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A description of the excited lepton states of the hydrogen-antihydrogen quasimolecule is presented. Potential
energy curves and the leptonic part of the wave functions corresponding to a variety of such states are
calculated within the Born-Oppenheimer approximation employing the Ritz variational principle. Nonadiabatic
corrections to the leptonic potentials are also obtained. Basis functions are constructed as products of explicitly
correlated Gaussians and spherical harmonics which describe correctly the motion of leptons with arbitrary
orbital angular momentum projection onto the molecular �internuclear� axis. The hadronic part of the wave
function for each leptonic level of the hydrogen-antihydrogen system is calculated by solving the Schrödinger
equation with the obtained leptonic potentials. Corresponding solutions are generated utilizing precise B-spline
representations. Employing leptonic and hadronic parts of the wave function the electron-positron and proton-
antiproton annihilation rates are computed for a number of quasimolecular states. The decay rates of the
hydrogen-antihydrogen system into separate positronium and protonium atoms are also estimated for the
quasimolecular levels under consideration.
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I. INTRODUCTION

Recent experimental success in the production of antihy-
drogen atoms �1–3� has raised interest in the interaction be-
tween atoms and antiatoms. The simplest atom-antiatom
�hydrogen-antihydrogen� system has been the subject of
studies for decades �4�. The general behavior of the potential
energy curve of the ground state of the hydrogen-

antihydrogen �HH̄� system has been established in �4� and
has been recently calculated with high accuracy �5�. The in-
teraction between helium and antihydrogen atoms has also
been investigated �6,7�, and a small potential barrier was
predicted in this system. Most calculations concerning the

HH̄ interaction have been performed within the Born-
Oppenheimer approximation employing variational methods.
Nonadiabatic corrections also have been estimated in �7–9�.
Both scattering phenomena and quasibound molecular states

of HH̄ system have been considered in �10–12� and �9�.
Cross sections for the processes occurring in H-H̄

scattering—i.e., �i� the rearrangement, when the HH̄ system
transforms into positronium �Ps� and protonium �Pt�, �ii� lep-
tonic, and �iii� hadronic annihilation—have been calculated
and compared with each other �13�. The corresponding decay

processes for a number of quasibound HH̄ molecular states
were calculated in �9�. Such quasibound states can arise via
three-body interactions, including one extra atom or via ra-
diative association �14�. As has been pointed out in �4� a

critical internuclear distance �Rc� exists at which the HH̄
system transforms into a Ps atom weakly interacting with the
proton �p+� and the antiproton �p−�, respectively. The decay

HH̄→Ps+Pt and hadronic annihilation decay were found to
be the leading processes. For the collision scenario the cor-
responding decay rates are comparable �13�, while for quasi-

molecular states with high quantum numbers the hadronic
annihilation rates are somewhat larger than for the HH̄
→Ps+Pt decay rates �9�. The leptonic annihilation process is
negligible in both cases.

So far all calculations concerning the H-H̄ interaction
have been performed for the leptonic ground state of this
system. However, in experiments the H̄ atoms are produced
in Rydberg states �3�. Accordingly, the HH̄ system will be
predominantly formed in excited states with high values of
leptonic orbital angular momentum projection and therefore
it is important to investigate the potential energy curves, lep-
tonic and hadronic annihilation rates, and HH̄*→Ps+Pt de-
cay rates of the HH̄* quasimolecule for leptonic Rydberg
levels.

In the present paper the description of excited state of the
HH̄* system with arbitrary leptonic orbital angular momen-
tum projection � onto the internuclear axis is given. This
description is based on a precise solution of the few-body
problem by means of the stochastic variational method deal-
ing with a correlated Gaussian basis as has been developed in
�15,16�. Within the framework of this method p−p+ and e−e+

annihilation rates, critical internuclear distances Rc���, and

HH̄*→Ps+Pt decay rates have been calculated for a number
of quasibound hadronic states. Atomic units will be used
throughout this paper.

The paper is organized as follows. In Sec. II on the basis
of the Born-Oppenheimer approximation we solve the equa-
tion for leptons for every fixed position of hadrons, thus
defining the potential curves for different leptonic orbital an-
gular momentum projections. In the same section we solve
also the Schrödinger equation for the hadron movement with
a certain potential curve. The results for the potential curves
and their properties are discussed in Sec. III. In Sec. IV we
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evaluate decay rates for the unstable HH̄ system, correspond-
ing to the transition to Ps+Pt atoms. Section V is devoted to
the calculation of the leptonic and hadronic annihilation
rates. Section VI contains conclusions, including a compari-
son of importance of various decay channels and a possible
connection to modern experiments. In the Appendix the de-
tails of the applied mathematical and computational methods
are given.

II. DESCRIPTION OF THE HH̄ SYSTEM
IN EXCITED STATE

We consider the HH̄ system within the Born-
Oppenheimer approximation. This means that the four-

particle wave function ��r�e− ,r�e+ ,R� � is represented by the
product

��r�e−,r�e+,R� � = �lep�r�e−,r�e+,R� ��had�R� � , �1�

where r�e− and r�e+ are the position vectors of the electron and
the positron with respect to the center-of-mass system, R

= �R� � denotes the internuclear distance, where R� is directed

from the H to the H̄ atom. The spin parts of the leptonic and
hadronic wave functions are not considered in the further
discussion. The only difference between 1� and 3� states
arises for the electron-positron annihilation process �see Sec.
V�. However, the role of this process is negligible compared

to that of the hadron annihilation and the HH̄*→Ps+Pt de-
cay channel.

