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A quantum control landscape is defined by the value of a physical observable as a functional of the
time-dependent control field E�t� for a given quantum-mechanical system. Level sets through this landscape
are prescribed by a particular value of the target observable at the final dynamical time T, regardless of the
intervening dynamics. We present a technique for exploring a landscape level set, where a scalar variable s is
introduced to characterize trajectories along these level sets. The control fields E�s , t� accomplishing
this exploration �i.e., that produce the same value of the target observable for a given system� are determined
by solving a differential equation over s in conjunction with the time-dependent Schrödinger equation. There
is full freedom to traverse a level set, and a particular trajectory is realized by making an a priori choice for a
continuous function f�s , t� that appears in the differential equation for the control field. The continuous function
f�s , t� can assume an arbitrary form, and thus a level set generally contains a family of controls, where
each control takes the quantum system to the same final target value, but produces a distinct control mecha-
nism. In addition, although the observable value remains invariant over the level set, other dynamical proper-
ties �e.g., the degree of robustness to control noise� are not specifically preserved and can vary greatly.
Examples are presented to illustrate the continuous nature of level-set controls and their associated induced
dynamical features, including continuously morphing mechanisms for population control in model quantum
systems.
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I. INTRODUCTION

The control of quantum phenomena is an increasingly ac-
tive area of research �1,2�. Quantum control theory �3–11�
has provided many of the concepts �12� behind the perfor-
mance of recent closed-loop control experiments �13–19�.
The search for an effective control is often carried out as an
optimization on a landscape, which is defined as the target
observable value as a functional of the control field for a
given �constant� quantum system. Some basic features of the
control landscapes are beginning to emerge �20�, but much
remains to be understood. This paper provides one means for
exploring quantum control landscapes by taking trajectories
over their level sets, specified by a particular value of the
observable.

The quantum control landscape for a given Hamiltonian is
generally expected to be a highly complicated functional of
the control field. A point on the landscape corresponds to the
observable value derived from a particular control field at a
constant final dynamical time T. Consideration of all possible
control fields would specify the full landscape, while a level
set would consist of the collection of all fields that produce a
particular value for the target observable, regardless of the
intervening temporal dynamics �i.e., control mechanism�.

Exploration of level sets through the control landscape is
important for several fundamental reasons. The existence of
multiple control field solutions to a given quantum control
problem has been known for some time �21–23�; however, if

these distinct solutions are interpreted as members of the
same quantum control landscape level set, the relationship
between them may be better understood, particularly if a
trajectory through the landscape may be identified that links
the solutions. In addition, a level-set analysis may be the first
step to understanding the complete relationship between tai-
lored fields and controlled quantum dynamics as level-set
explorations can systematically explore the quantum control
landscape in order to learn more about the topology of the
space.

This paper presents a simple trajectory technique for
traversing the level sets in arbitrary directions. In doing
so, the physical system need not be fully controllable, but the
level-set observable value must be reachable. The tools
utilized for the control level-set analysis are a special case
of a broader technique referred to as diffeomorphic modula-
tion under observable preserving homotopy �D-MORPH�
�24�. The remainder of the paper is organized as follows.
Section II derives the formalism for exploring level sets
in the control landscape, and numerical examples are pre-
sented in Sec. III. Finally, concluding remarks are provided
in Sec. IV.

II. LEVEL-SET CONTROL ANALYSIS

This section develops a simple means for exploring level
sets on a quantum control landscape. At the final dynamical
time T, the expectation value of the target observable opera-
tor O of interest is given by ���T��O���T����O�, where
���t�� satisfies the time-dependent Schrödinger equation on
the interval t� �0,T�,
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i�
�

�t
���t�� = �H0 − �E�t�����t��, ���0�� = ��0� , �1�

for the field-free Hamiltonian H0 and dipole matrix operator
�, with E�t� being the control field and ��0� the initial con-
dition. The level-set analysis depends on the mapping
E�t�→ �O�, and other forms of the Hamiltonian can just as
easily be treated. A variation of �O� due to an associated
differential variation �E�t� is given to first order by

d�O� = 	
0

T ��O�
�E�t�

dE�t�dt . �2�

The higher-order terms neglected in Eq. �2� only become

relevant at a true control extremum, where
��O�

�E�t� =0, " t. In

this paper, exploration of the landscape level sets will be
done away from an extremum, but an extremum may
be approached numerically as close as desired with the
present formulation. Since the goal of the analysis is to ex-
plore level sets of the quantum control landscape, it is con-
venient to parametrize the field and its variation by the ex-
ploration variable s,

