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One of the dominant systematic effects that shift resonance lines in high-precision measurements of two-
photon transitions is the dynamic �ac� Stark shift. For suitable laser frequencies, the ac Stark shift acquires an
imaginary part which corresponds to the rate of resonant one-photon ionization of electrons into a continuum
state. At the current level of spectroscopic accuracy, the underlying time-dependent quantum dynamics gov-
erning the atomic two-photon excitation process must be well understood, and related considerations are the
subject of the present paper. In order to illustrate the basic mechanisms in the transient regime, we investigate
an analytically solvable model scenario for the population dynamics in the density matrix formalism and
describe in detail how to generalize the corresponding equations of motion for individual experimental use. We
also calculate the dynamic Stark shift for two-photon S-S and S-D transitions in bound two-body Coulomb
systems and the corresponding two-photon transition matrix elements. In particular, we investigate transitions
for which the 1S ground state or alternatively the metastable 2S state acts as the lower-energy state, and for
which states with n�20 represent the upper states. Relativistic and radiative corrections to the excitation
dynamics, and the corresponding limitations to the accuracy of the measurements, are briefly discussed. Our
considerations suggest the general feasibility of a detection mechanism, offering high quantum efficiency,
based on two-step three-photon resonant ionization spectroscopy, for large classes of experimentally relevant
two-photon transitions in two-body Coulomb systems.
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I. INTRODUCTION

Like the electron gyromagnetic ratio, two-photon transi-
tions in hydrogenlike systems belong to the few cases where
experimental values can be compared with quantum electro-
dynamic �QED� calculations with very high precision. These
comparisons are the basis for verification or falsification of
this fundamental theory. In view of the increasing accuracy
of two-photon spectroscopic experiments, it is necessary to
understand in detail the excitation dynamics and the line pro-
file of the relevant resonances, as they can be observed under
realistic experimental conditions. Experiments investigating
the hydrogen S-S and S-D transitions are also important for
the determination of fundamental constants and their pos-
sible time variation �1–3�.

Concurrent with the experimental progress in this field,
there has been a wealth of theoretical studies addressing sys-

tematic effects, predicting the spectral line profile and calcu-
lating atomic properties connected to these problems �4–13�.
Ionization cross sections of atoms in excited states of typical
two-photon transitions have been obtained in �4� as early as
1930. Very detailed studies of dynamic Stark shifts and
broadening effects on the spectral line shape of two-photon
transitions in hydrogen have been carried out, e.g., in �5–9�.
In these investigations, a large set of values for the dynamic
polarizability for transitions to highly excited states is given.
For hydrogen, the emphasis has been on the metastable 2S
state acting as the ground state. A detailed review of two-
photon transition line shapes and experiments aimed at the
determination of the Rydberg constant can be found in �10�.

Experiments investigating the 1S-2S transition in muo-
nium and positronium for the first time �11,12�, and accurate
measurements of the transition frequency �13� have been re-
ported, extending high-precision spectroscopy to bound two-
body Coulomb systems beyond atomic hydrogen. A detec-
tion scheme for muonium, based on ionization, has been both
described experimentally �13,14� and analyzed theoretically
�8�. For the future, measurements on antihydrogen and hy-
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drogenlike ions are planned, and coherent light sources in the
extreme ultraviolet, which are needed for some of these ex-
periments, have been demonstrated recently �15�.

In this paper, we reconsider the derivation of the dynamic
polarizabilities and transition matrix elements for S-S and
S-D two-photon transitions in hydrogenlike systems in a uni-
fied treatment, compiling the results in SI units for conve-
nient experimental use. We include the dependence on the
nuclear charge number Z, where the two-photon resonance
condition for the laser frequency is maintained for different
Z, and the dependence on the nuclear mass, so that our re-
sults are applicable to general two-body Coulomb systems,
such as hydrogen, positronium, muonium, antiprotonic he-
lium, etc. Considering the excited state nS of a bound two-
body Coulomb system, driven by a laser field on two-photon
resonance with the 1S-nS transition, absorption of one addi-
tional photon is sufficient to ionize the system. The same
applies to all but n=3 of the 2S-nS transitions and to the
corresponding S-D transitions. The excitation of many two-
photon transitions must therefore necessarily take place in
the transient regime, because the driving laser would other-
wise ionize all atoms in the excited state, in the limit of
infinite interaction time �neglecting recombination�. Thus we
consider the time-dependent quantum dynamics for S-S and
S-D transitions, including both photoionization and sponta-
neous decay of the system. We obtain an analytic solution of
the master equation for finite times in the special case of
constant intensity, and observe some interesting features in
the line shape of the transition. Straightforward generaliza-
tions of the formalism to specific setups are given, which are
accessible to a numerical treatment. For different nuclear
charges, the relative importance of spontaneous decay versus
ionization is discussed.

Even though this work aims to facilitate experimental
tests of QED, it should be stressed that calculations in the
framework of nonrelativistic Schrödinger theory are cur-
rently sufficient to describe the experimental line shape for
low Z accurately. However, relativistic and radiative correc-
tions to the matrix elements that enter into the line shape
constitute small but interesting effects. We give explicit rela-
tivistic results for selected transitions, to indicate the orders
of magnitude, and we clarify some minor inconsistencies in
the literature, in particular with respect to the ionization
cross section and a few numerical differences.

As a concrete case, we consider the 1S-2S hydrogen mea-
surement �16�, where the natural linewidth of the metastable
2S level is 1.31 Hz and yet the observed spectral width of the
resonance line is about a few hundred hertz. The contribu-
tions due to the time-of-flight broadening, and the ionization
broadening are intertwined with the quantum dynamics of
the excitation process, so that they cannot simply be added in
quadrature or in any other simple algebraic way.

In short, the purpose of this paper is twofold. Our first aim
is to indicate the importance of ionization in the quantum
dynamics and to describe the absorption spectrum in two-
photon resonance spectroscopy. The second aim is to com-
pile results for the two-photon transition matrix elements,
dynamic polarizabilities and ionization cross sections that
enter into the equations of motion, keeping all factors of �, c,
and �0 in the derivation. In combination, these ingredients

provide a toolkit to readily model a large variety of experi-
mental situations in the proper SI units.

The paper is organized as follows: In Sec. II, the quantum
dynamics in terms of the optical Bloch equations is dis-
cussed. Section III is dedicated to the two-photon transition
matrix elements of a variety of two-photon transitions in
two-body Coulomb systems. In Sec. IV, we present the dy-
namic Stark shift and ionization coefficients for the same set
of transitions, including a brief outline of radiative and rela-
tivistic corrections in Sec. IV D. Finally, conclusions are
drawn in Sec. V.

II. QUANTUM DYNAMICS

A. Introduction

Two-photon transitions in hydrogen and hydrogenlike
ions are of special interest to high-precision spectroscopy
�16,17�, because they allow for a suitable elimination of the
first-order Doppler shift via absorption of two counterpropa-
gating photons. In order to calculate the absorption line
shape, taking into account the remaining systematic effects,
it is necessary to study the time-dependent interaction pro-
cess, which is the subject of this section, including the dy-
namic Stark effect, the ionization of the excited state, and the
second-order Doppler shift. The resulting equations of mo-
tion for the atom-laser interaction can be adapted to suit dif-
ferent experimental setups and different two-body Coulomb
systems. For the special case of constant light intensity, they
are solvable analytically.

In the mentioned experiment �16�, a beam of hydrogen
atoms is excited by laser radiation in a linear cavity which
serves to produce an amplified standing wave. The injected
atoms �initially in the 1S ground state� can be excited to the
2S state by two-photon absorption, and the number of ex-
cited 2S atoms is measured as a function of laser frequency
after a certain interaction time. This signal, referred to as
“the line shape” below, is generated by an ensemble of at-
oms, characterized by the experimental setup. Decisive pa-
rameters include �i� the spatial light intensity profile, �ii� the
second-order Doppler shift, �iii� the finite light-atom interac-
tion time, i.e., temporal intensity profile, and �iv� the varying
ionization probability during the interaction. The resulting
contributions of the atomic ensemble, specific to the experi-
ment, can be taken into account in a numerical integration of
the equations of motion presented in the following. For the
hydrogen 1S-2S experiment, this has been carried out in a
Monte Carlo approach �18�.

B. Basic quantum dynamics

In this section, the basic model which we use for the
excitation and ionization of two-body Coulomb systems is
described. The main approximations we will make is to con-
sider the driving laser field to be monochromatic, and to
neglect the direct three-photon ionization of the ground state.

The appropriate description of excitation with a finite-
bandwidth laser field necessitates a treatment involving sto-
chastic differential equations �19,20� and is out of the scope
of this paper. However, we would like to stress that in most
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systems, the monochromatic approximation is a good ap-
proximation, because the ionization of the excited state limits
the total interaction time of the bound system with the laser
field. As long as the finite bandwidth of the laser is small
compared to the transient width of the excited state, which
for reasons of principle can never be smaller than the inverse
interaction time, a monochromatic laser is a good approxi-
mation. Note that for spectroscopic experiments probing a
steady state, with an infinite interaction time, we would have
to compare the laser linewidth to the natural linewidth in-
stead.

Although the current paper is exclusively concerned with
a laser whose linewidth is so small that it can be regarded as
monochromatic for the purposes of the current investigation
�see the discussion above�, we would like to comment briefly
on the issues regarding a finite laser linewidth. For short-
time evolution of the density matrix in the regime where the
excited state population �ee��2t2 �� is the two-photon Rabi
frequency on two-photon resonance�, a simple averaging of
�ee over the power spectrum of the laser can be applied �see
Eq. �2.74� of �21��, but this averaging is not applicable for
longer excitation times. In the latter case, one has to take into
account the fact that the phase fluctuations of a laser typi-
cally constitute a stochastic process which necessitates a
modification of the coherence terms in the optical Bloch
equations, in the sense discussed in �22�, resulting in further
damping terms entering the right-hand side of Eq. �10b� be-
low.

As an example for the monochromatic excitation, one
may consider the hydrogen 1S-2S experiment, where the ex-
citation typically takes place on a submillisecond time scale.
The spectral line width of the laser is on the order of 200 Hz
at 121 nm, which is small compared to the typical inverse
interaction time of some kilohertz, while the natural line-
width of the 2S state is only 1.31 Hz.

The standard approach �23,24� is to solve the density ma-
trix equations for a two-level system. We can restrict the
Hilbert space of the atom to only two relevant states, an
excited state �e� and a ground state �g�, because near reso-
nance, only that two-photon transition will be driven signifi-
cantly by the laser field. We will assume that the atoms are
initially in �g� and are irradiated with the intensity I�t�, as
observed by the atom, starting from time t=0. For specific
considerations concerning the intensity in a standing wave,
see Sec. II E below. The straightforward treatment of this
interacting two-level system is extended by including decay
channels due to spontaneous decay and ionization into the
density matrix equations, which will turn out to be crucial
ingredients.

Our starting point is the von Neumann equation �23� for
the density operator �,

i �
�

�t
� = �H̃,�� , �1�

with

H̃ = Eg�g��g� + Ee�e��e� +
��

2
�exp�i	Lt� + exp�− i	Lt��2


��e��g� + �g��e�� , �2�

Eg = h�g + h��ac�g� , �3�

Ee = h�e + h��ac�e� . �4�

The tilde on H̃ signifies that the Hamiltonian is restricted
to the two atomic states under consideration, as opposed to
the following sections. The angular frequency of the laser is
denoted by 	L. Generally, throughout the paper, we will use
both the symbols 	 and � for angular frequencies �measured
in rad/s� appearing in the argument of exponential functions
of the form exp�i	t�, and � for frequencies as measured in
hertz �compatible with the international unit system SI�.

