2
, �5�

z =
� − 	

2
, �6�

and their conjugate momenta p� and p	 . The resulting
Hamiltonian

Hh = 2
�p�

2 + 	p	
2

� + 	
−

2

� + 	
+ F

� − 	

2
�7�

separates �12� and is therefore regular �nonchaotic�. We can
now pass to the action-angle variables �I , I1 ,
 ,�	 defined by
the equations

� = 2II1�1 − sin �1� , �8�

	 = 2I�I − I1��1 − sin �2� , �9�

p� =
1

2I

cos �1

1 − sin �1
, �10�

p	 =
1

2I

cos �2

1 − sin �2
, �11�

where I1
 I, and �1 and �2 are auxiliary angles defined by


 = −
I1

I
cos �1 −

I − I1

I
cos �2 − �2 +

�

2
, �12�

� = �2 − �1. �13�

The two actions I and I1 are the classical equivalent of the
parabolic quantum numbers n and n1 used in quantum me-
chanics to describe the interaction of a hydrogen atom with a
static electric field �24� and 
 and � are their respective
canonical angles.

In these coordinates, the Hamiltonian �7� reads, in first
�linear� approximation, �12�

H = −
1

2I2 +
3

2
FI�2I1 − I� . �14�

We have considered only the linear term of the electric
potential as the relevant crossing in the corresponding quan-
tum system takes place in the linear regime of the Stark
potential not only for the high angular momentum states but
also for the low angular momentum ones which, due to the
quantum defect, display at low electric fields only a qua-
dratic Stark shift �25,26�.

We can now add the core potential to the above Hamil-
tonian; to introduce it as a perturbation, we take its Fourier
expansion:

V = A0,0�I,I1� + �k,k1�02Ak,k1
�I,I1�cos�k
 + k1�� , �15�

where the coefficients Ak,k1
�I , I1� are the semiclassical matrix

elements of the perturbation �24�. For the resonant terms we
are interested in, we have—as we shall shortly see—k�k1

2
and k��I ; as long as I1 is not too close to 0 or I �the
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condition I1 , �I− I1��k1
2 / �2�I� must be verified�, we can

therefore write these coefficients as follows:

Ak,−k̄1
�I, Ī1�

= �
e−�I2

I2 ��I2 + k

�I2 − k
�k/2

�Ik1
�Ī1


�2I4 − k2�Ik−k1
„�1 − Ī1�
�2I4 − k2

… �16�

�
�

2�I4�Ī1�1 − Ī1�
exp
−

k̄1
2

2�

1

Ī1�1 − Ī1�
� �

Āk,−k̄1
�Ī1�

I4 ,

�17�

where the Ij�y�’s are modified Bessel functions and we have

introduced the scaled action Ī1= I1 / I and the scaled index

k1=−k1 / I. The approximations made to derive Eq. �17� are
discussed in the Appendix.

The scaled coefficients Āk,−k̄1
�Ī1� appear therefore almost

independent from I and k. Figure 4 shows the dependence on

k1 of the exact expression for Ā1,−k̄1
�Ī1�, given by Eq. �16�,

for several values of Ī1 for lithium ��=2.13 and �=2�: the

matrix elements are significant only for k̄1� �1.

Figure 5 shows instead the dependence of Ā1,−1�Ī1� on Ī1,
again using the exact expression Eq. �16�: there is a wide

peak around the central value Ī1=1/2, where from Eq. �17�
we have

Ā1,−1�1/2� �
�

��
e

−2
� = � 0.116, �18�

and drops to zero for Ī1=0 and Ī1=1.
Resonances induced by the core will take place when the

phase of one of the terms of the Fourier expansion �15� is
stationary; this happens when the two unperturbed frequen-
cies of motion for the phases 
 and �,

FIG. 4. �Color online� The dependence of Ā1,−k̄1
�Ī1� on k̄1 for

�=2.13 and �=2 and for various values of Ī1. From top to bottom

at k̄1=0: Ī1=0.05, 0.10, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50.
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�0 �
�H

�I
=

1

I3 + 3F�I1 − I� , �19�

�1 �
�H

�I1
= 3FI , �20�

satisfy the resonance condition

k�0 + k1�1 = 0, �21�

with k and k1 two integers.
Since, for F below the hydrogen ionization threshold, we

have �0��1, the most important resonances �those having
large stationary terms� will be for k= ±1, so that k1 is not too
big; in particular from Fig. 4 we see that the matrix elements
A1,−k1