The leptonic wave function �lep�r�e− ,r�e+ ,R� � and the had-

ronic wave function �had�R� � satisfy the corresponding
Schrödinger equations. For the leptonic part it takes the form

Ĥlep�r�e−,r�e+,R� ���
lep�r�e−,r�e+,R� � = V�

lep�R���
lep�r�e−,r�e+,R� � , �2�

Ĥlep�r�e−,r�e+,R� � = −
1

2
�e−

2 −
1

2
�e+

2 −
1

�r�e− +
1

2
R�� −

1

�r�e+ −
1

2
R��

+
1

�r�e− −
1

2
R�� +

1

�r�e+ +
1

2
R�� −

1

�r�e− − r�e+�
.

�3�

The equation of motion for the hadronic part of the wave
function reads

�−
1

mp
�

R�
2

+ V�
lep�R� −

1

R
���nlm

had �R� � = E�nl��nlm
had �R� � , �4�

where mp=1836.15 a.u. is the proton mass. For the descrip-
tion of the hadronic motion we use the set of quantum num-
bers �nlm. The quantum number � defines the leptonic
term, which corresponds to a certain potential V�

lep�R�. The
quantum numbers nlm correspond to the standard set of
quantum numbers for the particle motion in the central field
or for the two-particle problem in the center-of-mass refer-
ence frame. In ordinary diatomics the vibrational v and rota-

tional J quantum numbers are commonly used for a descrip-
tion of hadronic motion. The quantum number J denotes the
total angular momentum of the molecule, including leptonic
and hadronic contributions. In case of the nonclosed leptonic
shells it should contain also the leptonic spin part. For the

unstable quasimolecular states in the HH̄* system the use of
the quantum numbers vJ is not so easy. The employment of
the set nl, where l denotes the pure hadronic orbital angular

momentum, has some advantages in case of the HH̄* system.
The main advantage is that below the critical distance Rc���
the HH̄* system transforms to Pt+Ps systems. Then the
quantum numbers nl become the standard hydrogenic-type
numbers for the Pt atom.

The leptonic potential V�
lep�R� defined in Eq. �2� is shifted

by the value E1s
bind�H�+E�+1

bind�H̄� so that V�
lep�R�→0 holds in

the limit R→�. This shifted potential enters the Schrödinger

equation for hadrons �Eq. �4��. Here E1s
bind�H� and E�+1

bind�H̄�
are the binding energies of the hydrogen atom in the ground
state and the antihydrogen atom in an excited state with prin-
cipal quantum number, equal to �+1, respectively. This cor-
responds to a particular choice of Rydberg states of the an-
tihydrogen atom—namely, those Rydberg states with
positron orbital angular momentum quantum numbers le+

=ne+ −1, where ne+ is the principal quantum number. It can
be argued that such states should arise predominantly in the
experiments. Indeed, if the Rydberg state for a certain ne+

value �ne+ 	30 in �3�� is fixed by experimental conditions,
then the mean radial position r̄e+ of the positron in the cor-
responding orbit will be of the order ne+

2 a.u. The cross sec-
tion for positron capture by the cold antiproton should have a
maximum when the kinetic energy of the positron in the
antiproton frame of reference will be of order ne+

−2 a.u. Con-
sequently, the positron momentum p̄e+ will be of order ne+

−1

a.u., and the absolute value of the positron orbital angular

momentum will scale as l̄e+ 
 r̄e+p̄e+ 
ne+ a.u.
At very large internuclear distances R the wave function

��
lep�r�e− ,r�e+ ,R� � is taken in the form of a product of wave

functions describing a free hydrogen atom in the ground state
and free antihydrogen atom in the excited state:

��
lep�r�e−,r�e+,R� � = �100�r�e− + R� /2���+1���r�e+ − R� /2� . �5�

This asymptotic of ��
lep�r�e− ,r�e+ ,R� � defines the leptonic state

under consideration. Accordingly, we started our variational
calculations for the leptonic wave function from the value
R=20 a.u. which still can be considered as an asymptotic

region. The interaction energy between H and H̄* atoms,
which is equal to

E��R� = V�
lep�R� − 1/R , �6�

defines the potential energy curve for the excited leptonic
state.

The wave function of light particles ��
lep�r�e− ,r�e+ ,R� � de-

scribes the motion of electron and positron in the field of a
p−p+ pair, fixed at distance R. The nonadiabatic correction is
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defined by the derivative
���

lep�r�e−,r�e+,R� �

�R . Letting ��
lep�r�e− ,r�e+ ,R� �

be normalized according to

� � dr�e−dr�e+���
lep�r�e−,r�e+,R� ��2 = 1, �7�

the nonadiabatic correction �V�
lep�R� takes the form

�V�
lep�R� =

1

mp
� � dr�e−dr�e+� ���

lep�r�e−,r�e+,R� �

�R
�2

. �8�

The values of �V�
lep�R� have been calculated within the

Born-Handy method �17�. It has been pointed out that
�V�

lep�R� becomes comparable to the value of V�
lep�R� near

the critical distance Rc���, where the HH̄ system is supposed
to transform into the positronium and protonium �8,9� �see
also Table II�. This means that the Born-Oppenheimer ap-
proximation breaks down near Rc���.

