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Observing angular precession of a Rydberg wave packet due to spin-orbit coupling
by orthogonally polarized weak half-cycle pulses
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We investigate the response of an np Rydberg wave packet to orthogonally polarized weak half-cycle pulses
�HCPs� over the course of its field-free evolution. The population redistribution from p to s states is highly
sensitive to the polarization of the HCP and changes with the precession of the electron orbits due to the
spin-orbit coupling. We obtain the selection rules and give an intuitive classical interpretation of angular
momentum redistribution by a HCP.
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I. INTRODUCTION

Coherent control and manipulation of atomic and molecu-
lar systems have been of growing interest with recent ad-
vances in technology. Novel electromagnetic fields such as
half-cycle pulses �HCPs� have been employed to generate
target quantum systems and probe their dynamics, e.g., Refs.
�1–5�. A HCP is able to interact with a bound electron
throughout its orbit, unlike ultrafast multicycle laser pulses
which only probe the electron near the nucleus �6�. If the
interaction time is much shorter than the interested dynamics
of the system, a HCP can be modeled as an impulsive mo-
mentum transfer. The impulse has been used to retrieve the
momentum distribution of electron wave packets �7�. Mul-
tiple HCPs with different polarizations can be used to re-
cover the momentum distribution in multiple dimensions
�8,9�. If the strength of a HCP is far below that required to
directly ionize the atoms, the HCP coherently redistributes
the population to neighboring n states as well as different
angular momentum manifolds �10,11�. In this work, HCPs
with different polarizations irradiate an np Rydberg wave
packet precessing due to spin-orbit �SO� coupling. The an-
gular momentum redistribution by the HCP is highly polar-
ization sensitive. The selection rules for HCP-induced state
redistribution are obtained using a quantum mechanical ap-
proach and an intuitive classical interpretation is given for
our observations.

The spin of the electron is not usually considered in the
analysis of Rydberg wave packet motion because of its neg-
ligible effect on the dynamics. Radial �12� and angular local-
ization �13� and collapses and revivals �14,15� have been
well understood without considering SO coupling. SO cou-
pling can be enhanced and gives rise to observable effects in
high atomic number�Z� atoms �16,17�. The angular preces-
sion of a Rydberg wave packet can be detected in the redis-
tribution of population following a HCP interaction. This is
sensitive to HCP polarization and yields information on the
shape of the wave packet that cannot be obtained using tra-
ditional two-pulse wave packet interference �18–20�. The
HCP method also circumvents the need for high time delay
resolution and the long acquisition times that are required in
interferometric two-pulse experiments.

This paper is organized as follows. In Sec. II, the spin-
orbit effect on a Rydberg wave packet is discussed; in Sec.
1050-2947/2006/73�5�/052504�5� 052504
III, we describe the experiment and the results; and in Sec.
IV, the selection rules of state redistribution by HCPs are
derived to understand the data. The discussions and conclu-
sions are given in Sec. V.

II. ANGULAR PRECESSION OF A RADIAL
WAVE PACKET

SO coupling causes the electron spin to influence the or-
bital degrees of freedom. A radial wave packet excited by an
ultrafast pulse can be reshaped substantially due to SO cou-
pling. We can understand when and how SO coupling affects
the dynamics of Rydberg wave packets using a similar ap-
proach to that in Refs. �19,20�.

Let us first consider a hydrogen atom, ignoring the
electron spin. The Hamiltonian of the electron is simply
H= p2

2 − 1
r �atomic units are used throughout� and the eigen-

states are �n,�,m, where n, �, m are the radial, angular, and
magnetic quantum numbers, respectively. A wave packet is
usually prepared by exposing atoms or molecules to a laser
pulse whose bandwidth covers several energy eigenstates.
For example, a radial wave packet excited by a short pulse
polarized along quantization axis �ẑ� with a one photon tran-
sition from the s state is a coherent superposition of several
np states, �n�n,�=1,m=0.