E�t� Þ E�s,t� , �3a�

dE�t� Þ dE�s,t� . �3b�

Here, s spans some domain and without loss of generality we
may take 0�s�1, where the initial control field E�s=0, t� is
assumed known from some prior control calculation. Divid-
ing Eq. �2� by the differential ds produces

d

ds
�O� = 	

0

T ��O�
�E�s,t�

�E�s,t�
�s

dt = 0, �4�

where the right-hand side has been set to zero in recognition
of the fact that level sets on the quantum control landscape
are defined by the demand d

ds �O�=0, " s, corresponding
to the observable value remaining invariant �i.e., fixed at
the value determined by E�0, t�� while the control field
E�s , t� traverses some trajectory parametrized by s. The pos-
sible dependence of �O� on s is evident in the expression
�O�s��= ���s ,T��O���s ,T��, where ���s ,T�� depends on s
through E�s , t�; traversing a level set corresponds to identi-
fying control field trajectories E�s , t�, s�0, such that
�O�s��= �O�s=0��, s�0. The relationship in Eq. �4� is highly
underspecified for determining E�s , t� as s traverses a level
set, and the integral equation may be conveniently expressed
as an equivalent initial-value problem

�E�s,t�
�s

= S�t�
 f�s,t� −
��s�
	�s�

a0�s,t�� , �5�

where E�0, t� is assumed to be known. Here, S�t� is an arbi-
trary weight function �used, for example, to bias the control
field towards a short pulse that approaches zero at t=0 and

t=T� and the notational choice a0�s , t��
��O�

�E�s,t� is made in

keeping with earlier D-MORPH work �24�. The function
a0�s , t� may be identified as �see the Appendix�

a0�s,t� = −
1

i�
��0��U†�T,0�OU�T,0�,U†�t,0��U�t,0����0� ,

�6�

where U�t , t�� is the time evolution operator satisfying

i�
�

�t
U�t,0� = �H0 − �E�s,t��U�t,0�, U�0,0� = I . �7�

Since U�t ,0� depends on the control field E�s , t�, it is under-
stood to depend on s as well.

For convenience below, we introduce the weighted inner-
product notation

„p�s�,q�s�…S�t� = 	
0

T

S�t�p�s,t�q�s,t�dt , �8�

where p�s , t� and q�s , t� are arbitrary integrable functions of
t� �0,T�. In this notation, the initial-value problem, Eq. �5�,
employs

	�s� = „a0�s�,a0�s�…S�t� �9a�

and

��s� = „a0�s�, f�s�…S�t�. �9b�

The validity of Eq. �5� for any continuous function f�s , t� of
arbitrary form �25� can easily be verified by substitution into
Eq. �4�. The origin of the ability to freely choose the func-
tions f�s , t� lies in the multiplicity of solutions to the original
equation �4�. Thus, by construction, regardless of the choice
made for the function f�s , t� in Eq. �5�, the observable �O�s��
will remain invariant. A particular choice for f�s , t� will re-
sult in the field E�s , t� traversing a particular trajectory, la-
beled by s, across the level set.

The working equations to traverse the level sets are
Eqs. �5� and �7�, which are linked through a0�s , t� in Eq. �6�.
Additional insight into how f�s , t� in Eq. �5� guides the
level set trajectories may be obtained by defining uO�s , t� as
a function of unit norm under the weighted inner product,
Eq. �8�,

uO�s,t� = a0�s,t�/	�s�1/2, �10�

such that

„uO�s�,uO�s�…S�t� = 1. �11�

A projection operator PO can be specified in terms of the
function uO�s , t�, where the action of PO on any continuous
function f�s , t� is