�I , I1� are significantly large only for �k1 � � � I. Substi-
tuting k=1 and imposing −k1� I in the resonance condition
Eq. �21�, we obtain

F �
1

3I5
1 +
1

I2
�I − I1�� . �22�

For the high values of the principal action I we are consid-
ering, the second term in the denominator is negligible;
Eq. �22� therefore becomes independent of I1 and, since I
is the classical analogue of the principal quantum number
n0, corresponds to the experimental ionization threshold
F= �3n0

5�−1.
Obviously, the above argument only tells us that classical

resonances are noticeably big only for F� ��3n0
5�−1;

whether they do overlap and thus generate global chaos on
the energy surface is still an open question. To answer this
question we have first to find the positions of the resonances
on the energy surface. Let us therefore place ourself on a
constant energy curve in �I , I1	:

E0 = −
1

2 +
3

2
FI�2I1 − I�; �23�

FIG. 5. The dependence of Ā1,−1�Ī1� on Ī1 for �=2.13 and
�=2.
2I
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introducing the average action I0=1/
−2E0 �corresponding

to I1= I /2�, and the scaled quantities Ī= I / I0 and F0=FI0
4, Eq.

�23� now reads

3F0Ī4�2Ī1 − 1� + Ī2 − 1 = 0. �24�

In the same variables the resonance condition Eq. �21� for
k=1 reads:

3F0Ī4�− k1 + 1 − Ī1� = 1. �25�

If we now eliminate Ī between Eq. �24� and Eq. �25�, we
obtain the condition

3F0�− k1 + 2 − 3Ī1�2 = �− k1 + 1 − Ī1� . �26�

which, solved for k1, gives us

− k1
± =

1 − 6F0�2 − 3Ī1� ± 
1 − 12F0�1 − 2Ī1�
6F0

. �27�

Only the positive root is of interest to us and for 12F0�1 we
can expand the square root obtaining

− k1
+ =

1

3F0
+ 5Ī1 − 3 − 3F0�1 − 2Ī1�2 + ¯¯

�
1

3F0
+ 5Ī1 − 3. �28�

Since Ī1� �0,1�, we have five resonances �six if 1 / �3F0�
is an integer� at equally spaced values of Ī1 between 0 and 1:

Ī1 =

J − � 1

3F0
�

mod1

5
, J = �0�,1, . . . ,5. �29�

where the value 0 of the index J has been put in parenthesis
to indicate it is possible only for 1 / �3F0� an integer. The
corresponding indices k1 will read

− k1 = 
 1

3F0
� + J − 3 �30�

where �·� denotes the integer part. The resonance values for Ī
will instead be

Ī =
1

�1 + 3F0
 4

3
�J − � 1

3F0

�
mod1

� − 2��1/4
, �31�

which, since we are considering 3F0�1/ I0�1, we can ap-
proximate with 1.

From Fig. 5 it is clear that the widths of the first and last
resonances will be zero �for 1 / �3F0� an integer� or close to
zero, while the other four will be of comparable widths. We
now want to compare the average width of these resonances
to the separation of two consecutive resonances, if the former
is larger than the latter, the resonances overlap and we have
chaos on the energy surface �Chirikov’s resonance overlap

criterion �11��.
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To apply Chirikov’s resonance overlap criterion for tran-
sition to chaos to autonomous systems, we have to take into
account energy conservation �20�: the resonance width to be
considered is the one along the constant energy curve in
�I , I1	 containing the resonance center itself; from Eq. �14�
the versor r̄ tangent to the energy curve reads r̄= ��1 / ��̄ � ,
−�0 / ��̄ � 	 where �0 and �1 are given by Eqs. �19�,�20� and
��̄ � =
�0

2+�1
2. Following Ref. �20�, the resonant Hamil-

tonian in the restricted phase space of the tangent action
J= ��I− I�r���1− �I1− I1

�r���0� / ��̄� and its conjugate angle
�= �
�1−��0� / ��̄� where I�r� and I1

�r� are the actions at the
�k ,k1� resonance, reads:

Hr =
1

2
aJ2 + 2Ak,k1

�I�r�,I1
�r��cos���� , �32�

� = k��̄�/�1, �33�

a = r̄�� r̄ , �34�

where �̄̄ is the matrix of the second derivatives of H with
respect to I and I1. As ��̄ � ��0, we have ���k1� and �k1� is
the number of islands in the chain along the variable �.