If the electron spin is included, the effective Hamiltonian
of the electron is modified due to the intrinsic magnetic field
generated by the electron motion. The corresponding eigen-
states are �n,j,mj

, where j= � +s , . . . , ��−s� and mj = j , . . . ,−j.
For simplicity, we examine one of the n-state �n,�=1,m=0 in
the wave packet and omit n throughout. The results can be
easily generalized for a radial wave packet composed of sev-
eral n states. The intensity of the excitation laser is usually in
the nonrelativistic region and thus only affects the spacial
wave functions but not the spin. In the uncoupled basis �de-
noted as ��,m,ms

�, the spin-up state at time zero can be writ-
ten as ��t=0�=�1,0,↑. In order to see how the energy eigen-
states are populated, we rewrite the wave function in the
coupled basis �denoted as � j,mj

�,

��t = 0� = �2
3�3

2
, 1
2

− �1
3�1

2
, 1
2

. �1�

Equation �1� shows that the excitation ratio of P3/2 to P1/2 is

2:1. After the excitation, the wave function starts to evolve
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by acquiring dynamical phases on the eigenstates

��t� = �2
3e−i�2t�3

2
, 1
2

− �1
3e−i�1t�1

2
, 1
2

, �2�

where �1 and �2 are the energies associated with P1/2 and
P3/2. To see how the wave packet evolves, we need to sepa-
rate the spin from the spacial wave function and work in the
uncoupled basis

��t� =
�2

3
�e−i�2t − e−i�1t��1,1,↓ + �2

3
e−i�2t +

1

3
e−i�1t	�1,0,↑.

�3�

For the spin-down state, we can obtain similar results by
replacing �1,0,↑ ,�1,1,↓ with �1,0,↓ ,�1,−1,↑ in Eq. �3�. After
grouping the same �m� states, the population of m=0 and
�m � =1 states of the wave packet can be calculated as

P�=1,m=0�t� = 5
9 + 4

9cos����t�� , �4�

P�=1,�m�=1�t� = 4
9 �1 − cos���t�� , �5�

where ��=�1−�2.
Evidently, 89% of the population oscillates between

m=0 and �m � =1 states. This implies the electron clouds
align parallel and perpendicular to the atomic axis alterna-
tively �Fig. 1�. If more than one n state is involved, as in a
radial wave packet, both radial breathing and angular preces-
sion are expected. Such a wave packet provides an ideal
testing ground to investigate the polarization dependence of
the angular momentum state redistribution due to HCPs. The
time dependent signal can be obtained for the fixed polariza-
tion of HCPs thanks to the oscillation of the orientation of
the electron clouds.

The precession time TSO is simply 2� /�ESO, where �ESO
is the energy splitting due to SO coupling. In hydrogen at-
oms, the precession time is 
n3�−2Z−4, where � is the fine
structure constant. Since it is several orders of magnitude
longer than the interested dynamics �e.g., classical Kepler
period Tcl�, the SO effect can be safely ignored. In alkali
atoms, however, the precession time is shortened dramati-
cally due to quantum defects. For example, TSO associated
with p splitting in cesium atoms is determined by

�ESO =
1

2�n − �2�2 −
1

2�n − �1�2 , �6�

where �1 and �2 are the first order quantum defects of P1/2

FIG. 1. �Color online� The density plot of 28p wave function in
x−z plane: �a� at t=0 and �b� at t=TSO/2.
and P3/2. For n→	, TSO is 
570 times shorter than that of
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hydrogen atoms while Tcl remains the same. Practically,
we obtain TSO�30Tcl for 28p state in cesium atoms. There-
fore, SO effects need to be considered in alkali-metal atoms
when TSO is comparable in duration to the interesting dy-
namics such as Kepler motion and wave packet collapses and
revivals.

III. EXPERIMENT AND RESULTS

We use cesium atoms from an effusive source to generate
Rydberg wave packets in a two-step process. First, the 7s
launch state is populated using a two-photon transition from
6s ground state by a tightly focused pulse centered around
1079 nm. Next, a spectrally shaped 800 nm pulse is polar-
ized along the quantization axis �ẑ� and populates the energy
eigenstates in the range of n=27, . . . ,32. The relative polar-
izations of the laser pulses ensures that only the m=0 com-
ponent is directly excited in the Rydberg wave packet. A
HCP with a full width at half maximum �FWHM� of

400 fs is generated by illuminating on a high-voltage bi-
ased GaAs wafer with a 50 fs, 800 nm pulse. The wafer is
oriented either parallel or perpendicular to the quantization
axis and the HCPs collinear with the laser beam interact with
atoms at various delays. The peak field of the HCP is about
1 kV/cm and corresponds to an impulse of 0.002 a .u. As a
result of SO coupling, the relative angle between electron
orbits and the HCP changes over the course of the wave
packet evolution. The ionization field along ẑ axis is applied