PO · f�s,t� = uO�s,t�„uO�s�, f�s�…S�t�. �12�

Equation �5� may then be rewritten as

�E�s,t�
�s

= S�t��1 − PO�f�s,t� = S�t�g�s,t� . �13�

By virtue of the identity a0�s , t�=
��O�

�E�s,t� in Eq. �6�, the opera-

tor 1−PO projects any choice of f�s , t� to produce a function
g�s , t� that has no component along the direction �i.e., a0�s , t�
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or, equivalently, uO�s , t�� that could change �O�s��, since
Eqs. �4� and �13� imply that

	
0

T

a0�s,t�
�E�s,t�

�s
dt = „a0�s,t�,g�s,t�…S�t� = 0. �14�

In this fashion, formally integrating Eq. �13� yields a control
E�s , t�,

E�s,t� = E�0,t� + S�t�	
0

s

g�s�,t�ds�, �15�

which produces dynamics that leaves �O�s�� invariant �i.e.,
�O�s��= �O�s=0��� at the final dynamical time T. However,
the intervening dynamics over the interval t� �0,T� for any
particular value of s will generally be very sensitive to the
path that E�s , t�, s�0, follows along the level set. Thus,
although the target observable �O�s�� remains fixed regard-
less of the value of s over a trajectory along the landscape
level set, the control mechanism is not conserved and could
vary widely over the span of the level set. Furthermore, other
dynamical characteristics could also vary over the level set;
an important characteristic is robustness to control field noise
reflected in the observable’s Hessian eigenvalues. These
points will be made evident in the illustrations of the follow-
ing sections.

To facilitate understanding the notion of a trajectory
through a level set of the quantum control landscape, a met-
ric Ds�E� is defined that measures the distance between any
control field E�s , t� on a level-set path and the corresponding
initial control field E�0, t� as follows:

Ds�E� � �E�s,t� − E�0,t��2

= 
 1

T
	

0

T

�E�s,t� − E�0,t��2dt�1/2

= � 1

T
	

0

T 
S�t�	
0

s

g�s�,t�ds��2

dt�1/2

, �16�

where the last step utilized Eq. �15�. The metric Ds�E�
is positive semi-definite (i.e., Ds�E�
0 and
Ds�E�=0ÛE�s , t�=E�0, t�) and easy to compute. As g�s , t�
is a free function with the only criterion being that it
be orthogonal to uO�s , t� �cf. Eq. �14��, it is evident that
some level-set excursions can lead Ds�E� to grow without
bound. In this metric sense, the level sets are generally
expected to be of infinite extent while always preserving
�O�s��, yet exhibiting a continuous family of control
mechanisms.

III. NUMERICAL EXAMPLES

The illustrations in this section aim to demonstrate the
freedom imparted by the continuous function f�s , t� for the
evolution of the control fields E�s , t� and their associated
mechanisms across quantum control level sets. However,
since the focus of this paper is to introduce the level-set
technique, the physical systems considered here are deliber-

ately simple and no attempt is made to draw a comparison
between the systems considered in this section and systems
used in laboratory control experiments, although the prin-
ciple applies equally well to both circumstances. All of the
calculations consider an eight-level Hamiltonian of the form
described in Eq. �1� �26� with nondegenerate levels and
where the only allowed couplings are between adjacent,
next-nearest, and next-next-nearest states. The control goal
in the examples is state-to-state population transfer from �1�
to �8� over the interval t� �0,T� at a particular yield speci-
fying the level set through which trajectories will be taken.
The intermediate-time dynamics �i.e., control mechanism� is
not constrained and varies freely along the level-set trajec-
tory. For these illustrations, O= �f��f � with �f�= �8�, so that
Eq. �6� reduces to

a0�s,t� = −
2

�
Im���0�U†�T,0��f��f �U�T,t��U�t,0���0�� .

�17�

The goal is to show that for a given input control field E�s
=0, t�, various choices of f�s , t� lead to different trajectories
along the landscape level-set traversing fields that preserve
the value of the target observable but exhibit different char-
acteristics, both in the pulse shape and in the induced quan-
tum dynamics. These characteristics will provide evidence of
the breadth of the field and dynamical behavior found in any
particular level set. Furthermore, the opportunity exists for
specifying a level-set pathway along which specific control
field characteristics are imposed through the choice of f�s , t�,
although this capability is not directly addressed here. The
metric Ds�E� will be used as a quantitative measure of the
breadth of the level set, as viewed from the reference field
E�0, t�.