The energies of the excited state Ee and ground state Eg
already include the dynamic Stark effect, expressed by the
respective frequency shift ��ac. As will be presented in detail
in Sec. IV, these frequency shifts are proportional to the in-
tensity I�t� of the exciting laser field, and in accordance with
�6�, the ac Stark coefficient ac is defined as

��ac�g� = ac�g�I�t� , �5�

and likewise for the excited state. The ac Stark coefficients
are calculated in Sec. IV and listed in SI units in Tables
IV–VII below. Further, we define the two-photon Rabi fre-
quency � as

� = 2�2�ge�I�t� , �6�

and due to the two-photon nature of the excitation process, �
is also proportional to the light intensity, rather than to the
electric field amplitude, as is the case for one-photon dipole-
allowed transitions. Section III treats the calculation of the
two-photon transition matrix elements ge and lists the re-
sults for a set of transitions in Tables II and III below.

For the description of the population dynamics of the sys-
tem, it is useful to factor out a fast-oscillating term of the
off-diagonal elements of the density matrix in the equations
of motion �1�. We denote the transformed density matrix el-
ements by a prime and define

�gg� ª �gg, �ge� ª �geexp�− i2	Lt� , �7a�

�ee� ª �ee, �eg� ª �egexp�i2	Lt� . �7b�

This corresponds to a transformation into the interaction pic-
ture, but with a phase factor of exp�−i2	Lt� instead of
exp�−i	egt� for the coherence �ge. Note that the diagonal
elements of the density matrix, representing the population,
are invariant under this transformation. The resulting equa-
tions of motion �EOMs� for the matrix elements of the trans-
formed density operator �� then contain both slowly varying
terms, which determine the time scale of the population dy-
namics, and terms oscillating with ±2	L and ±4	L. We can
now employ the rotating-wave approximation, dropping the
terms oscillating at these optical frequencies, thereby ne-
glecting the Bloch-Siegert shifts �25�. Relative to the ac
Stark shift, the Bloch-Siegert shift in a two-photon transition
is suppressed by a factor of � /	L, which is on the order of
10−10 for realistic intensities considered here. This is a small
effect, compared with the relativistic, radiative, and field
configuration corrections discussed below.
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The spontaneous decay and the ionization of the excited
state can now be taken into account by adding

�relax� = − ��i + �s��ee� �e��e� + �s�ee� �g��g�

−
�i + �s

2
��ge� �g��e� + �eg� �e��g�� �8�

to the right-hand side of Eq. �1�, after performing the trans-
formation �7�. The spontaneous decay rate is denoted by �s,
while �i represents the rate with which the excited state is
depopulated due to one-photon resonant ionization:

�i = 2�ioni�e�I�t� . �9�

All transition rates in this paper, denoted by � with an ap-
propriate index, are given in angular frequency units rad/s. In
cases where the decay � is the governing broadening mecha-
nism this translates into a linewidth �Lorentzian full width at
half maximum� of ���=� /2�. The ionization coefficient
ioni is closely connected to the dynamic Stark effect which
is discussed in Sec. IV. Essentially, the dynamic Stark coef-
ficient is a complex quantity, the real part yielding ac, and
the imaginary part determining ioni. The ionization rate �9�
is included into the equations of motion in analogy with the
spontaneous decay rate, with one important difference. In the
particular case of the 1S-2S experiment, the atomic density is
very low, in order to avoid collisional effects on the transi-
tion frequency. Therefore, the recombination probability for
protons and electrons to form again a hydrogen atom in the
ground state is extremely small. Consequently, we do not
include a recombination term into �relax� . In cases where re-
combination by radiative or three-body processes cannot be
neglected, the respective rates are described by the principle
of detailed balance �see, e.g., pp. 102 and 151 of �26��.

In the cases where the lower level �g� is the 2S state, the
excited state nS or nD can decay spontaneously into several
levels, which in turn cascade �i� to the metastable 2S
state, dominantly with an effective rate �s

2S and �ii� to the 1S
ground state, with an effective rate �s

1S. If the decay cascade
ends in �1S�, the population is lost for the dynamics of the
considered two-level system, and can therefore be treated
as an additional intensity-independent ionization rate:
�i→2�ioni�e�I+�s

1S.
We arrive at the following set of equations, which are

equivalent to, e.g., Eq. �8� of Ref. �8�, in the case where
�s=0:

�

�t
�gg� = − � Im��ge� � + �s�ee� , �10a�

�

�t
�ge� = − i�	�ge� + i

�

2
��gg� − �ee� � −

�i + �s

2
�ge� , �10b�

�

�t
�ee� = � Im��ge� � − ��i + �s��ee� , �10c�

with the definition for the excitation detuning

�	 = 2��� = 2	L − 2��eg − 2����ac�e� − ��ac�g�� .

�11�

Here, the absolute frequency of the unperturbed transition is
�eg. Whereas the first-order Doppler shift is often canceled
by the use of two counterpropagating beams, the second-
order Doppler shift of an atom moving with velocity v, like
any other single-particle frequency shift, can be included into
the excitation detuning by adding

�	D2 = �2��eg�
1

2

v2

c2 �12�

to the right-hand side of Eq. �11�. At this point, we would
like to remark that the EOMs �10� are similar to the case of
a two-level system, coupled by a laser field driving a dipole-
allowed one-photon transition. In fact, the main conceptual
difference lies in the calculation of the transition matrix ele-
ments entering into the Rabi frequency and the dynamic
Stark coefficients. In particular, the dynamic Stark effect is
fundamentally different for the two-photon case, where the
harmonic electric field is an off-resonant perturbation of sec-
ond order, as opposed to the resonant one-photon case, where
the level shift is linear in the electric field amplitude. Note
also that, in contrast to one-photon transitions, the spontane-
ous decay rate is modified slightly in the presence of the
laser field due to virtual intermediate P states, even for the
1S-2S transition, as detailed in Appendix D.

C. Analytic solution for constant intensity

In the above form �10�, for constant intensity I�t�= I, the
EOMs are a coupled set of first-order differential equations
with constant coefficients and hence are solvable analytically
for all times. The somewhat lengthy expression for the full
solution is given in Appendix B.

An analytic solution to Eqs. �10� without ionization
��i=0�, taken in the limit of infinite interaction time, leads to
the well-known steady state of the system with a Lorentzian
line shape for the excited-state population �23�. In this case,
it is assumed that the population that decays out of the ex-
cited state reappears in full at the ground state. When dis-
cussing two-photon S-S and S-D transitions, this hardly ever
happens. Even the 2S-3S transition, for which indeed �i=0,
does not satisfy this condition, because the population in the
3S state also spontaneously decays to the 1S state, mainly via
2P, and does not reappear in the 2S state.

In this section, we will first focus on the case of vanishing
spontaneous decay, �s=0. This is often a good approxima-
tion when atoms or ions are excited in beams or gas cells, as
opposed to trapped particles. In particular, it is a very good
approximation for the hydrogen 1S-2S transition, because for
typical intensities, the ionization rate dominates over the
two-photon spontaneous decay rate. Later in this section, we
will come back to the general solution, for cases where the
spontaneous decay rate is no longer negligible �e.g., for sys-
tems with nuclear charge number Z�1�.

We recall that the EOMs describe an atom at rest or mov-
ing with a constant velocity, for which the Doppler shift can
be included into the detuning �	. The initial state is the
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ground state, so �gg�t=0�=1 and �ee�0�=�ge�0�=�eg�0�=0.
Starting from time t=0, the system is interacting with a
monochromatic laser field of constant intensity I. The tran-
sient line shape, which is defined as the population in the
excited 2S state as a function of detuning and time,
�ee� ��	 , t�, can then be expressed as

�ee� ��	,t� =
4�2

G
exp�−

�i

2
t	�sin2��1t� + sinh2��2t�� , �13a�

�gg� ��	,t� = �ee� ��	,t� +
1

G�1�2
exp�−

�i

2
t	


 
�2�4�1
2 − �	2��4�1cos�2�1t�

+ �i sin�2�1t�� + �1�4�2
2 + �	2�


�4�2cosh�2�2t� + �i sinh�2�2t��� , �13b�

where

G = �16�	2�i
2 + �4�	2 + 4�2 − �i

2�2, �14a�

�1 =
1

4�2
�G + 4�	2 + 4�2 − �i

2, �14b�

�2 =
1

4�2
�G − 4�	2 − 4�2 + �i

2. �14c�

The angular frequencies �1 and �2 are always real. Reassur-
ingly, we have found that this solution has been obtained in a
rather different form in �20,27�, but agrees with our result.
These works focus on resonant multiphoton ionization and it
is not surprising that the same master equations are relevant
for these studies.

For the case of vanishing ionization ioni=0, we have
�2=0 and we obtain the familiar Rabi oscillations with gen-
eralized Rabi frequency ��	2+�2:

�ee� ��	,t� =
1

2

�2

�	2 + �2 �1 − cos���	2 + �2t�� , �15�

as we should. Note that the exponential decay of the excited-
state population seems to take place with only half the ex-
pected rate in Eq. �13�. However, as the result describes ex-
citation starting from the ground state and subsequent decay,
the population decay rate is not simply �i for this particular
solution. In comparison, the solution obtained with the same
method, but with the excited state as the initial state and
vanishing laser excitation ��=0� does in fact decay with the
rate �i, independent of the detuning.

In Figs. 1–4, the analytic solution for the transient line
shape of the 2S population in the vicinity of the hydrogen
1S-2S two-photon resonance is illustrated, where an intensity
of 2.3 MW/m2 is used, which is a typical magnitude in the
experiment of �16�. Specifically, in Figs. 1 and 2, we inves-
tigate the influence of the ionization channel on the transient
line shape for a typical interaction time of the 1S-2S experi-
ment �16�. Observe that the inclusion of the ionization chan-
nel mainly changes the excitation efficiency while having
only little effect on the spectral linewidth or on coherence

features. This is plausible, because on this time scale, which
is much shorter than the Rabi oscillation time, the 2S state is
only populated very little.

In Figs. 3 and 4, one can observe the strong influence of
the ionization on the line shape for interaction times on the
order of one Rabi oscillation and longer. With ionization
taken into account �Fig. 4�, the excitation of the 2S level is
much less efficient, the coherence features �fringes� are
washed out and spectral hole burning occurs, because close
to zero detuning, excitation, and subsequent ionization is en-
hanced.

As the EOMs suggest, we obtain a symmetric line shape
around �	=0. However, it should be pointed out that this is
no longer true for a collective signal from a thermal atomic
beam. In that case, different second-order Doppler shifts ac-
cording to Eq. �12�, which all have the same sign, asym-

FIG. 1. �Color online� Atomic population in the 2S state of
hydrogen �Z=1� as a function of interaction time t with the laser,
and of detuning �� from the 1S-2S transition frequency, as defined
in Eq. �11� with �eg2466 THz. The laser intensity is
I=2.3 MW/m2, corresponding to �=2�
169 Hz. The initial state
at t=0 is the 1S state. In the time evolution of the system, ionization
from the 2S state into the continuum and spontaneous decay of the
2S state have been neglected, i.e., �ee� from Eq. �15� is plotted.

FIG. 2. �Color online� Same situation as in Fig. 1, except that in
this plot, the effect of ionization was included, as in Eqs. �13� and
�14�. The ionization rate �i=2�
276 Hz. For the short times con-
sidered here, there is only a small difference to Fig. 1 in the total
excitation efficiency, which is due to the ionization loss from the
excited state.
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metrically distort the line shape, depending on the atomic
beam parameters. However, the discussion here also applies
to a monoenergetic beam of atoms. In this case the line sym-
metry point is simply shifted by the second-order Doppler
effect and the dynamic Stark effect. The discussion of the
linewidth is more involved, because for each point in time,
the line shape is different and therefore the width is not de-
fined unambiguously in the transient regime. Nevertheless,
we want to discuss qualitatively the influence of ionization,
excitation intensity, and interaction time on the �	 depen-
dence of the line shape.