Since the potential generated by fixed hadrons has the
axial symmetry, the electron-positron states are characterized
by the value of the leptonic orbital angular momentum pro-

jection � onto the internuclear axis R� :

L̂R���
lep�r�e−,r�e+,R� � = ���

lep�r�e−,r�e+,R� � , �9�

L̂R� = i� �

��e−
+

�

��e+
� , �10�

where L̂R� is the leptonic orbital angular momentum projec-
tion operator and �e− and �e+ are the azimuthal coordinates
of the electron and the positron, respectively.

The wave function of hadrons ��nlm
had �R� � describes the mo-

tion of p− and p+ in the effective potential V�
lep�R� created by

the leptons together with the attractive Coulomb potential
between the proton and antiproton. The energies E�nl defined
in Eq. �4� are the energies of quasimolecular levels corre-
sponding to the leptonic states with the projection of orbital
angular momentum equal to �. The formation of such states
under the experimental conditions corresponding to �1–3�
has been discussed in �9�.

The leptonic wave function ��
lep�r�e− ,r�e+ ,R� � can be repre-

sented as the sum of explicitly correlated Gaussians �ECG’s�
multiplied by the spherical functions:

��
lep�r�e−,r�e+,R� � = �

i=1

K

CiP̂ exp�− ai�r�e− − r�e+�2�

exp�− bi�r�e− − R� i
e−

�2 − ci�r�e+ − R� i
e+

�2����v� i� , �11�

where v� i=ui
e−

r�e− +ui
e+

r�e+ and

���v� i� = �v� i��Y����v� i
� . �12�

Here Y����v�� is the spherical harmonic, �v� i
is the angular

part of the vector v� i, and ai, bi, ci, R� i
e−

, R� i
e+

, ui
e−

, ui
e+

, and Ci
are variational parameters. The leptonic wave function does
not require antisymmetrization since the electron and posi-

tron are distinct particles. The operator P̂ ensures the proper

symmetry of ��
lep�r�e− ,r�e+ ,R� � charge conjugation. This opera-

tor exchanges the electron and positron and reflects their co-
ordinates in the plane which is the perpendicular bisector of

the internuclear axis �4�. Leptonic states of the HH̄ system

are characterized by the eigenvalues of P̂:

P̂��
lep�r�e−,r�e+,R� � = ± ��

lep�r�e−,r�e+,R� � . �13�

In the following we shall focus on even states only. The

potential curves of odd states of the HH̄* system increase
monotonically as the internuclear distance decreases and
therefore cannot provide any hadronic quasibound states.
The wave function defined in Eq. �11� satisfies the condition
�9�, so it can describe the excited leptonic states with definite
orbital angular momentum projection. ECG’s are sufficiently

flexible to approximate an exact solution ��
lep�r�e− ,r�e+ ,R� � of

Eq. �2�, and many very accurate results concerning normal
and positronic matter have been obtained by using the ECG
basis set �15,16,18,19�. Expressions for the overlap integral

between two ECG’s, matrix elements of Ĥlep�r�e− ,r�e+ ,R� � as
defined in Eq. �3�, and the matrix element of the spatial delta
function 	�r�e− −r�e+� are presented in the Appendix. In our
variational calculations the number of terms in the sum of
Eq. �11� was K=64. The energy has been minimized for each
parameter employing the golden section method.

The obtained leptonic potential was inserted into the
Schrödinger equation for the hadron motion �Eq. �4��. Since

V�
lep�R� depends only on �R� �, the variables in Eq. �4� can be

separated:

��nlm
had �R� � =

1

R

�nl�R�Ylm��R�� , �14�

where Ylm��R�� is the spherical function and �R� denotes the

angular part of vector R� . Substitution of Eq. �14� into Eq. �4�
yields

d2
�nl

dR2 + 
mp�E�nl − V�
lep�R� +

1

R
� −

l�l + 1�
R2 �
�nl = 0.

�15�

This equation has been solved by means of the B-spline ap-
proach �20,21�. We have utilized spline functions of order 9
together with a number of grid points equal to 1000 for gen-
erating numerically the level energies E�nl and the radial
functions 
�nl�R�. Below we shall consider the solutions
with l=0,1 and n�1. The levels with low values of the
principal quantum number n correspond most likely to the
bound states of Pt atom.

The total energy of the HH̄* quasimolecule consists of
three parts: E�nl=E�

lep+E�nl
rad +E�nl

rot . Here E�
lep=E���� denotes

the leptonic energy, E��R� is defined by Eq. �6�, and E�nl
rad is

obtained by solving the radial equation with l=0, while the
value of E�nl

rot is provided by the centrifugal term l�l+1� /R2

in Eq. �15�. The sequence of the energy scales for the quasi-
bound molecular states with principal quantum number n
�1 recalls the energy scaling for normal diatomics: E�

lep

�E�nl
rad �E�nl

rot . In what follows concerning the quasimolecu-
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lar levels the quantum numbers �and l are supposed to be
fixed.

The leptonic potentials V�
lep�R�, the energies E�nl, and the

corresponding wave functions completely describe the HH̄*

quasimolecule and have been employed in calculations of

observables characterizing the HH̄* system, such as the de-
cay rates for different processes.