Computationally, Eq. �5� is solved using fourth-order
Runge-Kutta integration over s, where each derivative evalu-
ation requires solving the time-dependent Schrödinger equa-
tion �1� subject to the control field at the most recent s step.

Within each evaluation of
�E�s,t�

�s �i.e., the right-hand side of
Eq. �5��, the time variable t is uniformly discretized as tj,
j=0,1 , . . . ,n−1, where n is typically 1024 or 2048 and
the extrema of the interval are t0=0 and tn−1=T=14. To
obtain the coefficient a0�s , t�, the Schrödinger equation
is propagated from ��0� over the dynamical interval t
� �0,T� by explicitly generating the time evolution matrices
Uj, where each matrix Uj =U�tj , tj+1� evolves the wave
function over the jth time step. Arbitrary units are used
throughout.

A. Level sets for high control field

This case aims to explore the scope of the level set
originating from an input control field E�s=0, t� that
produces the high yield P�1�→�8�=0.99. To perform trajecto-
ries through the level set based on Eq. �5�, we choose the
functions
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f�s,t� = f±�s,t� = ±
E�s,t�

c±S�t��s
, �18�

where �s is the mesh spacing used in evolving the control

fields, S�t�=exp�− �T−5.5�2

�T/5�2 � is the weight function, and the

constants c+=600 and c−=100 are used used to maintain nu-
merical stability in solving for E�s , t�. It can be shown �24�
that this choice of function will either maximize ��� or mini-
mize ��� the fluence of the control field when moving to-
wards large s values along the level set. Although fluence
minimization is generally a desirable property in a control
field, the consideration of fluence maximization in this sec-
tion is a convenient way of moving as far away as possible
�in terms of the field metric Ds�E�� from the initial field
along a particular level set trajectory. In this regard, the 

signs in Eq. �18� are critical to the analysis, while the pres-
ence of c±S�t��s simply scales the rate at which the excur-
sion takes place. A larger constant c+ is utilized for fluence
maximization �over that of fluence minimization with c−�
because if the amplitude of the field grows too large, the
temporal discretization needs to be finer in order to accu-
rately propagate the Schrödinger equation.

The progression of fields E+�s , t� and E−�s , t� �i.e., corre-
sponding to f±�s , t� in Eq. �18�� are displayed in Fig. 1�a�,
with each starting from the same initial field E�s=0, t�. It is
evident that fluence maximization causes E+�s , t� to grow in
amplitude and significantly change in form, while fluence
minimization causes a decline in intensity in E−�s , t� that is
far less dramatic in this case. Figure 1�b� makes the differ-
ences in control field evolution clearer by plotting
E�s=0, t� along with E+�s=1, t� and E−�s=1, t�. Fluence
minimization has an effect on the control field, although the
effect is subtler than in the fluence maximizing case. There is
some residual similarity in the fields as a result of f±�s , t�
being proportional to E�s , t� in Eq. �18�. However, other
choices for f�s , t� can generate fields showing no such simi-
larity yet still leaving P�1�→�8�=0.99. To show the wide vari-
ety of dynamical behavior produced by these fields, Fig. 1�c�
displays the population of state �8� as a function of t for the
initial field E�s=0, t� and at s=1 for the cases of fluence
minimization and maximization. Importantly, the population
in state �8� at the final dynamical time T is constant for all s,
demonstrating that the progression of control fields E�s , t�
form a level set at P�1�→�8�=0.99, independent of s. However,
the intermediate-time dynamics depends on s and the im-
posed level-set trajectory in a very complicated way. The
differences in the population of state �8� as a function of time
are taken as evidence of the different control mechanisms
operative in each case. In the present circumstance, the field
at s=1 for fluence minimization is close to that of the initial
field E�s=0, t�, which is reflected in their similar dynamics
for the population in state �8� in Fig. 1�c�. On the other hand,
the case of fluence maximization shows significantly differ-
ent population dynamics. These dynamical features indicate
the use of multiple transition pathways throughout the s in-
terval even in this illustration of just two level-set trajecto-
ries, suggesting that the level set specified by P�1�→�8�=0.99

is vast and rich with fields capable of producing dynamics of
dramatically different character.