Consider the two �	-dependent factors in the expression
for the line shape �13a�. The factor 1 /G is time independent

and indicates two contributions to the width. For increasing
detuning, 1 /G decreases more slowly if the intensity-
dependent Rabi frequency � is large. This results in a time-
independent power-broadening contribution. Likewise, the
presence of an ionization channel, quantified by the ioniza-
tion rate �i adds to this width, constituting an ionization
broadening.

For the time-dependent factor sin2��1t�+sinh2��2t�, first
consider the case of vanishing ionization, �2=0 �see also
Fig. 3�. The remaining term sin2��1t� produces fringes
within the line shape that become arbitrarily narrow with
increasing interaction time t in the absence of any damping.
However, the envelope of these fringes as well as any un-
fringed line shape always increase in width �28� if ionization
is introduced by virtue of the sinh2 term. The same holds true
for power broadening described by the line shape �13�. In
Figs. 1 and 2, the sin2��	� /�	2 type of line shape, which is
characteristic for the sudden turn-on of the excitation, can be
recognized.

Comparing the detuning ranges of Figs. 1 and 2 with Figs.
3 and 4, one also observes that the width of the central peak
decreases for increasing interaction time. This is observable
in the experiment as a time-of-flight-dependent broadening.
On two-photon resonance ���=0� and for short interaction
times, the 2S population initially grows proportionally to t2.
The maximum excited-state population �ee�

�max�, which oc-
curs at zero detuning �	=0, reads

�ee�
�max� = exp�−

ioni arccos� ioni
2

8ge
2 − 1	

�16ge
2 − ioni

2 � , �16�

and is independent of the intensity of the laser field. Note
that for the strongly damped case where ioni�4ge, both the
arccos and the square root are complex valued, but the result
remains real. If spontaneous decay is included into the dy-
namics, as described below, the peak excited state population
�ee�

�peak� is always less than given in Eq. �16�. Expression �16�
then gives the high-intensity limit for �ee�

�peak�, where ioniza-
tion dominates over the spontaneous decay.

One can hardly overemphasize that the steady state of the
density matrix equation �10� is the one where the entire
atomic population is in the ionized state. For a two-level
system without ionization, in the steady state the population
depends on the driving laser frequency in the form of a Lor-
entz curve �23�. Obviously, the ionization term changes this
property drastically.

D. Quantum dynamics with spontaneous decay

In the following, we will focus on systems, in which the
spontaneous decay channel is no longer negligible. As con-
crete examples, we will treat the 1S-2S and the 1S-3S tran-
sitions in systems where the nuclear charge number is not
restricted to Z=1. Consider the Z scaling of the spontaneous
decay rates, listed in Table I �see, e.g., �29–31� and pp. 266–
267 in �32��. One-photon spontaneous decay rates of dipole-
allowed transitions are denoted by �s

1�; for two-photon spon-
taneous decay rates, we write �s

2�. The ionization rate

FIG. 3. �Color online� Same as Fig. 1, but for interaction times
that are comparable with the Rabi oscillation time. Ionization from
the 2S state is not taken into account. At zero detuning, the
sin2-shaped Rabi oscillations with full amplitude can be observed.
All the other sections with constant detuning can also be understood
as the well-known Rabi oscillations with diminished amplitude and
generalized Rabi frequency �R=��	2+�2 in complete analogy
with one-photon transitions except that the two-photon Rabi fre-
quency � as defined in Eq. �6� is proportional to the intensity,
instead of the electric field amplitude.

FIG. 4. �Color online� Same situation as in Fig. 3, except that
here the ionization from the 2S state has been properly included.
The presence of the ionization channel now makes a big difference
as compared to Fig. 3, because at times comparable to the Rabi
oscillation time, the 2S state is significantly populated and conse-
quently the ionization probability is not negligible. The decay of the
2S population, spectral hole burning, and loss of coherence can be
observed in this image. The maximum population of the 2S state is
0.175 �see Eq. �16��, whereas without ionization the 2S population
repeatedly reaches 100% for ��=0. Including the 2S spontaneous
two-photon decay of �s=2�
1.31 Hz does not change the plot
discernibly.
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coefficient ioni scales with Z−4 �see Eq. �43� below�; there-
fore the ratio R of the spontaneous decay rate and the ion-
ization rate �i, as defined in �9�, scales as

R1� =
�s

1�

�i
� Z8, R2� =

�s
2�

�i
� Z10, �17�

for a given laser intensity. Recall that in hydrogen, for typical
intensities, the spontaneous decay rate is small compared to
the ionization rate, i.e., R2��1. In contrast, for the 1S-2S
transition in hydrogenlike helium �Z=2� and the same inten-
sity of 2.3 MW/m2, both rates are of comparable magnitude,
with R2�1.6. The simplified form of the analytic solution
�13� is therefore no longer valid, and even qualitative discus-
sions of the analytic form of the full solution for the line
shape �see Appendix B� are complicated. Nevertheless, one
can plot the full solution �B1�, and Figs. 5 and 6 show the
transient line shape of the excited He+ ion, irradiated with a
cw laser of intensity 2.3 MW/m2. This intensity is chosen to
simplify the comparison with the hydrogen plots, although a
cw-laser source at 61 nm does not yet exist.

In Fig. 5 one can observe that on a time scale comparable
to the inverse spontaneous decay rate, the line shape evolves
into a “quasi-steady-state” of approximate Lorentzian profile.
Only on a longer time scale does ionization become impor-

tant, and the excited state is significantly depopulated �see
Fig. 6�.

The characteristic decay time of the excited 2S population
is by far longer than the inverse ionization rate 2� /�i. The
reason for this seemingly unintuitive behavior is that the la-
ser field continuously drives the system toward the steady
state, which it would reach for �i=0. When the excited state
is depopulated by ionization, population is again transferred
into the excited state from the ground state, which is much
more populated than the excited state for the intensity con-
sidered.

For �s�0, the peak population of the excited state,
�ee�

�peak�, occurring in the transient dynamics, is a function of
the intensity of the driving laser, when spontaneous decay is
included in the EOMs. For He+, this dependence is shown in
Fig. 7. For large intensities, the peak population approaches
the maximum value given in Eq. �16�.

By calculating the population in the continuum P state,
1−�gg� ��	 , t�−�ee� ��	 , t�, one obtains the probability of ion-
ization via the two-photon resonant excited state as a func-

TABLE I. Spontaneous decay rates �angular frequency� relevant
to the description of the quantum dynamics of the 1S-2S and
1S-3S transition in hydrogenlike systems with nuclear charge num-
ber Z.

�s
1��3S→2P� 6.32
106 s−1 Z4

�s
1��2P→1S� 6.25
108 s−1 Z4

�s
2��3S→1S� 2.08 s−1 Z6

�s
2��3S→2S� 6.45
10−2 s−1 Z6

�s
2��2S→1S� 8.23 s−1 Z6

FIG. 5. �Color online� 2S population in a He+ ion, as a function
of detuning �defined in Eq. �11�� and interaction time with the laser
driving the 1S-2S transition. Ionization and spontaneous two-
photon decay of the 2S state are taken into account. A constant
intensity of 2.3 MW/m2 is assumed and the ion is in the 1S ground
state at time t=0. On the time scale considered, the system evolves
into a quasi-steady-state with approximate Lorentzian line shape.

FIG. 6. �Color online� 2S population dynamics including two-
photon spontaneous decay in a He+ ion as in Fig. 5, but on a much
longer time scale. Here the decay of the population due to ioniza-
tion is visible. Note that the effective population loss is by far
smaller than the ionization rate �i=2�
17.3 Hz �corresponding to
a characteristic ionization time of 58 ms�, because the quasi-steady-
state population of the excited state is small. The peak population in
the excited state is 10.6
10−3 for the considered intensity of
2.3 MW/m2. The steep rise before t=20 ms is shown in more detail
in Fig. 5.

FIG. 7. Peak 2S population in He+, as a function of intensity,
including spontaneous decay �solid line� and without spontaneous
decay �dashed line�, which is equal to �ee�

�max� in Eq. �16�, evaluated
for the 1S-2S transition. For increasing intensity, the ionization rate
eventually becomes large compared to the spontaneous decay rate,
and the peak population increases, approaching the maximum
�ee�

�max�.
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tion of detuning and time, if �g� is the 1S state. In Fig. 8, we
plot this �P population from the full solution �B1� of the
EOMs �10� for the 1S-2S transition in hydrogen, and an in-
tensity of 2.3 MW/m2, as before. Note that in this case of
nonvanishing laser intensity and ionization �i�0, the steady
state can be defined as the completely ionized atom, while
for �i=0, a regular steady state with a certain population
distribution between the excited and ground states exists.
The limit �i→0 is therefore nonuniform, in the sense that the
steady state for �i�0 does not tend to the steady state of the
case �i=0. As a result, for increasing interaction time, the
detuning range in which the atomic population is completely
ionized is increasing in width, as can be observed in Fig. 8.
For a precision experiment relying on the detection of the
free electrons, or alternatively the ionic cores, this means that
the interaction time has to be chosen carefully in order to
obtain a signal of minimal width. Using a detection scheme
for charged particles instead of excited atoms has the advan-
tage of a much higher detection efficiency.

For the 1S-2S transition, the direct two-photon spontane-
ous decay rate �s is the only spontaneous decay channel �see
also Appendix D�. For the 1S-3S transition the dominating
decay takes place via the real intermediate 2P state, because
the one-photon rates are orders of magnitude larger than the
two-photon rates �see Table I and Fig. 9�.

Strictly speaking, it would be necessary to introduce a
new set of EOMs including the real intermediate 2P level.
However, the 2P state is not resonantly coupled to some
other state by the laser field and is populated only by inco-
herent decay. In addition, the decay rate out of 2P is 100
times larger than the decay rate into it. We can therefore
approximate the quantum dynamics of a 1S-3S transition by
the EOMs �10�, if we use an effective decay rate from 3S to
1S which equals �eff=�s

1��3S→2P�. The direct two-photon
decay and the two-step process of two-photon decays via the
2S level are completely negligible in comparison.

E. Generalizations of the EOMs

Now we will turn to more general cases, accommodating
points �i�–�iv� from Sec. II A for a more realistic description
of the interaction process.

The light intensity in most experiments is not constant,
e.g., the atom under consideration may move through an in-
homogeneous laser profile. In this case, the laser intensity
can be described in terms of the trajectory as I(r�t�). The
atom may also be excited with a pulsed laser field, where the
time-dependent intensity I�t� is known explicitly. In general,
an analytic solution including the varying ac Stark effect and
Rabi frequency is then either extremely convoluted or im-
possible to find. Nonetheless, the EOMs can then be readily
integrated numerically, for example by using the Runge-
Kutta routines from Ref. �33�, if we include a time-
dependent intensity I�t�, specific to the experimental setup,
into Eq. �10�.

When we use the intensity in the context of two-photon
spectroscopy, we must be aware of the resonator nature of
most of these experiments. Typically the light is coupled into
an enhancement cavity, mainly serving two purposes. First,
the two photons necessary to drive the transition can be ab-
sorbed from opposite directions, leading to a cancellation of
the first-order Doppler shift. Second, the total power circu-
lating inside the interaction region is much larger than the
in-coupling laser power, increasing the excitation probability.

If we consider a standing plane wave in the resonator on
resonance, the intensity profile in the longitudinal direction is
spatially modulated as

Is�x� = 2I cos2�kx� , �18�

where I is the mean intensity, and where we take the cavity
axis as the x axis with k being the modulus of the wave
vector. If the atoms are fixed in space they simply observe
the intensity at their respective position which ranges from 0
to 2I. In this case one faces the experimental problem of
figuring out precisely where the atoms are, which could
probably only be done for trapped ions.

