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The high precision relativistic and radiative corrections to the energy of the excited 3 1S state of the
beryllium atom are obtained. The nonrelativistic wave function, expanded in a basis of exponentially correlated
Gaussian functions, yields the lowest upper bounds to the energy of 2 1S and 3 1S states. By means of the
integral representation, a reference-quality Bethe logarithm has been obtained. The resulting theoretical 2 1S
-3 1S transition energy amounts to 54 677.78�45� cm−1 and differs from the known experimental value by
about 0.5 cm−1.
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I. INTRODUCTION

Theoretical predictions of the energy levels in many-
electron atoms with an accuracy competitive to that achiev-
able from measurements require two conditions to be ful-
filled. First of all, the interparticle correlation has to be fully
incorporated into the calculations. This goal can be achieved
by using large expansions of the nonrelativistic wave func-
tion in the basis of explicitly correlated functions with opti-
mized nonlinear parameters. For the helium atom, the best
examples of the application of such functions are computa-
tions by Drake et al. �1�, who employed the Hylleraas basis
function and computations by Korobov �2� performed using
a correlated exponential basis. The Hylleraas basis has been
successfully employed also in the calculations on the lithium
atom by Yan and Drake �3� and, most recently, by Puchalski
and Pachucki �4� who predicted the nonrelativistic energy of
the ground state with an accuracy exceeding 12 significant
figures. For the beryllium atom, though, since the classical
work by Sims and Hagstrom �5�, some progress towards con-
structing an accurate wave function has been observed
�6–10�; difficulties in computing matrix elements in the Hyl-
leraas basis prevents one from a full utilization of this basis
functions. Hitherto, the most accurate energy for the ground
state of the berylliumlike atoms has been obtained using the
exponentially correlated Gaussian �ECG� basis sets �11,12�.

The second condition indispensable for obtaining accurate
energy predictions is an adequate theoretical description of
the beyond-nonrelativistic effects. For the many-electron at-
oms, the routinely used methods rely on the Dirac-Coulomb
Hamiltonian which is a sum of the one-electron Dirac Hamil-
tonians with Coulomb interactions between electrons. This
approach, though acceptable as the first approximation, can-
not be used in high-accuracy calculations as it is inconsistent
with quantum electrodynamics �QED�. A very convenient
and well-founded approach, valid for light systems with few

electrons, relies on expansion of the total binding energy in
powers of �—the fine structure constant. Each coefficient of
this expansion can be expressed as the expectation value of
some operator, to be called an effective Hamiltonian �13�.
These operators are known for the leading relativistic and
QED corrections �14–17�. An evaluation of these corrections
for 3 1S excited state of a beryllium atom is the main subject
of the present work.

II. THE METHOD

The total energy of a bound system can be represented by
an expansion in powers of �:

E��� = ENR + �2EREL + �3EQED + �4�EQED �1�

with the expansion coefficients having a transparent physical
interpretation. A particular form of these coefficients, valid
for the beryllium atom in the singlet S state, is described
below. We use units where m=�=c=1 and a common pref-
actor m�2 is pulled out from the binding energy. ENR is a
sum of E0, the nonrelativistic energy of the atom correspond-
ing to the clamped nuclei Hamiltonian
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and the finite nuclear mass correction EFM. This correction,
given by

EFM =
1

2M
��	��

i

�i�2
	�
 , �3�

where M is the nuclear mass, has been computed by sum-
ming up the normal, ENMS=−E0 /M, and the specific, ESMS
= ��	�i�j�i ·� j	�
 /M mass shifts �18�. EREL= ��	HREL	�

is the leading relativistic correction expressed as the nonrel-
ativistic expectation value of the Breit-Pauli Hamiltonian
HREL, which for the closed shell atom in the nonrecoil limit
reads
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The third coefficient of the expansion �1�, EQED, represents
the leading radiative correction
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This expression, apart from the expectation value of the
Dirac delta distributions �, contains the Araki-Sucher term
defined as

��	P� 1

r3�	�
 � lim
a→0

� dr�*�r���r�� 1

r3	�r − a�

+ 4���r��
 + ln a�� , �6�

with 	 being the step function and 
—the Euler constant.
Eq. �5� contains also the many-electron Bethe logarithm ln k0
defined by

ln k0 = −
1

D
��	��H0 − E0�ln�2�H0 − E0�� � 	�
 , �7�

where the following symbols are incorporated
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Since the last coefficient in Eq. �1�, �EQED, is quite compli-
cated �13�, we approximate it by its leading term

�EQED � 4�Z2�139
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�10�

which is the known correction to the Lamb shift in hydro-
genlike systems. The remaining �4 contributions involve
second-order terms which are relatively difficult to compute.
The �4�EQED component gives a rough estimate of the error
made by cutting off the expansion in Eq. �1�.