To quantitatively assess the scope of the level set, Fig.
1�d� shows the metric Ds�E±� for s� �0,1�. As s→1, there is
rapid growth in Ds�E+�. Cutting off the level-set trajectory at
s=1 is an arbitrary choice, and as indicated by Eq. �16� the
growth of Ds�E+� can continue without bound along the
level-set trajectory defined by f+�s , t� by proceeding to larger
values of s. In contrast, the field metric Ds�E−� for the flu-
ence minimizing case asymptotes as s increases, suggesting
the arrival at a control field of minimal fluence that still
accomplishes the required population transfer. This behavior
may be further understood by considering the fluence mini-
mizing cost functional J−,

J−„s,�E−�s,t��,��O�s���… =
1

2
	

0

T �E−�s,t��2

S�t�
dt −

1

�
��O�s��

− �O�0��� , �19�

which is written within the more general context of an arbi-
trary observable �O�s������s ,T��O���s ,T��. Here, � is a
Lagrange multiplier introduced to satisfy the level-set con-
straint �O�s��= �O�0��, " s. The functional extremum of Eq.

�19�,
�J−

�E−�s,t� =0, in the asymptotic limit of s→� produces the

relation

S�t�
��O�

�E−�t�
= �E−�t� �20a�

or, equivalently,

S�t�a0�t� = �E−�t� , �20b�

where a0�t� is given by Eq. �6�. Here the dependence on s is
suppressed, as Eq. �20� is assumed to be in the limit s→�
with a0�t�=lims→� a0�s , t� and E−�t�=lims→� E−�s , t�. Ex-

pressed another way, we expect that lims→�

�E−�s,t�

�s =0, corre-
sponding to producing a limiting field of minimal fluence as
s grows, which is verified in Fig. 1�d� for Ds�E−�. From Eqs.
�5� and �18� in this case we have that

S�t�a0�t� =
	

c−��s
E−�t� , �21�

where the dependence on s disappears for a0�t�, 	, �, and
E−�t� in the limit s→�. Equation �21� has the same form as
Eq. �20b� with � identified as 	 /c−��s. Importantly, Eq.
�20b� can be viewed as a highly nonlinear integral equation
eigenvalue problem with a0�t� given by Eq. �6� and the
eigenfunctions and eigenvalues being E−

i �t� and �i, respec-
tively. Here, the index i labels these eigenfunctions and ei-
genvalues; evidently, distinct fluence minimizing controls
E0

i �t� may exist whose form depends on the initial choice for
Ei�s=0, t� such that lims→� Ei�s , t�=Ei�t�. Trajectories may
be taken to discern the family of fluence minimizing fields
E−

i �t� or Eq. �20b� could be solved iteratively for this
purpose.
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Level sets are defined by a constant value of the target
observable, and the trajectories dictated by f±�s , t� obey this
demand. However, while the target observable value is fixed,
no such demand is made of other system observables and
properties. One important quantity is the Hessian with re-
spect to the control field,