For moving atoms in a standing wave, the description of a
harmonic electric field with one frequency 	L is no longer
appropriate, since in the frame of the atom, the electric field
can only be described by a superposition of two oppositely
running wave fields which are Doppler shifted with opposite
signs, corresponding to the atomic velocity v with respect to
the laboratory frame. However, this superposition of electric
fields, if inserted into the Hamiltonian �2�, leads to the same

FIG. 8. �Color online� Population in the continuum P state
as a function of detuning �defined in Eq. �11�� and interaction time
with the laser, driving the hydrogen 1S-2S transition, including
spontaneous two-photon decay of the intermediate 2S state with
�s=2�
1.31 Hz. A constant intensity of 2.3 MW/m2 is assumed
and the atom is in the 1S ground state at t=0.

FIG. 9. Level scheme of the 3S-1S spontaneous decay. The two-
step one-photon channel with the rates �s

1� dominates over the di-
rect two-photon decay, and can be expressed by a direct effective
rate �eff. The two-step two-photon channel via the 2S state is
omitted.
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set of equations �10�, where I is again the mean intensity, if
the Doppler shift frequency is large compared to the charac-
teristic frequencies occurring in the master equation �10�:

	L� 1 + 

�1 − 2
− 1	 � max
�,�i,�s� , �19�

where =v /c. This is, in analogy with the rotating-wave
approximation, a time-scale argument and it is not a strong
restriction of the model presented here as the required mini-
mum velocity to satisfy condition �19� for a thermal beam
typically is quite low. For a Rabi frequency that occurs at
some MW/m2 in the hydrogen 1S-2S transition, this mini-
mum velocity corresponds to a temperature on the order of
10−14 K. From a laboratory frame point of view, condition
�19� simply means that an atom passes through the intensity
profile �18� quickly enough, such that it effectively averages
over the nodes and antinodes of the field and can be treated
as if it was driven by a homogeneous intensity I. An intensity
averaging very similar to the movement of a single atom
takes place when many atoms sample different fixed posi-
tions of the standing laser wave. Any slower variation of the
intensity, in the sense that �19� is not satisfied, cannot be
eliminated from the EOMs and has to be taken into account
explicitly, such as the radial intensity variation of a Gaussian
beam.

Consider a situation where the total electric field is a su-
perposition of waves running in opposite directions and with
different time-dependent intensities Il�t� and Ir�t�, as ob-
served at the location of the atom, e.g., for excitation with
counterpropagating pulses. For the description of the dynam-
ics of the first-order Doppler free transition component, the
following replacements have to be made in Eq. �10�:

� = 2�2�ge�I�t� → � = 2�2�ge�2�Il�t�Ir�t� , �20�

��ac = acI�t� → ��ac = ac�Il�t� + Ir�t�� , �21�

�i = �2�ioni�I�t� → �i = �2�ioni��Il�t� + Ir�t�� , �22�

again assuming that effective averaging over the maxima and
minima of the standing field takes place, either because the
atom is moving or by having many spatially distributed at-
oms contributing to the signal. The Rabi frequency in Eq.
�20� scales with the product of the field amplitudes �i.e., field
envelopes�. To calculate the contribution of the Doppler-
shifted components, where the atom absorbs both photons
from one beam only, the Rabi frequency becomes

� = 2�2�ge�Ir�t� �23�

for absorption of photons from the “right” beam, whereas the
expressions for the ac Stark shift and the ionization rate are
unaffected, since these processes are nonresonant. For these
components, the first-order Doppler shift, including recoil
effects, must be added to the laser detuning as given by Eq.
�11�.

Any additional spontaneous decay channels can also be
fully included in a numerical integration algorithm. In addi-
tion to the intensity-dependent frequency shifts ��ac, any
other frequency-shifting effect can be easily included into the

numerical approach by adapting Eq. �11�, as described al-
ready for the velocity-dependent second-order Doppler shift
in Eq. �12�.

Finally, in most cases, instead of a single atom one con-
siders an ensemble of atoms, all of which may experience
different intensities, Doppler shifts, and interaction times
along different trajectories. The contribution of each single
atom to the line shape can be calculated exactly like de-
scribed above, and the line shape produced by the atomic
ensemble is then the sum of all single-atom contributions,
given that the single atoms interact independently with the
laser. In a dilute beam experiment this condition is very well
satisfied.

Together with the atomic constants presented in the fol-
lowing sections, the set of equations �10� are thus a tool for
a wide range of problems in spectroscopy. For a specific
implementation using a Monte Carlo method for the atomic
ensemble in the case of the 1S-2S experiment, see �18�.

Note that the transition matrix elements and Stark coeffi-
cients that enter into Eq. �10� vary slightly with the laser
frequency. However, the detuning �� is typically a few ki-
lohertz, whereas the optical resonance frequencies are on the
order of 1015 Hz. For the 1S-2S transition, the resulting rela-
tive variation of ac is on the order of 10−12, which is negli-
gibly small. The question of different gauges, for two-photon
excitation off resonance, has been discussed, e.g., in �34�.

III. CALCULATION OF TWO-PHOTON TRANSITION
MATRIX ELEMENTS

A. Calculation

In this and the next section, we will present the calcula-
tion of the two-photon transition matrix elements and the
dynamic Stark coefficients, which are used in the quantum
dynamics of the two-level system of Sec. II B.

In that section, the interacting system of atom and laser
field has been described by an effective two-level Hamil-
tonian, focusing on the time-dependent atomic population of
these levels. In order to describe transition matrix elements
and dynamic Stark coefficients, involving virtual intermedi-
ate states, we have to consider the full, time-dependent
Hamiltonian

H�t� = H0 + V�t� , �24�

where

H0 =
p2

2me
−

Ze2

4��0r
, �25a�

V�t� = V
1

2
�exp�i	Lt� + exp�− i	Lt�� , �25b�

V = − ezEL, �25c�

describing a one-electron system with nuclear charge number
Z in a harmonic laser field of angular frequency 	L and
classical electric field amplitude EL, linearly polarized in the
z direction. The electron mass is denoted by me. The inter-
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action potential V�t� is chosen to be in the length gauge,
which has some advantages in the description of time-
dependent problems �for a detailed discussion see for ex-
ample �35��, and the dipole approximation is made. The
time-dependent two-photon transition matrix element con-
necting the ground state �g� and excited state �e� then reads

�e�V�t�
1

�Eg + �	L� − H0
V�t��g� , �26�

where E� is the Schrödinger energy of any eigenstate ��� of
H0, depending only on its principal quantum number n and is
defined by

E� = −
�Z��2mec

2

2n2 , �27�

with � being the fine-structure constant. Now we can estab-
lish the connection with the off-diagonal element of the two-

level Hamiltonian H̃ from Sec. II B, Eq. �2�, by equating

− �e�V�t�
1

H0 − �Eg + �	L�
V�t��g�

=
��

2
�exp�i	Lt� + exp�− i	Lt��2. �28�

Observe that a minus sign is explicitly pulled out with re-
spect to Eq. �26� in order to write the Green’s function in the
familiar form 1/ �H0−E�, with intermediate state energy E.
With the definition of the two-photon Rabi-frequency from
Eq. �6�

� = 2�2�ge�I , �29�

and the intensity of an electromagnetic plane wave

I =
1

2
�0cEL

2 , �30�

we obtain for the time-independent two-photon transition
matrix element

ge = −
e2

2hc�0
�e�z

1

H0 − �Eg + �	L�
z�g� . �31�

Note that the prefactor does not contain a factor Z, because it
originates in the interaction part of the Hamiltonian �25c�,
describing the singly charged electron in the laser field.

In the literature, two common notations are used in ex-
pressing the transition matrix elements, and for completeness
we will state that they are connected via the simple relation

�32�
with a complete set of H0 eigenstates �r� denoted by

1 = �
r

�r��r� . �33�

The explicit sum over intermediate states at the bottom of
Eq. �32� is widely used throughout the experimental laser
spectroscopy literature, while the notation in the first line,
involving the two-photon transition operator, is used mainly
in publications inspired by a field-theoretic formalism �e.g.,
Refs. �36,37��. We will stick to the latter form in this paper,
because it allows for an intuitive perturbation theoretic inter-
pretation of �31� as the usual one-photon transition matrix
element between the excited state �e� and the virtual interme-
diate state ��g� with energy Eg+ �	L. The intermediate state
��g� is apparently the first-order perturbation to the ground
state �g�, generated by the potential V, such that the matrix
element itself is of second order in the perturbation potential.

At least three algorithms exist for the evaluation of matrix
elements involving the nonrelativistic hydrogen Green’s
function as in Eq. �31�. These are �i� a fully analytic evalu-
ation based on the Sturmian representation of the radial
Green’s function for the hydrogen atom, in terms of Laguerre
polynomials, �ii� a discretization of real space �of the radial
variable� according to �38�, and �iii� the solution of differen-
tial equations as, e.g., in �39�. We have used the first of these
possibilities, the basic formalism of which has been laid out
in �40–42�, with the nonrelativistic hydrogen Green’s func-
tion reading

�r1� 1

H0 − E���
�r2� = �

l,m
gl�r1,r2;��Ylm��1,�1�Ylm

* ��2,�2� ,

�34�

with

gl�r1,r2;�� =
2me

�2 � 2

a0�
	2l+1

�r1r2�le−�r1+r2�/a0�


 �
k=0

� Lk
2l+1� 2r1

a0�
	Lk

2l+1� 2r2

a0�
	

�k + 1�2l+1�l + 1 + k − ��
, �35�

where the usual spherical coordinates ri= 
ri ,�i ,�i� are used,
and �a�n���a+n� /��a� is the Pochhammer symbol. The
Bohr radius is denoted by a0, the symbols Lk

2l+1 designate the
associated Laguerre polynomials, and we employ the invert-
ible energy parametrization

� � ��E� =
Z�

a0
�−

1

2meE
�36�

for conciseness of notation, converting any energy E into the
dimensionless parameter �, chosen such that for eigenstates
��� of H0 with main quantum number n we have ��E��=n.
For the calculation of the transition matrix elements, we have
to consider a virtual intermediate P state in the propagator,
with energy Eg+ �	L, and 	L is fixed by the two-photon
resonance condition. Because the intermediate state is be-
tween two bound states, its energy is always negative, and
therefore � and the transition matrix elements are real. When
we will come to the calculation of the dynamic Stark coeffi-
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cients in the next section, there will also be intermediate
states in the continuum involved, and consequently the Stark
coefficients will acquire an imaginary part.