III. EVALUATION OF MATRIX ELEMENTS

The nonrelativistic wave function employed in this
project is represented as a K-term linear expansion in a four-
electron spatial basis ��l�r�� multiplied by an appropriate sin-
glet spin eigenfunction, �S,MS

,

��r,�� = Â��S,MS
����

l=1

K

cl�l�r�� . �11�

The expansion is antisymmetrized by applying the four-

electron projector Â. As the basis functions �l�r� we used
exponentially correlated Gaussian functions introduced by
Singer �19�

�l�r� = exp�− rTAlr� �12�

and

�̃l�r� = ri exp�− rTÃlr� �13�

of S and P symmetry, respectively. The positive definite ma-
trices Al are built of nonlinear parameters determined in a
variational optimization process �20�. The quality of the final
results depends primarily on the effectiveness of the optimi-
zation of these nonlinear parameters and this optimization is
the most time consuming part of the project.

Some of the operators involved in the nonrelativistic ex-
pansion �1� are of a singular nature. Expectation values of
such operators computed in the Gaussian type basis converge
very slowly even if the wave functions are energetically of
high quality. One way to circumvent this problem is a refor-
mulation of the expectation values in terms of other, less
singular operators. This idea, for the first time applied by
Drachman �21�, was already explored successfully in the
atomic calculations reported in Refs. �11,22�, where a de-
tailed description of the method and numerical convergence
results can be found. Such regularized calculations were per-
formed for the expectation values of ��r�, p4, and P�1/r3�
operators. Convergence of the remaining operators, including
the Breit operator, is less problematic and their expectation
values were computed conventionally.

One of the most difficult quantities to be determined is the
four-electron Bethe logarithm, Eq. �7�. An efficient technique
of evaluation of ln k0 for multielectron systems was de-
scribed in Refs. �11,23�. In this approach the Bethe logarithm
is represented as a one-dimensional integral over the variable
t=1/�1+2�

ln k0 =
1

D
�

0

1 f�t� − f0 − f2t2

t3 dt , �14�

where

f�t� = − ��	�
�

H0 − E0 + �
� 	�
 , �15�

and where � is a frequency corresponding to the energy of a
virtual photon. It is crucial that f�t� is computed to a high
accuracy. An important factor deciding on the final accuracy
of ln k0 is the small t asymptotics of the integrand in Eq.
�14�. As shown by Schwartz �24�, at very low values of t the
integrand has the following expansion:

f�t� = f0 + f2t2 + f3t3 + f4t4 ln�t� + o�t4� , �16�

in which the lowest-order coefficients are known to be f0
=−��	�2	�
, f2=−2D, f3=8ZD, and f4=16Z2D, and the
higher-order coefficients were fit to f�t� of Eq. �15�. A feature
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of this approach which is not to be overestimated is that it
can be applied to many-electron atoms as well as to mol-
ecules. To evaluate the Bethe logarithm in the integral form
of Eq. �14� we need the first-order perturbation correction

function �̃, which is a solution of the following equation:

�H0 − E0 + ���̃ = − �� . �17�

The � operator defined in Eq. �8�, couples the unperturbed S

states with the intermediate P states, hence �̃ is to be ex-
panded in the basis of the form �13�. Assuming � is known,
the perturbation equation can be solved variationally by
minimizing the Hylleraas functional at different �:

J���̃� = ��̃	H0 − E0 + �	�̃
 + 2��̃	�	�
 . �18�

It is important that the same �̃ minimizes the above func-
tional in a broad range of �, not only at the static case ��
=0�. To reach this effect, we separately optimize J� in Eq.
�18� using four 1200-term basis sets at four different fre-
quencies �=0, 10, 100, and 1000 and glue them together to

form a final 4800-term basis set for �̃.

IV. RESULTS AND DISCUSSION

In this work, the wave functions for both 2 1S and 3 1S
states were expanded in a common set of basis functions of
type �12�. The advantage of using a single set of basis func-
tions for both states is that the eigenvectors obtained in a
single diagonalization of the Hamiltonian are perfectly or-
thogonal. The final basis set was constructed from four
smaller sets optimized separately with respect to eigenvalues
of the four lowest states of the symmetry S. The subsets
corresponding to the states 2 1S and 3 1S were composed of
1600 basis functions, whereas to the 4 1S and 5 1S states—of
600 and 800 functions, respectively, yielding a total of 4600
basis functions. The nonrelativistic wave functions obtained
for the 2 1S and 3 1S states were subsequently employed to
compute the expectation values of several operators appear-
ing in the expressions �2�–�10�. Numerical values of these
expectation values are listed in Table I. We note that the 2 1S
column of the table contains values corrected and slightly
improved over those obtained from a smaller expansion �K
=3600� and reported previously �11�. The nonrelativistic
clamped nucleus energies E0= ��	H0	�
 are the lowest upper
bounds available to date. In particular, the new ground state
energy is slightly improved with respect to the best previous
energy estimate �11�. The new upper bound to 3 1S energy is
lower by 14
10−6 a.u. than previous estimations obtained
from the 3600-term ECG wave function in Ref. �25� and by
3.7
10−3 a.u. than the upper bound computed by Chung and
Zhu �26�. It is worth noting that the extrapolated energy ob-
tained by Chung and Zhu using their full-core plus correla-
tion �27� method differs from our result by merely 5.6

10−7 a.u.