III. POTENTIAL ENERGY CURVES

Results for the HH̄* interaction energies E��R� as a func-
tions of R defined in Eq. �6� are presented in Table I for the
values of leptonic orbital angular momentum projection �
=0,1 ,2 ,6 ,30. All potential energy curves decrease mono-
tonically as the internuclear distance R decreases. Values of
the ground-state energy E0�R� are in close agreement with
those of earlier calculations �5�. At large internuclear dis-
tances the behavior of E��R� can be evaluated pertubatively.
In case of �=0 the expression E0�R�
−C6 /R6 describes the

dispersion interaction of the H and H̄ atoms in their ground
states. The variational calculation �5� gives the value C6
=6.5 in agreement with the result for the H2 molecule �22�.
In principle, the behavior of all the curves E��R� for R→�
should be the same as for H2 molecule: the influence of the
symmetry properties of the homonuclear H2 molecule on the

behavior of E��R� curves at large R values appears to be the
same as the influence of the charge conjugation symmetry in

the HH̄ system. For the first excited state the expression
E1�R�
−C3 /R3−C6 /R6 with C3=0.555 and C6=146 ap-
proximates well the function E1�R� obtained variationally in
our calculations. The same calculation for �=2 yields
E2�R�
−C5 /R5−C6 /R6 with C5=0.6 and C6=790. The val-
ues of C6 for �=1 and �=2 were estimated employing the
well-known London formula C6=

3IHIH̄

2�IH+IH̄��H�H̄ with ioniza-

tion potentials �I� and static polarizabilities ��� for the H and

H̄ atoms in the corresponding states �see Eq. �5��. The polar-
izabilities � were calculated for different states of the hydro-
gen atom employing a method described in �23�. The values
of � increase rapidly for excited states of H atom and lead to

large values of coefficients C6 for the HH̄* system with non-
zero �. However, the dispersion formula approximates well
the interatomic interaction energy if the overlap between
charge densities of both atoms is negligible. Therefore it can-
not be applied for a description of the potential curves cor-
responding to high values of �=6,30 at internuclear dis-

tances R
20 a.u. Note that the overlap between H and H̄
charge densities does not change significantly the density

distributions of the H and H̄ atoms at R	20 a.u. due to the
properties of the corresponding states and the asymptotic for-

TABLE I. The interaction energies E��R� as a function of the internuclear distance R calculated for the
values of leptonic orbital angular momentum projection ��0, 1, 2, 6, 30 �in atomic units�.

R E0�R� E1�R� E2�R� E6�R� E30�R�

0.750 −1.58331 −1.58331 −1.58331 −1.58317 −1.58294

0.800 −1.50128 −1.49993 −1.49993 −1.49983 −1.49978

0.900 −1.37068 −1.36104 −1.36104 −1.36094 −1.35856

1.000 −1.27437 −1.24993 −1.24993 −1.24982 −1.24745

1.100 −1.20316 −1.15902 −1.15902 −1.15891 −0.91299

1.200 −1.15044 −1.08326 −1.08326 −1.08315 −0.84155

1.300 −1.11138 −1.01916 −1.01916 −1.01904 −0.78374

1.400 −1.08242 −0.96422 −0.96422 −0.96410 −0.73683

1.500 −1.06095 −0.91658 −0.91658 −0.91648 −0.69864

1.600 −1.04503 −0.87493 −0.87493 −0.87481 −0.66743

1.700 −1.03325 −0.83817 −0.83817 −0.83805 −0.64182

1.800 −1.02454 −0.80549 −0.80549 −0.63034 −0.62070

1.900 −1.01811 −0.77625 −0.77625 −0.61285 −0.60320

2.000 −1.01338 −0.74993 −0.74993 −0.59829 −0.58864

2.200 −1.00736 −0.71385 −0.70448 −0.57584 −0.56625

2.500 −1.00323 −0.68478 −0.64993 −0.55374 −0.54410

3.000 −1.00133 −0.65920 −0.58071 −0.53365 −0.52400

3.500 −1.00099 −0.64643 −0.56967 −0.52373 −0.51408

4.000 −1.000832 −0.639326 −0.564065 −0.518470 −0.508809

5.000 −1.000465 −0.632243 −0.559105 −0.513732 −0.504065

7.000 −1.0000833 −0.627372 −0.556435 −0.511135 −0.501464

10.000 −1.0000043 −0.625650 −0.555725 −0.510418 −0.500745

15.000 −0.9999969 −0.625167 −0.555571 −0.510233 −0.500562

20.000 −0.9999964 −0.625066 −0.555552 −0.510203 −0.500517
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mula �5� still holds. The behavior of the potential curves with
�=6,30 was extrapolated beyond R=20 a.u. so that the
curves smoothly reach their asymptotic energies of two non-
interacting atoms. Calculated values of decay rates do not
depend on the way E��R� were extrapolated.

The ECG orbitals describe correctly the system of a Ps
atom interacting weakly with the p−p+ pair, which is demon-
strated by the behavior of leptonic potentials V�

lep�R� depicted
in Fig. 1. For internuclear distances smaller than the critical
value Rc��� the function V�

lep�R� approaches the ground-state
energy of the Ps atom, EPs

bind=−0.25 a.u. The values of the
critical distances Rc��� and nonadiabatic corrections near
Rc��� are compiled in Table II for �=0,1 ,2 ,6 ,30. The char-
acteristics of the potential energy curve for the ground state
and the origin of the critical distance Rc�0� have been dis-
cussed in �9�. As has been pointed out in �9� the energy curve

E0�R� coincides with the interaction energy between H and H̄
atoms, EHH̄�R�, for R�Rc�0� and with the energy of weakly
interacting Ps and Pt atoms, EPs+Pt�R�	−1/R−0.25, for R