Up to now, the states �g� and �e� have been characterized
by the principal quantum number n and orbital angular mo-
mentum quantum number l only. Evaluated for any S-S tran-
sition, the two-photon transition operator

Tij = ri 1

H0 − �Eg + �	L�
rj �37�

has isotropic symmetry, �e �Txx �g�= �e �Tyy �g�= �e �Tzz �g�,
�e �Tij �g�=0 for i� j and therefore transforms like a scalar
under rotation. As a consequence, the two-photon transition
matrix element for each individual allowed transition be-
tween fine structure �FS� and hyperfine structure �HFS� sub-
strates can be obtained from ge of the gross structure tran-
sition without any angular prefactors. We refer to transitions
among states with different principal quantum number as
the “gross structure” of the atom. For S-D transitions, the
rotational symmetry is broken by the D state, and
�i�e �Tii �g�=0. We therefore calculate the reduced matrix el-
ements of the rank-2 component ge

�2� for orbital angular mo-
mentum eigenstates

ge
�2� = −

e2

2hc�0
�n�D��T�2���nS� , �38�

from which the transition matrix elements for specific mag-
netic sublevels can be obtained via the Wigner-Eckhart theo-
rem. For the gross structure S-D transition the only transition
which can be driven by linearly polarized light is the
ml=0→ml�=0 transition. For transitions between FS sublev-
els of angular momentum J=L+S and J�=L�+S, where S is
the spin of the orbiting particle, the angular momenta have to
be recoupled via the 6j symbols �43�

�n��L�S�J���T�2���n�LS�J�

= ��2J + 1��2J� + 1� 
 �− 1�L�+S+J+2�L� J� S

J L 2
�


�n�L���T�2���nL� , �39�

because the two-photon transition operator only acts on the
orbital angular momentum part of the wave function. If HFS
sublevels are resolved, also the nuclear spin I has to be taken
into account in the same way. Denoting the total angular
momenta by F=J+ I and F�=J�+ I, one obtains

�n��J�I�F���T�2���n�JI�F�

= ��2F + 1��2F� + 1� 
 �− 1�J�+I+F+2�J� F� I

F J 2
�


�n��L�S�J���T�2���n�LS�J� . �40�

Finally, via the Wigner-Eckhart theorem, the transition
matrix element between hyperfine magnetic sublevels
�g�= �nS , �JI�FmF� and �e�= �n�D , �J�I�F�mF�� in a linearly
z-polarized laser reads

ge = �− 1�F�−mF�� F� 2 F

− mF� 0 mF
	


 �−
e2

2hc�0
�n��J�I�F���T�2���n�JI�F�	 , �41�

where the 3j symbol is defined as in Ref. �43�. In summary,
to arrive at ge for a specific HFS transition, one starts with
the value for ge

�2� of the gross structure transition from Table
III, solves Eq. �38� for the reduced matrix element, and se-
quentially inserts the results into Eqs. �39�–�41�. For FS tran-
sitions, the step implied by Eq. �40� is skipped and in Eq.
�41�, one substitutes F→J, mF→mJ and F�→J�, mF� →mJ�.

B. Results for two-photon transitions

Results for the two-photon transition matrix elements ge
for the transitions 1SÛnS �2�n�20� and 2SÛnS �3�n
�20� are given in Table II. For the transitions 1SÛnD and
2SÛnD �3�n�20�, the reduced matrix elements for or-
bital angular momentum eigenstates are given in Table III.
We have devoted Appendix E to the comparison with other

TABLE II. Two-photon transition matrix elements ge in units
of Hz �W/m2�−1 for 1SÛnS and 2SÛnS transitions, as defined in
Eq. �31�, evaluated for atomic hydrogen �Z=1�, in the nonrelativis-
tic dipole approximation. The electron mass is employed in the
calculation; reduced-mass effects and the dependence of the results
on the nuclear charge number Z are given in Eq. �43�. For transi-
tions between F=F�=0 and F=F�=1 HFS sublevels, these values
are valid with a unit angular prefactor and directly give the coeffi-
cient ge defined in Eq. �41�.

n

1SÛnS 2SÛnS

ge ge

�Hz �W/m2�−1� �Hz �W/m2�−1�

2 3.68111
10−5

3 1.00333
10−5 1.23306
10−3

4 5.13409
10−6 7.79393
10−5

5 3.28555
10−6 −4.39666
10−5

6 2.35088
10−6 −6.89568
10−5

7 1.79744
10−6 −7.26216
10−5

8 1.43591
10−6 −6.99362
10−5

9 1.18344
10−6 −6.52683
10−5

10 9.98415
10−7 −6.01620
10−5

11 8.57763
10−7 −5.52069
10−5

12 7.47736
10−7 −5.06214
10−5

13 6.59655
10−7 −4.64686
10−5

14 5.87791
10−7 −4.27450
10−5

15 5.28215
10−7 −3.94201
10−5

16 4.78153
10−7 −3.64542
10−5

17 4.35589
10−7 −3.38061
10−5

18 3.99031
10−7 −3.14375
10−5

19 3.67348
10−7 −2.93136
10−5

20 3.39672
10−7 −2.74039
10−5
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literature sources, where some of these results are also ob-
tained, clarifying the prefactors and discussing some occa-
sional inconsistencies, which we encountered in our litera-
ture search related to the problem. These nonrelativistic
results are relevant for the given transitions in any bound
two-body Coulomb system with nuclear charge number Z,
where 1�Z�10. Generally, we will refer to one of the par-
ticles involved as “the nucleus,” although it need not be
made up of baryons. Because the values, as listed in Tables II
and III, have been obtained for Z=1 and infinite nuclear
mass, the scaling with Z and the dependence on the reduced
mass of the system remain to be clarified. We use the scaling
relations for the position operator as a function of Z �32�, and
for the propagator denominators in �31�. Note that the rel-
evant laser frequency 	L�Z�=Z2	L�Z=1� has to be scaled by
a factor of Z2 as compared to the corresponding frequency in
hydrogen. Thus, we find that

ge�Z� =
1

Z4ge�Z = 1� . �42�

Consider a bound two-body system, consisting of particles
with respective masses mN for the nucleus and mS for the
other particle. This system is equivalent to a system with
infinite nuclear mass and an orbiting particle with reduced

mass �. It is therefore sufficient to replace the electron mass
with the reduced mass in our calculations, bearing in mind
that also the Bohr radius a0=4��0�2 /mee

2 needs to be re-
placed. Therefore, to obtain the transition matrix elements
ge for a two-body Coulomb system of nuclear charge num-
ber Z and reduced mass � �even for hydrogen itself�, the
values from Tables II and III must be multiplied by a factor

1

Z4�me

�
	3

=
1

Z4�me�mN + mS�
mNmS

	3

. �43�

This scaling law equally applies for the Stark coefficients ac
and ioni discussed below. Note that for atomic nuclei, we
also obtain isotope shifts to the transition matrix elements via
the dependence on the nuclear mass mN. In the next section,
we will obtain nonrelativistic results for the dynamic Stark
coefficients and consider radiative, relativistic, and field con-
figuration corrections. We would like to mention here that
these corrections, calculated for the transition matrix ele-
ments, are on the same order of magnitude as for the dy-
namic Stark coefficients.

IV. CALCULATION OF THE AC STARK SHIFT

A. Introduction

This section treats the dynamic Stark shift of atomic en-
ergy levels, which is a consequence of the interaction with
the laser field used to probe an atomic transition. This sys-
tematic shift cannot be suppressed experimentally and con-
stitutes one major systematic effect in many precision spec-
troscopic experiments.

As opposed to one-photon resonant transitions, where the
system of atom and laser field must be described in a non-
perturbative dressed-state picture, in two-photon transitions
involving the 1S or 2S states as ground states and an excited
S or D state, the perturbation is always off resonant with
respect to any one-photon transition. In contrast, a laser field
driving the 3S-5S two-photon transition, is also one-photon
resonant with the 5S-15P transition, according to
Schrödinger theory �see Eq. �27��. As a consequence, for our
case of 1S or 2S states as ground states, the effect of the
harmonic laser field as defined in Eq. �25� can be described
in a perturbation theory approach for the present investiga-
tion. In the classical picture used for the electric field in this
paper, the dynamic Stark shift falls into the domain of time-
dependent perturbation theory. However, in the more general
theory, where the electromagnetic field is quantized, the
same effect may be described in a time-independent frame-
work with a static expression of the light field as a photon
field with one macroscopically populated mode. The ac Stark
shift has also been characterized as a stimulated radiative
correction, because it results from a self-energy-like formal-
ism when restricting the sum over virtual modes of the pho-
ton field to one single mode, the laser mode �44�.

Both the classical time-dependent theory, and the time-
independent fully quantized treatment, in the limit of macro-
scopic photon number, yield the same physical result as pre-
sented in �45�, where also the connection to the to the Gell-
Mann-Low-Sucher theorem has been reemphasized. In the

TABLE III. Two-photon reduced transition matrix elements ge
�2�

in units of Hz �W/m2�−1 for 1SÛnS and 2SÛnS transitions, as
defined in Eq. �38�, evaluated for atomic hydrogen �Z=1�, in the
nonrelativistic dipole approximation. The electron mass is em-
ployed in the calculation; reduced-mass effects and the dependence
of the results on the nuclear charge number Z is given in Eq. �43�.
For specific transitions in FS and HFS sublevels, the angular pref-
actors in Eqs. �39�–�41� must be taken into account, as applicable.

1SÛnD 2SÛnD

ge
�2� ge

�2�

n �Hz �W/m2�−1� �Hz �W/m2�−1�

3 −6.16579
10−5 4.23147
10−4

4 −3.89301
10−5 −2.23806
10−3

5 −2.72644
10−5 −1.75124
10−3

6 −2.04728
10−5 −1.39563
10−3

7 −1.61138
10−5 −1.15144
10−3

8 −1.31174
10−5 −9.74048
10−4

9 −1.09516
10−5 −8.39046
10−4

10 −9.32523
10−6 −7.32816
10−4

11 −8.06659
10−6 −6.47159
10−4

12 −7.06862
10−6 −5.76793
10−4

13 −6.26133
10−6 −5.18119
10−4

14 −5.59721
10−6 −4.68586
10−4

15 −5.04300
10−6 −4.26327
10−4

16 −4.57477
10−6 −3.89943
10−4

17 −4.17491
10−6 −3.58362
10−4

18 −3.83018
10−6 −3.30751
10−4

19 −3.53048
10−6 −3.06453
10−4

20 −3.26799
10−6 −2.84944
10−4
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notation of the previous section for the Hamiltonian �see
Eqs. �24� and �25�� we can therefore express the dynamic
Stark shift of the state ��� as �see Eq. �18� of �45��

�Eac��� =
e2EL

2

4 �
±
���z

1

E� − H0 ± �	L
z��� . �44�

This form of �Eac��� can be divided into a product, with
one factor being the dynamic polarizability of the atom

P	L
��� = �

±
���z

1

H0 − E� ± �	L
z��� , �45�

for an angular frequency 	L, and a prefactor containing the
laser intensity �30�, such that we have

�Eac��� = −
e2

2�0c
IP	L

��� . �46�

B. Matrix elements

The calculation of the dynamic Stark shift of any refer-
ence state ��� now reduces to calculating the matrix element
of the dynamic polarizability �45�, where we use the same
analytic technique as for the two-photon transition matrix
elements �see Eqs. �34�–�36��. Note that the contributions of
two intermediate states, with energies E�+ �	L and
E�− �	L, have to be summed. These energies are deter-
mined by the choice of angular frequency of the laser field
	L= �Ee−Eg� /2� in the two-photon resonant spectroscopy of
the transition gÛe. For laser detunings which drive the tran-
sition appreciably, the matrix elements are constant to a good
approximation �see also end of Sec. II E�. If the upper inter-
mediate state is a continuum state, the energy parameter
��E�+ �	L�0� �see Eq. �36�� is complex, and the dynamic
polarizability acquires an imaginary part, describing the
population loss rate due to ionization. The real part of the ac
Stark shift determines the frequency shift of the atomic level
��� in hertz via the relation

��ac��� =
1

h
Re��Eac���� = ac���I; �47�

see also Eq. �5�. The imaginary part of the ac Stark shift, if
present, yields the decay constant of the probability ampli-
tude of the atom to be in the reference state ���. The atomic-
state population, as described by the diagonal elements of the
density matrix in �10�, is equal to the modulus squared of
this probability amplitude, therefore the ionization rate of the
population in ��� reads

�i = −
2

�
Im��Eac���� = 2�ioni���I , �48�

proportional to twice the imaginary part of the ac Stark shift.
Note that we have given the ionization rate in units of angu-
lar frequency.