The half width of the �k ,k1� resonance in J is therefore:

W = 2
2Ak,k1
�I�r�,I1

�r��

�a�
, �35�

and since ��̄ � ��0, it is also the width in I1, while the width
in I is negligible.

Since F0�1 we have, dropping the index �r� to avoid too
cumbersome a notation,

a = �3FI

��̄� �
2�− 5

I4 + 3F − 6F
I1

I
�

= �3F0Ī2

I0
2 �2

− 5 + 3F0Ī4�1 − 2Ī1�

�1 + 3F0Ī4�Ī1 − 1��2 + �3F0Ī4�2

� − 5�3F0Ī2

I0
2 �2

. �36�

Taking for k1 the approximate average value from Eq.
�28� k1=−1/ �3F0� and k=1, so that k−k1�−k1; taking also
I1= I /2 �this latter being the value for which Ak,k1

�I , I1� is
maximum, it will give an overestimate of the width� we ob-
tain, using Eq. �17� and remembering that for I1= I /2 we

have Ī=1,

A1,− 1
3F0

�I0,I0/2� �
�

��I0
4e− 2

��3F0I0�2 . �37�

The maximum resonance half width on the energy surface,
scaled to the average principal action I0, will therefore be

W
�

2 
 2�
e− 1

2 . �38�

I0 3F0I0 5�� ��3F0I0�
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Figure 6 shows W / I0 as a function of 3F0I0 for the lithium
parameters. The dotted curve is Eq. �38�; the full curves are
instead the exact scaled widths calculated at I0=10 for �from

top to bottom� Ī1=0.50, 0.20, 0.10, and 0.05. The first over-

lap will happen when the Ī1=0.5 width becomes larger than
0.10, that is for 3F0I0�0.4; to have global chaos on the
energy surface we instead need the extreme resonances to
both overlap with their nearest neighbor and to reach the
extremes in I1 of the energy manifold; this happens when the

I1=0.20 width becomes larger than 0.20, that is at 3F0I0
�0.7, in reasonable agreement with the numerical results
from Sec. III: the deviation is within the usual factor 2 ex-
pected for Chirikov’s criterion. Worth noting is the fact that,
as the perturbation is the atomic core, the resonance width
depends on the electric field F only indirectly, through the
resonance index k1 �see Eq. �30�� and the energy curve
shape. The first dependence gives the growth of the reso-
nance width, the second one its slow decrease at high F
where on the other hand the linear approximation for the
electric field potential used in the Hamiltonian �14� is no
longer valid.

While Eq. �38� shows that the average behavior depends
on the product 3F0I0 only, the details depend on 3F0 and I0
separately: using Eqs. �17�, �29�, �30�, �35�, and �36�, we
obtain, remembering that from Eq. �31� I� I0,

W

I0
�

2

3F0I0

�
 �

��
�J − � 1

3F0
�

mod1
��5 − J + � 1

3F0
�

mod1
�

�e−1/�� �1/3F0� + J − 3

2I0
�2 1

�J−�1/3F0��mod1��5−J+�1/3F0��mod1� . �39�

Figure 7 shows the positions �Eq. �29�� and widths �Eq.

�39�� of the resonances in Ī1= I1 / I� I1 / I0 as a function of

FIG. 6. �Color online� The dependence of W / I0 on 3F0I0 for

various values of Ī1: from top to bottom Ī1=0.50, 0.20, 0.10, and
0.05. The dotted line is the approximated width calculated using Eq.
�38�.
3F0I0 for �a� I0=10 and �b� I0=60: in both cases the general

053405
behavior is the same: the first overlaps happen for Ī1=0.5 at

3F0I0�0.41 �see the detail in Fig. 8� and the entire Ī1 range
is covered by the resonances for 3F0I0�0.7, but the vertical
symmetry is much better for I0=60; this is easily explained
by noting that, because of Eq. �28�, the speed of motion of a

FIG. 7. Position �Eq. �29�� and width �Eq. �39�� of the reso-

nances in Ī1= I1 / I� I1 / I0 as a function of 3F0I0 for �a� I0=10; �b�
I0=60.