Rc�0�. The same situation occurs for excited leptonic states

of the HH̄* system �see Fig. 1�. For the internuclear distances

R�Rc��� the wave function ��
lep�r�e− ,r�e+ ,R� � describes the

interaction between H and H̄* atoms with nuclei fixed at the
distance R. For the internuclear distances R
Rc��� the

function ��
lep�r�e− ,r�e+ ,R� � describes the ground state of the Ps

atom, moving in the field of the p−p+ pair, with the angular

momentum projection �, since the orbital state of light par-
ticles cannot change within the Born-Oppenheimer approxi-
mation. Thus the energy of the Ps atom in the p−p+ center-
of-mass frame consists of two parts: EPs=EPs

bind+EPs
rot with

EPs
rot= �2

2IPs
. Here IPs=2�Ps

2 is the moment of inertia of the Ps
atom with respect to the internuclear axis and �Ps denotes the
average distance between center of mass of the Ps atom and
molecular axis. Near the critical point Rc��� the value of

EPs+Pt	EPs−1/R becomes smaller than E��R� and HH̄*

transforms into the Ps+Pt system.
The density distributions for the electron and the positron

in the HH̄* system in the states with nonzero but small values
of � overlap at larger internuclear distances R that for �
=0 �ground state�. Accordingly, the critical distance Rc���,
where the HH̄* system transforms into Ps and Pt atoms, in-
creases as � increases for small values of leptonic orbital
angular momentum projection �see Table II�. For a low � the
value of the rotational part of the Ps energy EPs

rot is small
compared to the absolute value of EPs

bind. So the energy of the
Ps atom is approximately its binding energy. Thus, when the
leptonic potential corresponding to �=1, 2 reaches the value
of EPs

bind, the H+H* system decays into separate Ps and Pt
atoms, as it was in case of �=0 �see Fig. 1�.

The HH̄* system with high values of � can be considered

as an ion �HH̄�− �i.e., pp̄e− system� and the positron e+

weakly bound to this ion. As the value of � increases Rc���
decreases and in the limit �→� it should approach the value
of the internuclear critical distance Rc

ion=0.639a0 for the ion

�HH̄�− �24� �see Fig. 1�. The rotational energy EPs
rot corre-

sponding to the state with high � becomes essential com-
pared to EPs

bind. Therefore V�
lep�R� reaches the higher energy

values than in case of low � �see Fig. 1�. After the decay of

the HH̄* system the electron and the positron are not bound
to the p−p+ pair, so the Ps atom flies away rotating around the
internuclear axis. The energy EPs

rot becomes negligible since
the value of �Ps becomes infinite and the leptonic potentials

TABLE II. The nonadiabatic corrections �V�
lep(Rc���) and in-

ternuclear critical distances Rc��� calculated for the different lep-
tonic orbital angular momentum projections �=0, 1, 2, 6, 30 �in
atomic units�.

� 0 1 2 6 30

Rc��� 0.752 2.07 3.03 1.79 1.08

�V�
lep�Rc���� 0.24 0.5 1.0 6.9 9.0

FIG. 1. The leptonic potentials for the ground
state ��=0� and for excited states ��
=1,2 ,6 ,30�, V0

lep�R� �solid line�, V1
lep�R� �dashed

line�, V2
lep�R� �dotted line�, V6

lep�R� �dash-dotted
line�, and V30

lep�R� �solid line�. The potentials are
plotted as functions of the internuclear distance R
�in atomic units�. The energies of the noninteract-

ing H+H̄* system are indicated by solid straight
lines parallel to the horizontal axis; for ��0 this
line coincides with the abscissa axis. The vertical
dotted lines indicate the critical distances Rc���.
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V�
lep�R� corresponding to the high values of � dive down to

the value of the ground-state binding energy of the Ps atom
EPs

bind �see Fig. 1�.

IV. DECAY CHANNEL HH̄*\Ps+Pt

In �9� the decay rates for the process HH̄→Ps+Pt have
been estimated applying a semiclassical approach for the de-
scription of the hadronic motion. A similar estimate can be

made for the process HH̄*→Ps+Pt. According, hadronic
states with high principal quantum numbers n�1 should be
considered. For such states the probability of finding the pro-
ton and antiproton at the internuclear distances R�Rc���,
where the HH̄* system may still exist, will be essential. This
probability is equal to

P�nl = �
Rc���

�

�
�nl�R��2dR . �16�

Within this semiclassical picture the decay rate for the pro-

cess HH̄*→Ps+Pt can be estimated via �9�

��nl
Ps+Pt =

1

��nl
	 2

��E�nl�
�

1 − P�nl

P�nl
. �17�

Here ��nl is the semiclassical lifetime of the unstable quasi-
molecular state ��nl� and �E�nl is the difference between
two neighboring levels, one of which has the quantum num-
bers n , l and depends weakly on these quantum numbers if
n�1. The expression P�nl / �1− P�nl� represents the relative
probability for finding the particles p− and p+ at a distance
R�Rc���. Values of ��nl

Ps+Pt for �=0,1 ,2 ,6 ,30 and l=0,1
are compiled in Tables III–VII together with the e−e+ and
p−p+ annihilation decay rates.