8 
s later to record the individual state populations. The
state-selective field-ionization spectra as a function of the
HCP delay are plotted as “quantum carpets” �5� in Figs. 2�a�
and 2�b�. The p and s state populations are clearly resolved.
The line-out of the s state population as a function of the
HCP delay is plotted in Figs. 2�c� and 2�d�. The 2.4 ps fast
oscillation corresponds to the Kepler motion while the 68 ps
envelope modulation matches the energy splitting of 28P3/2
and 28P1/2 states. Around the time of excitation of the wave
packet, the contrast of fast oscillation reaches its maximum if
a ẑ-polarized HCP is applied while it is around zero if an
x̂-polarized HCP is applied. At the time delay corresponding
to one half of the envelope modulation period, the reverse
situation occurs. Recalling that the wave packet only has an
m=0 component at time-zero and 89% �m � =1 component at
half of the precession time, we find that a HCP redistributes
population from p to s states when it is aligned along the
electron clouds. We can understand this using both quantum
mechanical and classical approaches described in the next
section.

IV. SELECTION RULES OF HCP-INDUCED
STATE REDISTRIBUTION

The strong polarization dependence of the redistribution
from p to s can be understood using an impulsive model of a

HCP. A HCP acts as an operator e−iQ� ·r� on the wave function,

where Q� =−�F� �t�dt, F� �t� is the time-dependent electric field
and r� is the position operator of the electron. The transition

strength due to the HCP is obtained by evaluating matrix
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elements n� ,�� ,m� �e−iQ� ·r� �n , � ,m�. The uncoupled basis is
utilized since the HCP operates on the spatial wave function.
For a ẑ-polarized HCP, the Taylor expansion of e−iQz indi-
cates the matrix elements only survive if �=��±0,1 ,2. . . and
m=m�. For an x̂-polarized HCP, we need to inspect the ma-
trix elements further to obtain the selection rules. Using 3j
symbols and the expansion

eiQ� ·r� = 4��
L=0

	

iLjL�Qr� �
M=−L

L

YL,M
* ���,���YL,M��,�� ,

where ��=� /2 ,��=0 for an x̂-polarized HCP and � ,� are
related to the electron position r�, the integral
n� , l� ,m� �e−iQx �n , l ,m� can be written as

n�,l�,m��e−iQx�n,l,m�

= �− 1�m�4��
L=0

	

iLRn�,n���,L �
M=−L

L

YL,M
* ��

2
,0	

��2�� + 1��2 � + 1��2L + 1�
4�

��� � L

0 0 0
	� �� � L

− m� m M
	 , �7�

FIG. 2. �Color online� The HCP-induced state-resolved ioniza-
tion signal as the function of the HCP delay. �a� A ẑ-polarized HCP
is applied; �b� An x̂-polarized HCP is applied; �c� the line-out of 29s
state in �a�; and �d� the line-out of 29s state in �b�.
where Rn�,n���,L denotes the nonzero radial integral. The two
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3j symbols are nonzero if and only if L+ � +�� is even and
m�−m=M. Combining them with the fact YL,M

* �� /2 ,0� is
nonzero if only if L+M is even, we know that the integral
�Eq. �7�� is nonzero if and only if ���+m� is even. The same
selection rules hold for a ŷ-polarized HCP because of the
azimuthal symmetry of the electron clouds. The selection
rules of HCP redistribution can be summarized

� � = 0,1,2 . . . and �m = 0, ẑ − polarized HCP, �8�

��� + m� = 0,2,4 . . . , x̂�ŷ� − polarized HCP. �9�

Therefore, a ẑ-polarized HCP applied to a Rydberg np wave
packet is only able to populate s states from m=0 states �Fig.
3, solid arrows�. Monitoring the population of s states while
delaying the HCP, the variation of m=0 state population can
be recorded at any instant. On the other hand, if an
x̂-polarized HCP is applied, s states couple to �m � =1 states
instead �Fig. 3, dashed arrows�. Thus, the changing popula-
tion of s states reflects the population variation of �m � =1
states. The SO-interaction-induced coupling between m=0
and �m � =1 states is indicated by the dotted double arrows in
Fig. 3. We can detect m=0 and �m � =1 states population se-
lectively by rotating the polarization of HCPs. The � phase
shift in the population oscillation of m=0 and �m � =1 states is
evident for orthogonally polarized HCPs.

The HCP strength �Q=0.002 a.u.� is chosen to be large
enough to couple strongly the nearest-neighbor np states to s
states to reveal the Kepler motion of the electron �5�, but
small enough not to mix the more distant np states that
would cause the rapid collapse of the spin-orbit wave packet.
Thus, both radial and angular motion can be recorded in a
single scan �Fig. 2�.