H�t,t�� =
�2P�1�→�8�

�E�s,t��E�s,t��
=

�a0�s,t��
�E�s,t�

. �22�

Employing the calculus of variations, Eq. �22� may be ex-
pressed as

FIG. 1. Starting from an initial control field
E�s=0, t� and using 1024 s steps on the interval
s� �0,1�, the control fields E±�s , t� are evolved
subject to the functions f±�s , t� in Eq. �18�. �a�
Under fluence maximization with f+�s , t�, the
control field grows in amplitude and incorporates
complex structure; under fluence minimization
with f−�s , t�, the progression of fields decreases in
amplitude, slightly in this case. �b� Cross sections
of the fields in �a� at s=0 and s=1 are plotted.
The field at s=0 is the same for E+�0, t� and
E−�0, t�, but the different functions f+�s , t� and
f−�s , t� lead the fields to evolve in dramatically
different ways for s�0. In particular, E+�1, t� in-
corporates new structure while E−�1, t� remains
closer in structure to the original field. �c� The
population of state �8� is displayed at s=0 and
also at s=1 for both the fluence minimizing and
maximizing cases. It is seen that fluence minimi-
zation tends to simplify the intermediate-time dy-
namics, while fluence maximization tends to
complicate the dynamics. In all cases, the popu-
lation at the final dynamical time t=T is pre-
served. The differences in the intermediate-time
dynamics here are taken as evidence of broader
differences in the control control mechanism
along each level set trajectory. �d� The field met-
ric Ds�E�, defined in Eq. �16�, is plotted for flu-
ence minimization and maximization. For fluence
maximization, the metric increases rapidly with s;
under fluence minimization, the metric levels off
as the field approaches minimal fluence while
still accomplishing the requisite population
transfer.

EXPLORING THE LEVEL SETS OF QUANTUM CONTROL¼ PHYSICAL REVIEW A 73, 053401 �2006�

053401-5



H�t,t�� =
2

�2 Re���0���t��U†�T,0��f��f �U�T,0���t���0�

− ��0�U†�T,0��f��f �U�T,0���t���t����0��, t 
 t�,

�23�

where the dipole operator matrix is, in the Heisenberg repre-
sentation,

��t� = U†�t,0��U�t,0� . �24�

Equation �23� was evaluated at the discretized time points tj,
j=0,1 , . . . ,2047, and the Hessian eigenvalues �not shown
here� were all negative, consistent with being near the ob-
servable maximum at P�1�→�8�=0.99. Figure 2 displays the
trace of the Hessian, �0

TH�t , t�dt, for level set trajectories
taken in both the fluence maximizing and fluence minimizing
directions. Since these trajectories originate with the same
control field E�s=0, t�, Fig. 2 is naturally continuous. There
is a cusp at s=0 arising from a slope discontinuity due to the
differences between the constants c± employed in f±�s , t�, Eq.
�18�. As the field grows in amplitude �i.e., the fluence maxi-
mizing trajectory�, the trace of the Hessian is not preserved.
The variation in the trace reflects the existence of different
degrees of robustness of the observable �O�s�� to noise in the
control field E�s , t�, despite the fact that �O�s��= �O�s=0�� is
a dynamical constant on the level set. Conversely, along the
field minimizing trajectory, the trace of the Hessian varies
slightly and then approaches a limiting value. This less dra-
matic behavior is consistent with Fig. 1�a�, where E−�s , t�
quickly approaches a limiting pulse shape as s increases.

These calculations and many others �not shown here�
clearly show the ability to move freely over control land-
scape level sets at high target observable yields. In doing so,
continuous families of fields may be identified of rich, evolv-

ing structure where each field in the family preserves the
high yield of the target observable, yet has its own associated
control mechanism and other dynamical properties.

B. Level sets for low control yield

To explore the properties of suboptimal level sets �i.e.,
P�i�→�f� significantly less than unity� in the control landscape,
again consider the same quantum system �29� for the control
goal �1�→ �8�. In this case, the initial control field E�s=0, t�
produces a population transfer of 0.47 into state �8�. This
example in conjunction with the one above aims to illustrate
that the level-set explorations can be done at any objective
value and further reveals variations of the controlled dynam-
ics across the level set. The function f�s , t� will be chosen
distinct from the case in Sec. III A to showcase the flexibility
inherent in the level-set trajectory method. In particular, we
choose f1�s , t�=25�s+1��S�t+3�−S�t−1��, where S�t� is the
weight function used in the previous example. Figure 3 dis-
plays the control fields E1�s , t�, exhibiting vastly different
structure over the s interval, guided by the function f1�s , t�.
To highlight the dramatic differences in control mechanism
encountered along the level set, Fig. 4 displays the popula-
tion of selected states at s=0 �Fig. 4�a��, s=0.5 �Fig. 4�b��,
and s=1 �Fig. 4�c�� �the population of all eight states is not
shown for clarity�. The dynamics reacts to the differences in
control field structure as s increases, including highly oscil-
latory behavior at s=1. These populations demonstrate that
significantly different control mechanisms operate at each s
value; however, the population in state �8� at time T remains
fixed to within arbitrary precision despite the presence of
intermediate dynamics of varying complexity. This calcula-
tion indicates that the level-set trajectories in the quantum
control landscape can traverse a continuous variety of con-
trol fields, showing widely varying structure and producing
distinct dynamics, except for preservation of the same final
yield at t=T. Despite the diverse behavior of E�s , t� shown