The formation of the quasimolecular levels with different
n , l values requires special consideration. The necessary con-
dition for such a formation is

T�nl � tint, �18�

where T�nl=2� / ��E�nl� denotes the semiclassical period for
the considered quasimolecular level and tint is the interaction

time during the formation process of HH̄* quasimolecule.
This time can be estimated via

tint =
s

v
, �19�

where s is the characteristic length of the process and v is the
relative velocity of ultracold hadrons. It is assumed that s

10 a.u. 
10−7 cm for low values of � and s�10−7 cm for
Rydberg leptonic states. Under the experimental conditions
�1–3� the relative velocity is estimated as v
103 cm/s. For

TABLE III. Numerical results for the annihilation rates �2�
e−e+

,
�p−p+

and for the decay rate �Ps+Pt for hadronic quantum numbers
n=19–26, l=0,1, and �=0.

n �2�
e−e+

�GHz� �p−p+
�GHz� �Ps+Pt�GHz�

l=0 l=1 l=0 l=0 l=1

19 1.298 1.268 3.2�106 2.9�106 2.5�106

20 3.641 3.621 2.7�106 5.0�105 4.3�105

21 3.847 3.843 2.2�106 3.3�105 2.7�105

22 4.511 4.512 1.8�106 1.5�105 1.2�105

23 4.602 4.596 1.4�106 9.0�104 7.2�104

24 4.499 4.497 1.1�106 5.3�104 2.2�104

25 4.303 4.305 8.2�105 2.7�104 1.9�104

26 3.861 3.864 5.4�105 1.1�104 6.9�103

TABLE IV. Numerical results for the annihilation rates �2�
e−e+

,
�p−p+

and for the decay rate �Ps+Pt for hadronic quantum numbers
n=33–42, l=0,1, and ��1.

n �2�
e−e+

�GHz� �p−p+
�GHz� �Ps+Pt�GHz�

l=0 l=1 l=0 l=0 l=1

33 1.178 1.169 5.5�105 1.5�105 1.1�105

34 1.687 1.670 4.3�105 6.1�104 4.8�104

35 0.734 0.738 3.2�105 2.7�104 2.0�104

36 1.032 1.031 2.5�105 1.5�104 1.1�104

37 0.934 0.934 1.9�105 7.9�103 5.7�103

38 0.632 0.631 1.4�105 3.8�103 2.7�103

39 0.585 0.585 9.5�104 1.8�103 1.2�103

40 0.388 0.387 6.5�104 8.1�102 5.5�102

41 0.243 0.243 4.3�104 3.5�102 2.1�102

42 0.153 0.153 2.6�104 1.3�102 7.1�101

TABLE V. Numerical results for the annihilation rates �2�
e−e+

,
�p−p+

and for the decay rate �Ps+Pt for hadronic quantum numbers
n=38−41, l=0,1, and �=2.

n �2�
e−e+

�GHz� �p−p+
�GHz� �Ps+Pt�GHz�

l=0 l=1 l=0 l=0 l=1

38 0.620 0.617 2.1�105 4.7�104 2.4�104

39 0.398 0.399 1.4�105 1.2�104 7.6�103

40 0.284 0.285 8.1�104 3.1�103 1.7�103

41 0.196 0.196 4.0�104 4.6�102 3.4�102

TABLE VI. Numerical results for the annihilation rate �p−p+
and

for the decay rate �Ps+Pt for hadronic quantum numbers n=36–41,
l=0,1, and �=6.

n �p−p+
�GHz� �Ps+Pt�GHz�

l=0 l=0 l=1

36 5.1�105 2.7�104 2.2�104

37 2.1�105 7.0�103 4.9�103

38 1.2�105 2.7�103 1.6�103

39 7.2�104 1.0�103 6.1�102

40 4.4�104 3.7�102 2.0�102

41 2.1�104 8.3�101 4.4�101
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low values of � the interaction time tint
10−10 s should be
compared with T�nl
10−12 s for �=0, n=23, l=1. Thus the
inequality �18� holds in this case �9�. For high values of �
the numerical calculation gives T�nl
2�10−10 s ��=30, n
=30, l=1�, but the interaction time also becomes larger tint
�10−10 s. So we conclude that the quasimolecular Rydberg
states also should arise in the experimental situation de-
scribed in �1–3�.

V. e−e+ AND p−p+ ANNIHILATION

The annihilation rate of a pointlike particle and antipar-
ticle separated by the distance r� is proportional to the matrix
element of the spatial delta function 	�r��. The proportionality
factor—i.e., the so-called annihilation constant—is obtained

as the number of annihilation events per unit density and unit
time. The following consideration concerning leptons will
focus on the two-photon �2�� annihilation of electrons and
positrons with total spin S=0, since the triplet state annihi-
lates into three photons with smaller probability. The spin-
averaged 2�-annihilation constant for the electron-positron

pair is equal to A2�
e−e+

=4�cre−
2 
2�1011 Hz �13�, where re−

= e2

mc2 is the electrostatic radius of electron. The

3�-annihilation constant is much smaller, A3�
e−e+


2
�108 Hz. As in Refs. �9,12� the value for the p−p+ annihila-
tion constant, Ap−p+


7�109 Hz, was taken from the experi-
ment �25�, which also account for various other
p−p+-annihilation channels, such as, e.g., p−p+→�0�0,
p−p+→�−�+, etc.

The expression for the leptonic 2�-annihilation rate

within the HH̄ system reads

�2�
e−e+

= A2�
e−e+

���r�e−,r�e+,R� ��	�r�e− − r�e+����r�e−,r�e+,R� �� ,

�20�

where ��r�e− ,r�e+ ,R� � denotes the total wave function defined

in Eq. �1�. According to Eqs. �1� and �15�, �2�
e−e+

can be writ-
ten in the form

�2�
e−e+

= A2�
e−e+�

Rc���

�

�
�nl�R��2P��R�dR , �21�

where P��R� is the e−e+-coalescence probability distribution
�9,13�:

P��R� = ���
lep�r�e−,r�e+,R� ��	�r�e− − r�e+����

lep�r�e−,r�e+,R� �� .