Standard selection rules for dipole transitions apply in de-
termining the virtual intermediate states. In particular, as the
laser is assumed to be linearly polarized in the z direction,

we can restrict the sum over m of the intermediate states in
the propagator �34� to the m=0 term. This choice of polar-
ization does not restrict the generality of our discussion, be-
cause the initial S states of the investigated transitions are
spherically symmetric.

In Appendix A, one explicit polarizability matrix element
�3S �z�H0−E�−1z �3S� is given. It involves the hypergeometric
function 2F1, which originates from the infinite sum over
Laguerre polynomials. In general, after the radial integra-
tions we obtain a sum involving several hypergeometric
functions, which can be reduced to a single one, using the
contiguous relations for the hypergeometric functions �see,
e.g., �46��. In Appendix C, the connection of ioni to the
usual ionization cross section is discussed.

To calculate the Stark shift coefficient ac and ionization
coefficient ioni for FS and HFS states, the same consider-
ations as for the transition operator apply. For S states, the
coefficients for the Schrödinger states are also applicable to
each individual FS and HFS sublevel without modification.
For an nD state, the light shift operator

Qij = �
±

ri 1

H0 − En ± �	L
rj �49�

consists of both a nonzero scalar component Q�0� and a
rank-2 traceless component Q�2�. To obtain the dynamic
Stark shift coefficient ac�nD� in a linearly z-polarized laser
field, the reduced matrix elements ac

�0� and ac
�2� have to be

added after applying the appropriate angular prefactors.
In particular, the reduced matrix element ac

�0� needs no
modification for FS and HFS sublevels, while ac

�2� must be
multiplied by

�− 1�L+S+J�2J + 1��L J S

J L 2
� �50�

for a FS level with angular momentum J=L+S, where
L=2, and additionally by

�− 1�J+I+F�2F + 1�� J F I

F J 2
� �51�

if the state under consideration is a HFS level with angular
momentum F=J+ I. The Wigner-Eckhart theorem yields the
dependence on the magnetic quantum number, such that,
e.g., for a HFS state ���= �nD , �JI�FmF� in a linearly
z-polarized laser field, we obtain

ac��� =
1

�2L + 1
ac

�0��nD� + �− 1�L+S+2J+I+2F−mF�2J + 1�


�2F + 1� 
 � F 2 F

− mF 0 mF
	�L J S

J L 2
�


� J F I

F J 2
�ac

�2��nD� , �52�

where L=2 for D states. The ionization coefficient ioni of an
nD state is calculated in exactly the same way.
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C. Results for S-S transitions

We have investigated the nonrelativistic dynamic Stark
coefficients ac and ioni as defined in Eqs. �47� and �48�, for
laser frequencies on two-photon resonance with S-S and
S-D transitions. In particular, we give an overview of the
values for transitions within the manifolds 1SÛnS in Table
IV, 2SÛnS in Table V, 1SÛnD in Table VI, and 2SÛnD
in Table VII up to n=20. The analytic results evaluated in the
tables are obtained in the dipole approximation and with the
approximation of retaining only the second-order in pertur-
bation theory �see Eq. �44��. In this case, both the frequency
shift ��ac and the angular ionization rate �i are proportional
to the light intensity. Corrections beyond the nonrelativistic
dipole approach are discussed in the following Secs. IV D
and IV E.

Some of the results listed in the tables have appeared in
the literature before �e.g., Ref. �6��. Diverse unit systems and
prefactors are encountered. Here, we present all results in SI
units. An overview of the previous results is provided in
Appendix E. Our results are in full agreement with those
given in Refs. �5–7,10� and we add some more transitions to
the analysis. In the comparison with results given in atomic
units, as in �6�, the conversion

ac��� �a.u.� = ac��� �SI� 

�2

mea0
4�

�53�

has to be used, and analogously for ioni �see also Eq. �E2� in
Appendix E�. At this point we would like to reemphasize that
in this section, the intensity is assumed to be constant at the
location of the atom. For a discussion of the implications
atoms moving in an inhomogeneous laser profile, see Sec.
II B.

Concerning the dependence of the results on the nuclear
charge number Z and the reduced mass � of the system, the
same considerations apply as for the transition matrix ele-
ments in Sec. III. In particular, the values from Tables
IV–VII must be multiplied by the scaling factor �43�, for a
specific two-body Coulomb system.

The 1/Z4 dependence of the dynamic Stark coefficients,
and especially the 16-fold reduction of the ionization coeffi-
cient, might be important in the context of planned measure-
ments on trapped hydrogenlike helium. For spectroscopic ex-
periments on systems with Z�1, the required light sources
with ultrastable frequencies and sufficient intensity have re-
cently been demonstrated to be within reach in the near fu-
ture �15�.

TABLE IV. Dynamic Stark shift coefficients ac and ionization coefficients ioni for 1SÛnS transitions
�on two-photon resonance�, as defined in Eqs. �5�, �9�, �47�, and �48�, in the nonrelativistic dipole approxi-
mation, evaluated for nuclear charge number Z=1 and infinite nuclear mass. Reduced-mass effects and the
dependence of the results on Z can be included by multiplication with the scaling factor �43�. For all S states,
the values are also applicable to all FS and HFS sublevels. The nonrelativistic treatment implies that the
physical accuracy of the results given here is limited by corrections of relative order �Z��2. Thus, about three
decimals of the results in this table are relevant for a comparison of theory and experiment. Nevertheless, we
indicate the data with a larger numerical accuracy, in order to facilitate the independent verification of the
results.

1SÛnS ac�1S� �Hz �W/m2�−1� ac�nS� �Hz �W/m2�−1� ioni�nS� �Hz �W/m2�−1�

1S-2S −2.67827
10−5 1.39927
10−4 1.20208
10−4

1S-3S −3.02104
10−5 9.80847
10−5 2.02241
10−5

1S-4S −3.18301
10−5 8.66487
10−5 7.10785
10−6

1S-5S −3.26801
10−5 8.20398
10−5 3.35245
10−6

1S-6S −3.31724
10−5 7.97219
10−5 1.85663
10−6

1S-7S −3.34805
10−5 7.83897
10−5 1.13885
10−6

1S-8S −3.36851
10−5 7.75526
10−5 7.50088
10−7

1S-9S −3.38277
10−5 7.69918
10−5 5.20731
10−7

1S-10S −3.39307
10−5 7.65976
10−5 3.76481
10−7

1S-11S −3.40076
10−5 7.63098
10−5 2.81130
10−7

1S-12S −3.40664
10−5 7.60932
10−5 2.15538
10−7

1S-13S −3.41124
10−5 7.59261
10−5 1.68914
10−7

1S-14S −3.41490
10−5 7.57945
10−5 1.34855
10−7

1S-15S −3.41786
10−5 7.56889
10−5 1.09389
10−7

1S-16S −3.42029
10−5 7.56030
10−5 8.99638
10−8

1S-17S −3.42231
10−5 7.55321
10−5 7.48861
10−8

1S-18S −3.42400
10−5 7.54729
10−5 6.30029
10−8

1S-19S −3.42544
10−5 7.54229
10−5 5.35100
10−8

1S-20S −3.42667
10−5 7.53804
10−5 4.58347
10−8
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The analytic calculation of the matrix elements for the
highly excited states would be a formidable task without the
use of computer algebra software �47�. The reason that the

calculations are carried out up to rather high quantum num-
bers is that the availability of a large number of results per-
mits the evaluation of the asymptotic limit of the light shifts

TABLE V. Dynamic Stark shift coefficients and ionization coefficients �on two-photon resonance� as in
Table IV, but for 2SÛnS transitions.

2SÛnS ac�2S� �Hz �W/m2�−1� ac�nS� �Hz �W/m2�−1� ioni�nS� �Hz �W/m2�−1�

2S-3S −7.18795
10−4 −6.99895
10−3 0

2S-4S −9.47799
10−4 2.11716
10−3 1.25626
10−3

2S-5S −1.16885
10−3 1.70310
10−3 4.65485
10−4

2S-6S −1.36379
10−3 1.52064
10−3 2.28478
10−4

2S-7S −1.52869
10−3 1.42368
10−3 1.30721
10−4

2S-8S −1.66537
10−3 1.36562
10−3 8.23925
10−5

2S-9S −1.77773
10−3 1.32791
10−3 5.55288
10−5

2S-10S −1.86994
10−3 1.30194
10−3 3.93145
10−5

2S-11S −1.94583
10−3 1.28325
10−3 2.89099
10−5

2S-12S −2.00858
10−3 1.26932
10−3 2.19090
10−5

2S-13S −2.06078
10−3 1.25865
10−3 1.70162
10−5

2S-14S −2.10451
10−3 1.25029
10−3 1.34890
10−5

2S-15S −2.14138
10−3 1.24361
10−3 1.08794
10−5

2S-16S −2.17269
10−3 1.23819
10−3 8.90578
10−6

2S-17S −2.19945
10−3 1.23372
10−3 7.38465
10−6

2S-18S −2.22247
10−3 1.23000
10−3 6.19281
10−6

2S-19S −2.24238
10−3 1.22687
10−3 5.24540
10−6

2S-20S −2.25971
10−3 1.22420
10−3 4.48258
10−6

TABLE VI. Dynamic Stark coefficients as in Table IV, but for 1SÛnD transitions. The respective
coefficients for the 1S state, ac�1S�, are identical with those from Table IV, and are therefore not listed again.
For FS and HFS sublevels of an nD state, the appropriate angular prefactors from Eqs. �50�–�52� must be
taken into account.

1SÛnD
ac

�0��nD�
�Hz �W/m2�−1�

ac
�2��nD�

�Hz �W/m2�−1�
ioni

�0� �nD�
�Hz �W/m2�−1�

ioni
�2� �nD�

�Hz �W/m2�−1�

1S-3D 2.11378
10−4 1.30662
10−5 3.67432
10−6 −2.11508
10−6

1S-4D 1.90315
10−4 4.70825
10−6 1.39210
10−6 −8.11183
10−7

1S-5D 1.81694
10−4 2.24738
10−6 6.70000
10−7 −3.92504
10−7

1S-6D 1.77255
10−4 1.25298
10−6 3.74221
10−7 −2.19848
10−7

1S-7D 1.74652
10−4 7.71734
10−7 2.30562
10−7 −1.35678
10−7

1S-8D 1.72990
10−4 5.09668
10−7 1.52256
10−7 −8.96938
10−8

1S-9D 1.71863
10−4 3.54487
10−7 1.05879
10−7 −6.24189
10−8

1S-10D 1.71062
10−4 2.56634
10−7 7.66377
10−8 −4.52039
10−8

1S-11D 1.70472
10−4 1.91828
10−7 5.72754
10−8 −3.37962
10−8

1S-12D 1.70025
10−4 1.47183
10−7 4.39391
10−8 −2.59345
10−8

1S-13D 1.69678
10−4 1.15414
10−7 3.44509
10−8 −2.03388
10−8

1S-14D 1.69403
10−4 9.21865
10−8 2.75145
10−8 −1.62467
10−8

1S-15D 1.69182
10−4 7.48066
10−8 2.23252
10−8 −1.31844
10−8

1S-16D 1.69001
10−4 6.15416
10−8 1.83651
10−8 −1.08470
10−8

1S-17D 1.68851
10−4 5.12407
10−8 1.52901
10−8 −9.03172
10−9

1S-18D 1.68726
10−4 4.31191
10−8 1.28659
10−8 −7.60040
10−9

1S-19D 1.68620
10−4 3.66289
10−8 1.09289
10−8 −6.45656
10−9

1S-20D 1.68529
10−4 3.13799
10−8 9.36238
10−9 −5.53143
10−9

TWO-PHOTON EXCITATION DYNAMICS IN BOUND¼ PHYSICAL REVIEW A 73, 052501 �2006�

052501-15



for n→�. Thus, if theoretical predictions are sought for
higher n than those included in the tables, these can be ob-
tained by fits involving inverse powers of the principal quan-
tum number to the real and to the imaginary parts of the data
in Tables IV and V; see also Table Ic in �6�. The limit as
n→� might be interesting especially in view of the long
lifetime of highly excited S states, which allows for a high
spectral resolution �48�.