The computed energy difference �E between the levels
3 1S and 2 1S is presented in Table II. The total value of �E
is obtained as a sum of the components originating from Eq.
�1�. The finite mass correction together with the relativistic

and radiative corrections are listed separately in Table II,
which permits an assessment of the contributions coming
from different physical effects. The total correction to the
nonrelativistic excitation energy amounts to 2.45�23� cm−1

which is merely 45 ppm of the total �E. The uncertainties,
given in the last column of the table, are transferred from the
errors estimated for the 3 1S state. The final theoretical value
�E=54 677.78�45� cm−1 can be confronted with the experi-
mentally derived value of 54 677.26 cm−1, which comes
from the measurements performed in 1962 by Johansson
�28�. His results were included in the compilation of energy
levels of Be by Kramida and Martin �29�. The anticipated
experimental uncertainty displayed in Table II is based on
Johansson’s opinion that “the estimated errors in the level
values are, in general, less than ±0.05 cm−1.” Since the spac-
ing between 3 1S and 2 1S levels has been determined indi-
rectly from two nS→mP transitions, we get an experimental
uncertainty of 0.10 cm−1.

The difference between theory and experiment is close to
the sum of both theoretical and experimental uncertainties. It

TABLE I. Expectation values �in a.u.� of various operators with
nonrelativistic wave functions of a beryllium atom �K=4600� in the
2 1S and 3 1S states. The implicit summation over i and over pairs
i� j is assumed.

2 1S 3 1S

��	H0	�
 −14.667 355 748 −14.418 236 555

��	�2	�
 −30.255 159�8� −29.737 482�30�
��	��ri�	�
 35.368 92�4� 35.127 90�12�
��	��rij�	�
 1.605 302�4� 1.583 070�12�
��	pi ·p j	�
 0.460 224�4� 0.450 512�10�
��	pi

4	�
 /8 270.704 8�5� 268.562�13�
��	rij

−3rij�rij ·pi�p j

+rij
−1pi ·p j	�
 /2

−0.891 825�1� −0.900 470�4�

��	P�1/rij
3 �	�
 /4� −0.583 03�5� −0.594 08�13�

ln k0 5.750 48�6� 5.750 89�15�

TABLE II. Components of the 2 1S→3 1S excitation energy for
the 9Be atom. E0 is the nonrelativistic clamped nucleus energy;
EFM, �2EREL, �3EQED, and �4�EQED are the finite nuclear mass, the
leading relativistic, the leading radiative, and the higher-order ra-
diative corrections, respectively, defined by Eqs. �2�–�5�, �10�, and
�3�. The mass of the 9Be nuclei M =16424.203m. Physical constants
are from �30�.

Be�2 1S� �a.u.� Be�3 1S� �a.u.� �E �cm−1�

E0 −14.667 355 748 −14.418 236 555 54675.34�22�
EFM 0.000 028 019 0.000 027 428 −3.459�0�

�2EREL −0.002 360 312 −0.002 331 034 6.43�16�
�3EQED 0.000 339 785 0.000 337 520 −0.497�1�

�4�EQED 0.000 015 435 0.000 015 330 −0.023�6�

Total −14.669 332 811 −14.420 187 320 54677.78�45�
Experimenta 54677.26�10�

Diff. 0.52�55�
aReferences �28,29�
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is a justification of our computational approach, which is
based on explicitly correlated Gaussian functions and the
perturbative expansion of energy in Eq. �1�. However, the
theoretical uncertainty is still 4–5 times larger than the ex-
perimental one. The main contribution to the theoretical un-
certainty in �E comes from the the nonrelativistic energy of
the 3 1S state. This can be improved by using the Hylleraas
basis set, although computational difficulties with four-
electron integrals have not yet been resolved. A relatively
large uncertainty in the relativistic correction to �E is due to
the relativistic kinetic energy of the 3 1S state. In spite of five
significant figures of ��	pi

4	�
 being obtained, the cancella-
tion between one-electron contributions in ��	HREL	�
 and
contributions coming from 3 1S and 2 1S levels results in

about 2% uncertainty of the total relativistic correction.
This work, as well as our previous work on the ionization

potential of Be �11�, illustrate the present possibilities of
ECG functions in predicting the energy levels of four-
electron atoms. We can conclude that the main factor limit-
ing the accuracy of the present day theoretical predictions of
atomic levels is the nonrelativistic energy.
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