In the classical picture, the electron can be modelled as a
charged particle moving around the nucleus. The p orbit is an
ellipse which is parallel to the ẑ axis if m=0 but perpendicu-
lar to the ẑ axis if �m � =1. A kick parallel to the p orbit is able
to accelerate or slow the electron and thus alter its orbit to
higher angular momentum orbit d or to lower angular mo-
mentum orbit s, depending on the direction of the electron
velocity at the moment of the kick. Therefore, p→s transi-

FIG. 3. The diagram to illustrate the detection scheme of m=0
and �m � =1 components of wave packets. The bold lines indicate
the population in m=0 states at the moment of excitation. The solid
arrows indicate the coupling due to ẑ-polarized HCP. The dashed
arrows indicate the coupling due to an x̂-polarized HCP. The dotted
arrows indicate the population oscillation between m=0 and
�m � =1 states due to the spin-orbit coupling.
tions are allowed. However, the electron is only accelerated
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to higher angular momentum orbits by a perpendicular kick
because of its small momentum along the kicked direction.
In this case, no redistribution to lower angular momentum
orbit�s� is allowed.

It is instructive to apply the first order selection rules to
the momentum distribution due to HCPs. The momentum
distribution around zero is peaked if �+m is even but zero if
�+m is odd �21�. Therefore, a ẑ-HCP dominantly redistrib-
utes the population to the opposite parity of �+m and thus
changes the momentum distribution, but an x̂-HCP keeps the
parity of �+m and makes almost no change to the momen-
tum distribution along z direction �22�.

V. DISCUSSIONS AND CONCLUSIONS

The interaction between the spin and the orbital motion
leads to spin-orbit entanglement. The degree of entanglement
changes with time. At time zero, there is only an m=0
component and the spin is not entangled with the spatial
motion of the electron. At t=cos−1�− 1

8
� /��, taking the state

�Eq. �3�� for example, it reaches the maximally entangled
state ��t�= 1

�2
��m=0, ↑ �+ei� �m=1, ↓ ��, where �=1.21 rad.

If the spin is measured to be up, the electron orbit aligns
parallel to the ẑ axis; if the spin is measured to be down,
the electron orbit aligns perpendicular to the ẑ axis. Thus,
the spin is highly correlated with the orientation of
the electron orbits. When the precession completes a
full cycle, there is no entanglement between the spin and
the orbits again. To quantify the variation of the entangle-
ment, the entanglement of formation �23� of Eq. �3�,
E�����=−Tr��Alog2 �A�=−Tr��Blog2 �B�, is calculated and
plotted in Fig. 4, where �A��B� is the partial trace of �����
over one degree of freedom, the spin states or m states. It
shows the degree of entanglement changes even when the
interaction is constant during the evolution. The mechanism
behind this process is quantum interference. If only P3/2 is
excited, the entangled state and its degree of entanglement is
well defined and does not evolve. It is the same if only P1/2
is excited. But the coherent excitation of P3/2 and P1/2 yields
a time dependent entanglement due to the nondegenerate en-
052504
ergies of the two states. The quantum interference between
the two well-defined entanglements in P3/2 and P1/2 causes
the variation of the degree of the entanglement.

In conclusion, we have shown that orthogonal polarized
HCPs interact with a Rydberg wave packet in different
ways. The redistribution due to a ẑ-polarized HCP is
only allowed if �� =0,1 ,2. . . and �m=0 while the condition
for allowed redistribution of an�a� x̂�ŷ�-polarized HCP is
���+m�=0,2 ,4. . .. Based on these selection rules, the angu-
lar precession of an np Rydberg wave packet is directly ob-
served by monitoring the population variation of s states.
The spin degree of freedom has been seen to have a signifi-
cant influence on the electron wave packet. Its interaction
with spatial motion is easily accessed in alkali atoms with
large quantum defects using HCPs. Rydberg atoms have
been used to demonstrate a unary operations for quantum
information processing �24,25�. The coupling of the electron
spin to the spatial motion opens the possibility of controlled
entanglement between the spin and the spatial wave func-
tions for implementing complex quantum algorithms, where
entanglement involving more than one degree of freedom is
a requirement �26�.
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FIG. 4. The entanglement of formation �EOF� of Eq. �3� as a
function of ��t.
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