�22�

In Eq. �21� the integration over internuclear distances R ex-
tends from the lower bound Rc��� up to infinity since

TABLE VII. Numerical results for the annihilation rate �p−p+

and for the decay rate �Ps+Pt for hadronic quantum numbers n
=27–36, l=0,1, and �=30.

n �p−p+
�GHz� �Ps+Pt�GHz�

l=0 l=0 l=1

27 1.5�106 1.6�105 1.3�105

28 1.0�106 7.4�104 6.5�104

29 8.0�105 3.3�104 3.5�104

30 7.2�105 2.9�104 2.3�104

31 5.8�105 1.8�104 1.5�104

32 4.5�105 1.1�104 8.6�103

33 3.4�105 6.3�103 4.8�103

34 2.5�105 3.4�103 2.5�103

35 1.8�105 1.7�103 1.2�103

36 1.2�105 7.9�102 4.4�102

FIG. 2. The coalescence probability distribu-
tions P0�R� �solid line�, P1�R� �dashed line�,
P2�R� �dotted line�, P6�R�, and P30�R� �dash-
dotted line� are plotted as a function of the inter-
nuclear distance R �in atomic units�.
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contributions to the annihilation rate arise only from

distances where the HH̄* quasimolecule still exists. The
e−e+-coalescence probability distributions P��R� for �
=0,1 ,2 ,6 ,30 are depicted in Fig. 2. As can be seen from
Fig. 2, P��R� tends to zero quite rapidly for distances R
�Rc���, in particular for Rydberg states �=6,30. Hence the
leptonic annihilation decay rates for these quasimolecular
states are close to zero. This follows from the small overlap
of the electron and positron density distributions in the Ryd-

berg states of the HH̄* quasimolecule.
For distances R
Rc��� all the functions P��R� approach

the constant value P��0�
��100
Ps �0��2= 1

8� , which corresponds
to the coalescence probability in free positronium. The be-
havior of P��R� confirms the fact that all considered excited

leptonic states of the HH̄* system decay into the Ps atom in
the ground state and Pt atom. The expression for the
p−p+-annihilation rate can be obtained similarly using the
hadronic part of the wave function ��nlm

had �see Eq. �14��:

�p−p+
= Ap−p+�
�nl�R�

R
�

R→0

2

, �23�

with 
�nl�R� calculated by solving Eq. �15�. For l�0,

�p−p+

0, since the radial part of the hadronic wave function


�nl�R� behaves like 	Rl+1 in the limit R→0. The P states

contribute to the �p−p+
at high energies �see, for example,

�26–28��. However, the HH̄* system in experiments �1–3� is
obtained with ultracold atoms so that at low energies Eq.
�23� holds �12�. Numerical results for the annihilation decay

rates �2�
e−e+

and �p−p+
together with the HH̄*→Ps+Pt decay

rates are presented in Tables III–VII for the quasimolecular
states with quantum numbers �=0,1 ,2 ,6 ,30 and l=0,1.

The higher hadronic quasibound states are considered
since only for these states does the probability to find the
proton and antiproton at distances larger than the critical one
become essential; i.e., the quasibound system exists during a
considerable time period. An upper bound for the number N
of such quasibound states is determined by the particular
properties of the potential curve E��R�. The quasimolecular
leptonic state with �=1 requires one to take into account the
largest number of hadronic Rydberg states since the corre-

sponding interaction energy between H and H̄* decreases
only as 1/R3 while for the other leptonic levels the interac-
tion energy decreases faster.

VI. CONCLUSIONS

Concluding we can state that the generalized ECG basis

set is suitable for describing the interaction between H and H̄
atoms in an arbitrary leptonic state with high precision. This
has been confirmed within this paper by checking the ob-
tained results at large and small internuclear distances R and
by making a comparison with other investigations of the

ground state of the HH̄ system. The advantage of the present
description is that it can be generalized to the case of an
arbitrary two-center Coulomb system with N electrons and
positrons. In particular, the atom-antiatom interaction can be

described in effective core approximation employing gener-
alized ECG basis sets.

On the other hand, the investigation of the HH̄* system is
more close to the experimental situation, since up to now in

experiments �1–3� the H̄* atoms have been produced only in
Rydberg states. In the present paper observable properties of

HH̄* quasimolecule, such as decay rates for different pro-
cesses, have been calculated.

The role of the decay processes in the HH̄* system involv-

ing excited leptonic states is the same as for the HH̄ ground
state. However, in the case of excited leptonic states the nu-
merical results for the decay rates are smaller than the cor-

responding ones in the HH̄ ground state since in the former
case the particles are at larger distances. This may be con-
sidered as a hint for the creation of metastable quasibound
states of matter and antimatter in the future. From this point
of view experimental investigations of the properties of
atom-antiatom quasimolecules in Rydberg state are more fa-
vorable than to study their ground-state properties: unlike
normal molecules the atom-antiatom quasimolecules in Ryd-
berg states are more stable than in the ground state.
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APPENDIX: EXPRESSIONS FOR MATRIX ELEMENTS

This appendix provides explicit expressions for the over-
lap integral between leptonic wave functions involving two
Gaussians multiplied by a spherical harmonic �Eqs. �11� and
�12�� and the corresponding matrix elements for all terms
appearing in the leptonic Hamiltonian �3� as well as for the
spatial delta function 	�r�e− −r�e+�.