D. Relativistic and radiative corrections

The transition matrix elements and dynamic Stark coeffi-
cients involved in the quantum dynamics �10� have been
calculated nonrelativistically, which is a good approximation
for low-Z systems. For use in high-precision measurements,
however, one should at least consider leading-order relativ-
istic and radiative corrections to ensure the validity of the
approximation.

For an estimation of magnitude, it is helpful to remark
that the leading relativistic corrections are of relative order
�Z��2, whereas the leading radiative corrections are of order
��Z��2ln��Z��−2�. It follows that for atomic hydrogen, they
do not exceed a relative magnitude of 10−4, and therefore at
least three digits in the Tables IV and V are significant re-
garding a comparison of theory and experiment in hydrogen
and low-Z hydrogenlike systems.

In the electric dipole approximation, the relativistic cor-
rections to the dynamic polarizability of 1S and 2S have
recently been calculated to all orders in Z� in the form of
generalized hypergeometric series �39�, employing the fully
relativistic Dirac-Coulomb propagator. Regarding an experi-
mental verification of the relativistic, multipole, and retarda-

tion corrections, as well as the radiative contributions, we
only mention that the required accurate measurement of the
laser intensity would be the most difficult task.

In this section, we only give results for the mentioned
corrections to the dynamic polarizability for selected states,
which are of interest in the spectroscopic analysis at hand.
The purpose is to demonstrate that these corrections are be-
low the currently accessible experimental precision.

We compare the radiative corrections to the dynamic po-
larizability �P	L

��� in leading logarithmic order to the un-
corrected matrix element P	L

��� defined in Eq. �45�, where
the real and imaginary parts are treated separately to reflect
the correction to the dynamic Stark coefficient �ac��� and
the correction to the ionization coefficient �ioni���:

�radRrad��� =
Re��P	L

����

Re�P	L
����

=
�ac���
ac���

, �54�

�radIrad��� =
Im��P	L

����

Im�P	L
����

=
�ioni���
ioni���

, �55�

with �rad=��Z��2ln��Z��−2�. For the relativistic corrections,
the definitions of Rrel��� and Irel��� are completely analo-
gous, but with �rel= �Z��2.

For the transitions 1S-2S, 1S-3S, and 2S-3S the relative
magnitude of the radiative corrections is given in Table VIII.

The relativistic corrections are not defined unambigu-
ously, because of the existence of field-configuration-
dependent corrections which enter at the same order of mag-
nitude �Z��2 �see Sec. IV E�. In addition, we have neglected

TABLE VII. Dynamic Stark coefficients as in Table VI, but for 2SÛnD transitions. The respective
coefficients for the 2S state, ac�2S�, are identical with those from Table V.

2SÛnD
ac

�0��nD�
�Hz �W/m2�−1�

ac
�2��nD�

�Hz �W/m2�−1�
ioni

�0� �nD�
�Hz �W/m2�−1�

ioni
�2� �nD�

�Hz �W/m2�−1�

2S-3D −1.17698
10−2 4.99866
10−3 0 0

2S-4D 5.47527
10−3 −1.64045
10−4 1.91609
10−3 −1.10511
10−3

2S-5D 3.91342
10−3 1.89977
10−4 5.84726
10−4 −3.43343
10−4

2S-6D 3.40856
10−3 1.64090
10−4 2.62740
10−4 −1.55670
10−4

2S-7D 3.17241
10−3 1.21898
10−4 1.43176
10−4 −8.52682
10−5

2S-8D 3.03968
10−3 8.99553
10−5 8.75750
10−5 −5.23245
10−5

2S-9D 2.95642
10−3 6.74381
10−5 5.78591
10−5 −3.46451
10−5

2S-10D 2.90022
10−3 5.15428
10−5 4.03987
10−5 −2.42271
10−5

2S-11D 2.86026
10−3 4.01348
10−5 2.94079
10−5 −1.76557
10−5

2S-12D 2.83068
10−3 3.17867
10−5 2.21175
10−5 −1.32900
10−5

2S-13D 2.80812
10−3 2.55609
10−5 1.70777
10−5 −1.02684
10−5

2S-14D 2.79046
10−3 2.08355
10−5 1.34753
10−5 −8.10656
10−6

2S-15D 2.77637
10−3 1.71910
10−5 1.08282
10−5 −6.51678
10−6

2S-16D 2.76493
10−3 1.43390
10−5 8.83715
10−6 −5.32030
10−6

2S-17D 2.75549
10−3 1.20777
10−5 7.30950
10−6 −4.40183
10−6

2S-18D 2.74762
10−3 1.02634
10−5 6.11704
10−6 −3.68459
10−6

2S-19D 2.74098
10−3 8.79168
10−6 5.17212
10−6 −3.11603
10−6

2S-20D 2.73533
10−3 7.58614
10−6 4.41334
10−6 −2.65934
10−6
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corrections due to the interaction of the magnetic field with
the electron. In contrast, the leading radiative correction is
well defined because it entails the electric-dipole approxima-
tion. The relativistic corrections considered include the con-
tributions from the zitterbewegung of the electron, the spin-
orbit coupling, and the leading-order relativistic momentum
correction, and are given in Table IX, again for the transi-
tions 1S-2S, 1S-3S, and 2S-3S.

E. Field-configuration-dependent corrections

In this section we will consider the leading field configu-
ration correction to the dynamic polarizability, which is due
to the fact that the laser field, interacting with an atom of
finite extension, is not strictly a dipole field, but also varies
in space for a fixed time t. We will consider the case of a
plane standing wave, which approximates the situation in the
hydrogen 1S-2S experiment �16� well enough for the discus-
sion of this correction. For other field configurations like,
e.g., tight foci, the results of this section �see Table X� are
not applicable, but must be reevaluated to suit the corre-
sponding geometry. For this reason we give a rather detailed
description of the calculation of the corrections here.

Up to now, all results were obtained in the electric dipole
approximation, where the interaction part of the Hamiltonian
was expressed as

Vdip�t� = − er · E�t� . �56�

In long-wavelength QED �see �37� and Eq. �3.59� of �49��,
the interaction with an electric field varying in both space
and time can be written as

VLW�t,r� = − er · E�t,0� −
e

2
rirj� �Ei�t,r�

�rj �
r=0

−
e

6
rirjrk� �2Ei�t,r�

�rj �rk �
r=0

. �57�

For a plane standing wave of linearly z-polarized light with
wave vector k, aligned along the x direction, the electric field
is

E�t,x� = êzELcos�	t�cos�kx� , �58�

and consequently for the last term in �57� we obtain simply

VLW
�2� =

e

6
zk2x2ELcos�	t� . �59�

The leading-order correction to the dynamic polarizability of
state ��� therefore reads

�P	L
��� = −

k2

3 �
±
���z

1

H0 − E� ± �	L
x2z��� , �60�

because the lower-order contributions vanish for symmetry
reasons:

−
k

2
���z

1

H0 − E
xz��� = 0, �61�

k2

4
���zx

1

H0 − E
xz��� = 0. �62�

The modulus of the wave vector k of the standing wave is
determined by the two-photon resonance condition

k =
3

16
�Z��2cme

�
=

	L

c
�63�

for the 1S-2S transition, which also yields the frequency 	L
at which the polarizability itself is evaluated. With these pa-
rameters fixed, we obtain the leading-order correction, rela-
tive to the polarizability in dipole approximation

�fcRfc��� =
Re��P	L

����

Re�P	L
����

, �64�

TABLE IX. Relativistic corrections to the dynamic polarizabil-
ity as defined in analogy to Eqs. �54� and �55�.

Transition Rrel�g� Rrel�e� Irel�e�
�g�Û �e�

1S-2S −1.185 −1.903
10−1 2.047
10−1

1S-3S −1.280 −7.410
10−2 1.199
10−1

2S-3S −3.831 −2.134
10+1

TABLE VIII. Radiative corrections to the dynamic polarizabil-
ity in leading logarithmic order as defined in Eqs. �54� and �55�.

Transition Rrad�g� Rrad�e� Irad�e�
�g�Û �e�

1S-2S 3.617 5.281
10−1 −8.077
10−1

1S-3S 4.045 1.042
10−1 −1.103

2S-3S 8.861 2.937
10+1

TABLE X. Field configuration corrections to the dynamic po-
larizability occurring in a plane standing wave, as defined in Eqs.
�64� and �65�.

Transition Rfc�g� Rfc�e� Ifc�e�
�g�Û �e�

1S-2S −2.256
10−2 −1.988
10−1 3.750
10−2

1S-3S −3.244
10−2 −1.105 1.185
10−1

2S-3S −1.008
10−2 3.771
10−3
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�fcIfc��� =
Im��P	L

����

Im�P	L
����

, �65�

where again the corrections to the real part Rfc and to the
imaginary part Ifc are considered separately, and the factor

�fc = �Z��2 �66�

is used. We see that the field-configuration-dependent correc-
tions are of the same order in Z� as the relativistic correc-
tions. Note that the correction �P	L

��� is of the order
�Z��−2, while the polarizability P	L

��� is of the order
�Z��−4. The results, evaluated for the same transitions as in
the previous subsection, are listed in Table X.

V. CONCLUSIONS

In this paper, we have presented in a unified treatment the
quantum dynamics and atomic constants describing the two-
photon excitation process in ongoing and planned precision
experiments on bound two-body Coulomb systems, includ-
ing the dependence on Z and the reduced mass of the system.

The influence on the linewidth by ionization from the ex-
cited atomic state has been studied in the density matrix
formalism, and an analytic solution to the corresponding
equations of motion has been discussed, in which features
like spectral hole burning due to the ionization have been
observed �see Figs. 1–4�. Ionization is therefore a decisive
feature of the quantum dynamics and cannot be ignored in
high-precision two-photon spectroscopy experiments.

In particular, we have focused on the 1S-2S transition in
hydrogen and hydrogenlike helium. In the latter case, we
observed that the effective loss rate of the atomic population
is significantly smaller than expected, if one considers the
ionization coefficient of the excited state without taking into
account the excitation dynamics.

Potential applications include detection schemes in
planned experiments on hydrogen and He+.

In this paper we have restricted the discussion to the case
of monochromatic cw excitation of a single atom, initially in
the ground state. In realistic cases, the effect of an inhomo-
geneous laser intensity profile and the velocity distributions
of an atomic ensemble can be taken into account with a
numerical integration of the equations of motion presented
here. Two such applications can be found in �18�, on the
analysis of the hydrogen 1S-2S transition, and in �50�, dis-
cussing high-precision spectroscopy in hydrogenlike helium.

Finally, results of relativistic, radiative, and field-
configuration-dependent corrections to the dynamic polariz-
ability have been briefly discussed for the most interesting
transitions in the context of this paper. These corrections,
which have some theoretical interest of their own, are found
to be small, as expected, but might become relevant in the
future.
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APPENDIX A: 3S DYNAMIC POLARIZABILITY

Below, we give as an example the exact analytic solution
for a matrix element �� �z
1/ �H0−E�����z ���, the reference
state being the �3S� state. The energy parametrization E��� is
defined in Eq. �36�. The Bohr radius is denoted by a0, me is
the electron mass, and H0 is the unperturbed hydrogen
Hamiltonian �25a�:

�3S�z
1

H0 − E���
z�3S� =

mea0
4

Z4�2 

54�2

�9 − �2�8�110 008 287 − 87 156 324�2 + 29 819 745�4 − 6 022 998�6 − 1 259 712�7

+ 2 106 081�8 + 1 912 896�9 − 504 792�10 − 737 856�11 − 31 041�12 + 84 672�13 + 15 538�14

+ 3456�7�27 − 7�2�2�1 − �2� 2F1�1,−�,1 −�,�3 − �

3 + �
	2	� . �A1�

For higher excited states, the analytic results have a more
complex analytic structure, which necessitates the use of
computer algebra systems �47�. In Ref. �36�, the authors have
observed that the 2F1 hypergeometric function occurs in the
result for integrals containing the Schrödinger-Coulomb
Green’s function in the above form.