FIG. 8. Detail of Fig. 7�b� for the values of 3F0I0 where the

resonances first overlap.
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resonance toward higher Ī1 values with increasing 3F0I0 in-
creases with I0, and that in our approximation the resonance
width depends from I1 only through Ak,k1

�I , I1� and is there-

fore symmetric in Ī1 and 1− Ī1 along the resonance curves
�k1=const�.

V. THE VARIABLE FIELD CLASSICAL MODEL

Let us consider a cyclical perturbation of a given system;
an action is an �approximate� adiabatic invariant if the un-
perturbed frequency of motion of the associated angle vari-
able is much larger than the fractional rate of change of the
perturbation itself �12�; even though there is no change of
energy over a whole cycle of the perturbation, the energy of
the system changes during the time the perturbation is var-
ied. The opposite limit is that of sudden or diabatic variation:
in this case the energy of the system does not change at all
during the time the perturbation is varied.

In a few words: diabatic variation of a perturbation means
that the motion of the unperturbed system is very slow com-
pared to the rate of change of the perturbation and therefore
a whole cycle of the perturbation brings no change to the
system, which had no chance to evolve. Adiabatic variation
means instead that the motion of the unperturbed system is
very fast compared to the rate of change of the perturbation
so that the system can follow the slowly varying orbit it is on
and again a whole cycle of the perturbation brings no change
to the system, apart from a vector phase, sum of a dynamical
part �the integral over the pulse time of the instantaneous
frequency for each action� and of a geometrical part �the so
called Hannay angle �27��.

Different orbits having different periods, adiabaticity de-
pends on initial conditions. Two classes of orbits are intrin-
sically nonadiabatic. The first one is that of the separatrices:
orbits with infinite period which separate regions of phase
space characterized by different kinds of motion, e.g., rota-
tion and liberation for a pendulum. The other class is that of
chaotic orbits, because of exponential instability.

The really interesting case is the case in between the two
above: in this case motion of the unperturbed system and rate
of change of the perturbation are comparable and the system
neither stays still nor evolves along the varying orbit it was
initially on. It instead moves to different static perturbation
orbits so that in general energy exchange will ensue.

A particularly interesting such case is when the variation
of the perturbation causes the system to nonadiabatically
cross over �either through a separatrix or a chaotic region�
from a region of phase space to another where motion is of a
different nature; in this case the phase acquired by the system
during the adiabatic part of the evolution can play an essen-
tial function in determining the final energy �see, e.g., �28��.

In our case we slowly vary the electric field according to
the sine law F�t�=F sin�� ft� so that the fractional rate of
change reads � f / tan�� ft�; apart from the cases � ft=N�, N
an integer, where it goes to zero, or � ft= �2N+1�� /2 where
it goes to infinity �29�, we can use the approximate value � f.

Considering as our unperturbed system a hydrogen atom
in a static electric field, the frequencies to be considered
053405
would be those associated with the two independent actions
I1 and I2: in the electric field linear regime, they give the
conditions

� f �
1

I3 + 3FI1 = �0 + �1, �40�

� f �
1

I3 − 3FI2 = �0; �41�

which, as in our case FI3Ii�FI4�1, reduce in both cases to

� fI
3 � 1. �42�

The above condition is the exact definition of the regime we
are interested in and is therefore always verified.

In the case the unperturbed system is instead an alkali-
metal atom in a static electric field, we shall distinguish two
regimes: low electric fields F� �3n0

5�−1; and threshold elec-
tric fields F��3n0

5�−1, where, as chaos is global, adiabatic
evolution is impossible everywhere.