FIG. 2. The trace of the Hessian in Eq. �22� as a function of s
� �0,1� is shown for the high-yield level set example along both the
fluence minimizing �f−�s , t�� and fluence maximizing �f+�s , t�� tra-
jectories. Starting from the central axis �s=0�, the s parameteriza-
tion of the two trajectories points in opposite directions along the
abscissa. Inset: close-up of the behavior near s=0. The cusp in the

plot is due to a discontinuity in the derivative
�E�s,t�

�s caused by the
different constants c+ and c− in f±�s , t� �cf. Eqs. �5� and �18��.

FIG. 3. The control fields along the level set described by f1�s , t�
are displayed. The control field continually changes with s; at
s=1, it has a substantially different envelope structure than the field
at s=0, due to the influence of f1�s , t�. Yet fields along the entire s
interval render the same value of the target observable population of
0.47.
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across a level set, even a slight arbitrary disturbance �E�s , t�,
such that E�s , t�→E�s , t�+�E�s , t�, will generally alter the
dynamics to produce �O�s��� �O�s=0�� at time T, corre-
sponding to movement off the level set. The trace of the
Hessian was also calculated along the level set trajectory in
this example �not shown here�, and more extensive variations
were found upon scanning s than for the illustration in Fig. 2.

IV. CONCLUSION

Quantum control landscapes are an inherent feature of
controlled quantum dynamics �20�. However, the nature of
the landscapes and their structures for general observables is
only beginning to be understood. This paper takes a step in
that direction by presenting a computationally practical tech-
nique for traversing arbitrary paths along the level sets in a
landscape. The existence of a continuous function f�s , t� of
arbitrary shape is critical in this regard, as a choice of f�s , t�
determines a specific trajectory through the landscape level
set. The level-set formulation in Sec. II is general and may
be applied to considering the control of arbitrary quantum
systems. The illustrations in the paper are only glimpses of
particular landscape level sets in simple systems; however,
the general findings are revealing and should carry over to
the control of other quantum systems. It is evident that a
continuous family of fields can be found which are capable
of producing the same control objective value �27�. Perhaps
the most striking finding is the vastly different nature of the
control fields that can inhabit a level set and the concomitant
unique, rich dynamics that each control field produces while
still producing the same target value at t=T.

The examples with E+�s , t� and E−�s , t� in Sec. III A re-
veal a landscape geometry which is likely operative in many
circumstances. In particular, a level set will always have a
forbidden domain around E�s , t�=0, as some minimal
amount of quantum-mechanical action is needed to effect the
desired control process. At the other extreme, the level sets
can nominally be unbounded in extent �in terms of field met-
ric Ds�E��, with fields of increasing strength and structure
being important factors that can produce complex dynamical
processes. Practical limits may exist in many cases, since
new undesired physics may open up in moving to the outer
boundaries of a level set, eventually forbidding satisfaction
of the level set value �e.g., dissociating a molecule when the
level set goal was vibrational excitation�. Nevertheless, the
level sets are expected to still be unbounded with possibly
some inaccessible domains to avoid the occurrence of certain
dynamical processes. In the laboratory, the controls are in-
evitably limited in their freedom due to a variety of factors
�e.g., pulse energy, bandwidth, etc.�, and these constraints
can impose artificial structure on the landscape and level
sets.