Due to the symmetry of the HH̄ system, the leptonic wave
function is invariant under rotations around the internuclear

axis R� . This condition reduces the number of variational pa-

rameters so that R� i
e−

= �0,0 ,Ri
e−

� and R� i
e+

= �0,0 ,Ri
e+

�, respec-

tively. It is further convenient to define the parameters 	i
e−

=R /2+Ri
e−

and 	i
e+

=R /2−Ri
e+

�see Eq. �11��, which in the

asymptotic limit R→� yield �
lep�r�e− ,r�e+ ,R� �=�H�r�e−

+R� /2��H̄�r�e+ −R� /2� and 	i
e±

→0, respectively. The basis

functions �i= �r�e−r�e+ �aibici	i
e−

	i
e+

ui
e−

ui
e+

� depend on seven pa-

rameters. Expressions for ��i �� j�, ��i � T̂ �� j�, and ��i � Û �� j�,
where T̂ and Û are the kinetic and potential energy operators
in the Hamiltonian �3� and ��i �	�r�e− −r�e+� �� j�, are given be-
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low. For the non-normalized Gaussians �i, � j the overlap
integral is equal to

�aibici	i
e−

	i
e+

ui
e−

ui
e+

�ajbjcj	 j
e−

	 j
e+

uj
e−

uj
e+

�

= ��i�� j�=
�3

�3/2q�
�2� + 1� ! !

4�

�exp�−
abc

�
�R − � − ��2 −

bibj

b
	e−

2 −
cicj

c
	e+

2 � .

�A1�

In the above expression the notations a=ai+aj, b=bi+bj,

c=ci+cj, �=ab+bc+ca, �= �bi	i
e−

+bj	 j
e−

� /b, �= �ci	i
e+

+cj	 j
e+

� /c, 	e− =	i
e−

−	 j
e−

, 	e+ =	i
e+

−	 j
e+

, and q= �a�ui
e−

+ui
e+

�
��uj

e−
+uj

e+
�+cui

e−
uj

e−
+bui

e+
uj

e+
� / �2�� are introduced. All ma-

trix elements are expressed in terms of ��i �� j�, and then the
functions �i are redefined so that ��i ��i�=1 holds. To repre-
sent the matrix elements in a compact form the following
functions of variational parameters are defined: f =R−�−�,
�e− =− ac

� f −�, �e+ =− ab
� f −�, 	ab=aibj −biaj, and �ij =aibj

+bjci+ciaj,

S =
3

�
�a�bibj + cicj� + aiaj�b + c� + c�ai + bi��aj + bj�

+ b�ai + ci��aj + cj�� ,

P =
2

�
�	ab

2 c2 + 	ac
2 b2� ,

Q =
�� j j + �ij���ii + � ji� − 	ac

2

�2 ui
e−

uj
e−

+
��ii + �ij��� j j + � ji� − 	ab

2

�2 ui
e+

uj
e+

+
	ab��ii + � ji� + 	ca�� j j + � ji�

�2 ui
e+

uj
e−

+
	ba�� j j + �ij� + 	ac��ii + �ij�

�2 ui
e−

uj
e+

.

Accordingly, the matrix elements, expressed in terms of
these functions, read

��i�T̂�� j� = 
S − PR2 + �
Q

q
���i�� j� , �A2�

��i� 1

�r�e− + 1
2R� ��� j� = 2� �

��a + c�
F���e−,�e−;

��e−
2

a + c
�

���i�� j� , �A3�

�e− =
ui

e+
uj

e+

2�a + c�q
, �A3a�

�e− =
�a�uj

e−
+ uj

e+
� + cuj

e−
��a�ui

e−
+ ui

e+
� + cui

e−
�

2��a + c�q
,

�A3b�

��i� 1

�r�e− − 1
2R� ��� j� = 2� �

��a + c�

�F���e−,�e−;
���e− + R�2

a + c
���i�� j� ,

�A4�

��i� 1

�r�e+ − 1
2R� ��� j� = 2� �

��a + b�
F���e+,�e+;

��e+
2

a + b
�

���i�� j� , �A5�

�e+ =
ui

e−
uj

e−

2�a + b�q
, �A5a�

�e+ =
�a�uj

e−
+ uj

e+
� + buj

e+
��a�ui

e−
+ ui

e+
� + bui

e+
�

2��a + b�q
,

�A5b�

��i� 1

�r�e+ + 1
2R� ��� j� = 2� �

��a + b�

�F���e+,�e+;
���e+ + R�2

a + b
���i�� j� ,

�A6�

��i� 1

�r�e− − r�e+��� j� = 2� �

��b + c�
F���e,�e;

b2c2f2

��b + c��
���i�� j� , �A7�

�e =
�ui

e−
+ ui

e+
��uj

e−
+ uj

e+
�

2�b + c�q
, �A7a�

�e =
�cuj

e−
− buj

e+
��cui

e−
− bui

e+
�

2��b + c�q
, �A7b�

��i�	�r�e− − r�e+��� j� = � �

��b + c��
3/2

�e
�exp�−

b2c2f2

��b + c��
���i�� j� . �A8�

The function F��� ,� ;x� is defined by

F���,�;x� = �
0

1

�� + ��1 − s2���exp�− xs2�ds . �A9�
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