For low electric fields the situation is more complicated,
as the phase space is mixed: deformed tori and resonance
islands coexist in it. Far from the resonance islands the two
actions I1 and I2 are still good approximations of the actual
actions of the system and we still have adiabatic evolution
for � fI

3�1. In the regions on the border of the resonance
islands the motion is instead chaotic and no adiabatic motion
is possible �30�. Finally, inside the islands the system is ap-
proximated by a pendulum one �11�; from Eq. �32� we there-
fore have that, close to the center of an island, the frequency
of motion around the center of the island itself is �i

=�
2aAk,k1
�I , I1�, so that the adiabaticity condition reads:

� fI
3 �

15

2
F0

W

I
; �43�

using Eq. �38� as an approximate evaluation of W this con-
dition becomes:

� fI
3 �

1

I

10�

��
e−1/���3F0I�2� �


3

I
e−1/�2�3F0I�2�, �44�

where in the last expression we have introduced the param-
eters for lithium. As I�1, the condition is a very stringent
one and is never verified for the range of parameters we are
interested in; adiabaticity is therefore not possible also inside
the resonance islands themselves.

Let us now see what happens when the electric field in
our system is slowly increased: from Figs. 7 and 8 we see
that the resonances appear at I1=0 and move to higher values
of I1 �31� growing in size up to I1= I /2 and then decreasing
again. This might at first sight suggest as a ionization mecha-
nism the trapping of orbits in the resonance islands which
would then transport them and finally release them either
when the resonance islands themselves break because of
overlap with nearby resonances �32� or when the island size
decreases �either at high I1 for increasing field, or at low I1
for decreasing field�. Such a mechanism could in principle
work for F� �3n0

5�−1; it would on the other hand require

adiabatic �or quasiadiabatic� evolution within the resonance
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islands, which as we have seen is far from the case for the
range of parameters we are interested in: as the motion inside
the resonance island is at its fastest still much slower than the
rate of field change, the islands themselves will not be seen
by the orbits.

The only possible mechanism is therefore diffusion in the
chaotic sea, which happens only for F��3n0

5�−1. As it was
the case in the quantum description summarized in Sec. II,
an actual evaluation of the diffusion and ionization rates does
not appear easy. Moreover, the only data we have for com-
parison are the numerical ones in Ref. �5�, where only Fig.
6.8 refers to ionization rates in the regime we are dealing
with: three plots are shown for different values of the micro-
wave field, but just for a single frequency. They show that
over long interaction times the decay of the survival prob-
ability is neither exponential, as expected for a completely
chaotic phase space �33�, nor algebraic, as expected in mixed
phase space �34�. On the other hand, while residual phase
space structures influence the ionization rate of the few orbits
surviving after a long interaction time, for short interaction
times a description in terms of diffusion in a completely
chaotic phase space still appears feasible. Unfortunately the
resolution of Fig. 6.8 from Ref. �5� is too low to extract any
data useful for comparison from the near-threshold plot;
nonetheless, the two plots at higher field values seem to in-
dicate an initial behavior still in accordance with the classical
decay time tD=�� f

4/3 / I0F2 given in Ref. �35� for � f � I0
−3.

Data, both experimental and numerical, gathered at different
frequencies will be needed to decide whether this is indeed
the case.

VI. CONCLUSIONS

We have shown here that the ionization of excited low
angular momentum alkali-metal atoms in a quasistatic mono-
chromatic field is chaotic, as opposed to the ionization of
hydrogen atoms in a similar field, which is known to be
regular. Resonances, induced by the interaction of the core
potential with the microwave electric field, overlap at F
��3n0

5�−1, thus triggering chaotic diffusion which results in
ionization. The motion within the single resonance islands
being extremely slow, the islands themselves are not seen by
the system during the pulse and therefore allow no efficient
path to ionization for electric fields below those necessary
for global chaos.

The present paper concludes our study in terms of nonlin-
ear dynamics of the ionization mechanisms for excited
alkali-metal atoms in microwave fields initiated in Ref. �8�
and prompted by the individuation of three different regimes
in the numerical studies by Buchleitner and Krug �3–5�: in
the high frequency regime �� fI

3�1� the ionization threshold
is determined by the same quantum localization mechanism
as for excited hydrogen atoms �35�; in the intermediate fre-
quency regime �� fI

3� �1� quantum localization again de-
termines the ionization threshold, but the alkali-metal atoms
quantum defects raise the dimensionality of the problem �8�;
finally, as we have shown in the present paper, in the low
frequency regime �� fI