The distinct dynamics produced by different members of
the level set also shows that the fields are not just differing in
some trivial fashion �e.g., by introducing frequency compo-
nents that do not address the system transitions, even though
such level-set members must exist as well�. Each level-set
field can manipulate the dynamics in its own special way,
likely also including dynamic power shifting of the system’s

FIG. 4. The intermediate-time dynamics are displayed for states
�1�, �4�, �6�, and �8� at �a� s=0, �b� s=0.5, and �c� s=1. The popu-
lations of the states not pictured show similar oscillatory behavior
and are omitted to make the figures more clear. Importantly, despite
the differences in the controlled dynamics, the population of state
�8� at t=T remains fixed at 0.47 for all s. The dynamics appear to
gain complexity with s, indicating that distinct control mechanisms
must operate at each s value that leave the final population of state
�8� unchanged.
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energy levels in the process. The diversity of level-set dy-
namical behavior also implies an associated richness in the
mechanisms of controlled quantum-dynamics phenomena. A
well-posed quantum control problem can have a variety of
successful control mechanisms. Although some mechanisms
perhaps may be deemed more desirable by being simpler
than others, that assessment is a matter of judgment and not
a fundamental issue. As shown in the illustration of Sec.
III A, it may at times be true that controls of minimal fluence
tend to produce simpler mechanisms.

In addition to the control mechanisms morphing over the
level set, all other dynamical properties �except �O� defining
the level set� should vary. The particular property of observ-
able robustness to control variations �i.e., noise� was illus-
trated in Sec. III A. The variation of such properties over the
level set opens up the prospect of seeking sublevel sets that
either preserve some other dynamical property �while still
leaving the target observable value constant� or, alternatively,
extremize its value. One possible means for identifying sub-
level sets that satisfy the former criterion would be to intro-
duce additional projectors into Eq. �13� with the aim of pro-
jecting off the components of any continuous function f�s , t�
that change the dynamical property desired to be conserved.

The common experience of finding one particular optimal
field in laboratory control experiments or in simulations does
not reveal the full picture of the controlled dynamics. The
ability to transform one successful control into another, and
therefore one control mechanism into another, should be con-
sidered when seeking to establish the “mechanism” in any
particular quantum control problem. In this regard, it would
be most valuable to directly search for the control level sets
in the laboratory, and some observables may be more ame-
nable to such an analysis than others �i.e., experiments con-
fined to the weak-field regime may provide fewer options for
level-set exploration while operating at too high intensities
could introduce undesired physical processes�. Recent
experimental control studies �17,28,29�, performed for
other reasons, when interpreted properly already show the
existence of control level sets. More focused efforts at re-
vealing the level sets would be most desirable, and in this
regard the coefficients in Eq. �5� could be extracted from
laboratory data for level-set exploration followed by a step
E�s , t�→E�s+�s , t� taken with a choice for f�s , t�. Directly
assigning the laboratory search algorithms to explore a level
set would be valuable. Such experimental landscape studies,
as well as additional theoretical analysis, should better reveal
the full nature of controlled quantum-dynamics phenomena.
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APPENDIX

This appendix derives the expression for a0�s , t� in Eq.
�6�. Starting from the Schrödinger equation �1�, consider a
variation in the wave function ����t�� with respect to a cor-
responding variation in the control field �E�s , t��. The rela-
tionship may be expressed as

i�
�

�t

 ����t��

�E�s,t��
�

= H0
����t��

�E�s,t��
− �� �E�s,t�

�E�s,t��
���t�� + E�s,t�

����t��
�E�s,t��

�
= �H0 − �E�s,t��

����t��
�E�s,t��

− ���t − t�����t�� . �A1�

Equation �A1� is an inhomogeneous equation for the func-

tional derivative
����t��

�E�s,t��
, with zero initial condition at t=0.

The solution to Eq. �A1� is

i�
����T��
�E�s,t��

= − 	
0

T

U�T,t�����t� − t�����t���dt�

= − U�T,t������t���

= − U�T,0�U†�t�,0��U�t�,0���0� . �A2�

Using this relation, the coefficient a0�s , t� may be deter-
mined,

a0�s,t� �
��O�

�E�s,t�
=

�

�E�s,t�
����T��O���T���

= ���T��O� ���T�
�E�s,t�� + c.c .

= −
1

i�
��0�U†�T,0�OU�T,0�U†�t,0��U�t,0���0�

+ c.c .

= −
1

i�
��0��U†�T,0�OU�T,0�,U†�t,0��U�t,0����0� ,

�A3�

which is Eq. �6�.
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