3�1�, classical dynamics, which for

excited hydrogen atoms essentially determines the ionization

053405
threshold already for � fI
3�1, determines the ionization

threshold for excited alkali-metal atoms too; but, due to core
effects, the ionization process is chaotic and the threshold
much lower than the hydrogen one.
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APPENDIX: THE FOURIER COMPONENTS
OF THE CORE POTENTIAL: EXACT
AND APPROXIMATE EXPRESSIONS

We derive here the exact expression of the coefficients
Ak,k1

�I , I1� of the Fourier expansion of the core potential and
discuss the approximation Eq. �17� given in the text: the
coefficients of the Fourier expansion

V � −
�e−�
x2+z2


x2 + z2
= �k,k1

Ak,k1
�I,I1�ei�k
+k1�� �A1�

are given by the integral

Ak,k1
�I,I1� = −

1

�2��2�
0

2�

d
�
0

2�

d�
�e−�
x2+z2


x2 + z2
e−i�k
+k1��.

�A2�

To evaluate it, we change integration variables from 
 and �
to �1 and �2: from �12� and �13� the Jacobian determinant of
the transformation reads

D��1,�2� =
I1

I
sin �1 +

I − I1

I
sin �2 − 1; �A3�

using then Eqs. �5�, �6�, �8�, and �9�, we obtain �36�:

Ak,k1
�I,I1� = �− i�k 1

�2��2

�e−�I2

I2

��
0

2�

d�1e�II1sin �1+i�kI1/Icos �1+k1�1�

��
0

2�

d�2e�I�I−I1�sin �2+i
k
I−I1

I
cos �2+�k−k1��2�

= �
e−�I2

I2 ��I2 + k

�I2 − k
�k/2

Ik1
� I1

I

�2I4 − k2�

�Ik−k1
� I − I1

I

�2I4 − k2� , �A4�
where the Ij�y�’s are modified Bessel functions.
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Because for integer indices the modified Bessel functions
have the property I−j�y�= Ij�y�, it is clear from Eq. �A4� that
A−k,−k1

�I , I1�=Ak,k1
�I , I1�. Equation �A1� can therefore be

FIG. 9. �Color online� Comparison of the exact dependence of

Ā1,−k̄1
�Ī1� on k̄1 with the approximation using Eq. �A8�. �a� Ī1

=0.05, full curve Eq. �A7�, dash: exact result for Ī=10. �b� Ī1=0.5,

full curve: Eq. �A7�, dash: exact result for Ī=10, dot: exact result

for Ī=20. The parameters are those for lithium: �=2.13 and �=2.
The main figures are on a logarithmic scale, the insets on a linear
one.
written as follows:

states widths calculated by Damburg and Kolosov in Rydberg

053405
V = A0,0�I,I1� + �k,k1�02Ak,k1
�I,I1�cos�k
 + k1�� , �A5�

which is the expression given in the text, Eq. �15�.
If we now introduce the scaled action Ī1= I1 / I in Eq. �A4�,

we can easily see that, if k��I2, the arguments of the modi-
fied Bessel functions scale approximately as I2. Moreover,
whenever the index j is small with respect to the argument y,
we can use the expansion �37�

Ij�y� =
ey


2�y

1 −

4j2 − 1

8y
+

�4j2 − 1��4j2 − 9�
2 ! �8y�2

−
�4j2 − 1��4j2 − 9��4j2 − 25�

3 ! �8y�3 + ¯ � �A6�

which, if j is itself large, can be further simplified as follows:

Ij�y� �
ey


2�y

1 −

j2

2y
+

j4

2 ! �2y�2 −
j6

3 ! �2y�3� �
ey− j2

2y


2�y
.

�A7�

Introducing the scaled index k̄1=−k1 / I, assuming k�k1 and
I1 , �I− I1��k1

2 / �2�I�, and substituting Eq. �A7� in Eq. �A4�,
the matrix elements read

Ak,−k̄1
�I, Ī1� �

�

2�I4�Ī1�1 − Ī1�
exp
−

k̄1
2

2�

1

Ī1�1 − Ī1�
� ,

�A8�

which is the expression given in the text. From Eq. �A8� we

see that Ak,−k̄1
�I , Ī1�� I−4; to give an idea of the residual de-

pendence on I, Fig. 9 compares the scaled matrix element
calculated using Eq. �A8� with the exact ones for I=10 and
I=20: even on a logarithmic scale the differences are small.
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