APPENDIX B: ANALYTIC SOLUTION FOR THE
POPULATION

In this section, we give the explicit expression for the
time-dependent line shape of excited atoms �ee� ��	 , t� and
the ground-state population �gg� ��	 , t�, satisfying the master
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equation �10�. The ionization probability can be obtained by evaluating 1−�ee� ��	 , t�−�gg� ��	 , t�, which is needed to model
the line shape in an experiment using the detection of ionized particles instead of intact atoms in the excited state. We obtain

�ee� ��	,t� = C�2
e−�ct�b��a��a
2 − �b

2�cosh��at� + �c�3�a
2 + �b

2 − 4�c
2�sinh��at�� + e�ct�a��b��b

2 − �a
2�cosh��bt�

− �c��a
2 + 3�b

2 − 4�c
2�sinh��bt��� , �B1�

�gg� ��	,t� = �ee� ��	,t� + C 
 �2e−�ct�b��a�8�c
4 + ��a

2 − �b
2���	2 + �a

2� + �c��i + �s��2�	2 + �a
2 + �b

2 − 2�c
2�

− �c
2�5�a

2 + 3�b
2��cosh��at� + ��c��a

2��a
2 + 3�b

2� + �c
2��b

2 − �a
2 − 4�c

2� + �	2�3�a
2 + �b

2 − 4�c
2�� +

�i + �s

2


���a
2 − �b

2 + 4�c
2���	2 + �a

2 + �c
2� − 8�a

2�c
2��sinh��at�� + 2e�ct�a��b�8�c

4 + ��b
2 − �a

2���	2 + �b
2�

− �c��i + �s��2�	2 + �a
2 + �b

2 − 2�c
2� − �c

2�3�a
2 + 5�b

2��cosh��bt� − ��c��b
2��b

2 + 3�a
2� + �c

2��a
2 − �b

2 − 4�c
2�

+ �	2��a
2 + 3�b

2 − 4�c
2�� −

�i + �s

2
���b

2 − �a
2 + 4�c

2���	2 + �b
2 + �c

2� − 8�b
2�c

2��sinh��bt��� , �B2�

with

C =
e−��i+�s�t/2

2�a�b���a − �b�2 − 4�c
2����a + �b�2 − 4�c

2�
, �B3�

�a =
�2��i + �s�2 − 8�	2 − 8�2 − 3�s�

2/�c − D − K

2�6
, �B4�

�b =
�2��i + �s�2 − 8�	2 − 8�2 + 3�s�

2/�c − D − K

2�6
, �B5�

�c =
���i + �s�2 − 4�	2 − 4�2 + D + K

2�6
, �B6�

K =
16�	4 + ���i + �s�2 − 4�2�2 + 8�	2�4�2 − 7��i + �s�2�

4D
, �B7�

D = 22/3�27�i�
2��i + �s�3 + 2�5

4
��i + �s�2 + �	2 + �2	3

−
9

2
�i�

2��i + �s��5��i + �s�2 + 4�	2 + 4�2� −
9

8
��i + �s�


�4�	2 + 5��i + �s�2 + 4�2��4�	2��i + �s� + ��i + �s�3 + 2�2�i + �s��2� +
27

16
�4�	2��i + �s� + ��i + �s�3

+ 2�2�2�i + �s��2 + �− 4��	4 +
1

16
���i + �s�2 − 4�2�2 +

1

2
�	2�− 7��i + �s�2 + 4�2�	3

+
1

1024

��i + �s�6 − 64�	6 − 64�6

− 12�2��i + �s�4 + 24�4�2�i
2 + 4�i�s − 7�s

2� − 48�	4�11��i + �s�2 + 4�2� + 12�	2�11��i + �s�4 − 40�2��i + �s�2

− 16�4��2�1/2�1/3

.
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In this form, the auxiliary variables �a, �b, �c, K, and D are
not necessarily real, depending on the relative magnitude of
the spontaneous decay rate �s, the ionization rate �i, and the
two-photon Rabi frequency �. Nevertheless, the resulting
populations �ee and �gg are real quantities.

In earlier works dealing with multiphoton ionization �see,
e.g., �51,52��, where the above solution is contained in the
limiting case �s=0 �see Eqs. �13��, the emphasis is on effi-
cient ionization, and in strong fields, either the spontaneous
decay of the intermediate state is neglected in comparison
with the ionization rate or, if present in the master equations,
it is treated numerically.

However, in experiments that detect the excited-state line
shape, and are therefore carried out in a relatively weak field,
the spontaneous decay rate and the ionization rate can be of
comparable magnitude; therefore only the above solution
�B1� describes the constant-intensity case appropriately, as
detailed in Sec. II D. Of course, a more compact expression
would be highly desirable; however, we were not able to
simplify it further. Quite generally, spontaneous decay chan-
nels complicate the exact solution of the dynamics, because
it reduces the symmetry of the EOMs, as has been shown for
a different set of master equations, considering autoionizing
states in a laser field �53,54�.

APPENDIX C: CALCULATION OF THE
PHOTOIONIZATION CROSS SECTION

The photoionization cross sections obtained in this section
are generally applicable to the regime of ionization by low-
intensity laser radiation with a minimum photon energy of
Z2
13.6 eV/n2, where n=1,2 is the principal quantum
number of the initial atomic state and Z is the nuclear charge.
The theory for this process has been very well understood
since the 1930s �4�, including the Z scaling, and a compari-
son of the results constitutes an independent verification of
the ionization rate coefficients ioni obtained in Sec. IV.

In analogy to bound states �27�, one can assign to the
continuum state a generalized principal quantum number n�,
which is real and positive, such that the energy of the elec-
tron in the continuum can be written as

En� = −
�Z��2mec

2

2�in��2 � 0. �C1�

Here, the continuum threshold is taken as the zero point of
the energy scale, such that bound states extend into the nega-
tive energy region �this is different from the conventions
used in an early article �4� on this subject�.

If we consider a dipole transition from the bound 2S state
to the continuum �P state, the one-photon ionization cross
section of a single atom for linearly polarized light is propor-
tional to the square of the transition matrix element and reads

�2S =
�e2	L

�0c
��2S�z��P��2, �C2�

where 	L is the angular frequency of the incident laser ra-
diation, and e is the electron charge. The radial integrals
encountered can be calculated in at least two ways: �i� direct

integration of terms generated by the series representation of
the 1F1 hypergeometric function occurring in the �P wave
function, and �ii� contour integration using an integral repre-
sentation of the hypergeometric function �see, e.g., �32�� and
evaluation of the residues. Both �i� and �ii� lead to the same
result

��2S�z��P��2 =
217a0

4me

3Z4�2

exp�− 4n�arccot�n�/2��
1 − exp�− 2�n��

n�10�1 + n�2�
�4 + n�2�6 .

�C3�

Observe that the left-hand side is proportional to 1/Z4 be-
cause the matrix element contains one continuum state. For
two bound states, the transition matrix element squared
would scale as 1/Z2. In �55�, one can find a result differing
by a factor of 3

2 from Eq. �C3�.
For the case of an incident laser angular frequency of

one-half of the 1S-2S transition frequency, the generalized
quantum number of the continuum state is n�=2�2, and we
obtain the nonrelativistic result

�2S =
1

Z2 6.174 
 10−18 cm2. �C4�

We can compare the ionization rate coefficient ioni from
Sec. IV directly with the 2S cross section calculated above
using the relation

�ioni = 2�ioni �	L =
1

Z2 6.174 
 10−18 cm2, �C5�

which agrees with �C4�. Here, the Z scaling of the ionization
cross section is the result of a factor Z−4 for the ionization
coefficient ioni and the Z2 scaling of the photon energy �	L,
required for maintaining two-photon resonance with a given
transition. In Table XI the ionization cross sections in cm2

for a set of excited nS levels is given, as obtained from the
imaginary part of the dynamic Stark coefficient ioni. All
considerations concerning the relativistic and radiative cor-
rections to ioni given in Sec. IV D also apply to the ioniza-
tion cross section through relation �C5�. Their magnitude is
small and below the current precision of measurement, de-
creasing even for larger nuclear charge. This behavior is dif-
ferent than in most radiative corrections of nondynamic pro-
cesses �56�.

APPENDIX D: COMBINED INDUCED-SPONTANEOUS
TWO-PHOTON DECAY

In the context of laser driven two-photon S-S transitions
and two-photon spontaneous emission, one also has to con-
sider the two-step process of combined induced-spontaneous
two-photon decay of the excited level. In this process, the
interaction of the excited atom with the laser field and the
vacuum modes leads to a final state of the system, where the
atom is in the ground state, the laser mode photon number is
increased or decreased by 1, and one photon is spontane-
ously emitted into an empty mode of the electromagnetic
field. One contribution is depicted Fig. 10, where the inter-
action with the laser field takes place before the spontaneous
emission.
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We describe the interaction of the atom with the laser
mode with the second-quantized interaction Hamiltonian

HL = − ez� �	L

2�0V
�aL

† + aL� , �D1�

where the dipole approximation is used and aL and aL
† are the

annihilation and creation operators for a photon of energy

�	L in the laser mode, given the quantization volume V. The
interaction with the vacuum modes is described by the inter-
action Hamiltonian

HV = − e �

k,���L

r · ���k�� �	k

2�0V
�a�

†�k� + a��k�� . �D2�

Here, k is the wave vector of any mode of the electromag-
netic field except the laser mode, with polarization vector
���k�. We denote the initial state by ��0�= �e ,nL ,0�, with nL

photons in the laser mode and no photons in any other mode.
To evaluate the transition rate of the combined induced-
spontaneous decay, one needs to evaluate the imaginary part
of the principal term of the fourth-order energy perturbation

�ELV
�4� ��0�

= ��0�HLV
1

E0 − H0
HLV

1

E0 − H0
HLV

1

E0 − H0
HLV��0� ,

�D3�

where HLV=HL+HV, taking into account only those terms
that contain both the laser interaction and the vacuum inter-
action in second order. Here, the unperturbed Hamiltonian
H0 includes the atomic spectrum as well as the field modes:

H0 = �
n

En�n��n� + �	LaL
†aL + �


k,���L
�	ka�

†�k�a��k� .

�D4�

From the resonances caused by the possible final states
�g ,nL+1,1z�k−�� and �g ,nL−1,1z�k+��, we obtain the
induced-spontaneous decay rate �is as

�is = �2�is�I , �D5�

is =
4e4

6�c4�0
2h
�	−

3��e�z
1

HA − �Ee − �	L�
z�g��2

+ 	+
3��e�z

1

HA − �Ee + �	L�
z�g��2	 , �D6�

where HA=�nEn �n��n� is the atomic part of the unperturbed
Hamiltonian, and 	±=c �k± � =	eg±	L. For a small set of
transitions, we list the results in Table XII. It is obvious that
for typical intensities of several MW/m2, as considered in
Sec. II, the contribution of this process to the width of the
excited state is small, when compared to ionization and
spontaneous decay.

TABLE XI. Ionization cross sections for hydrogen atoms
�Z=1� in the excited state nS, at an incident laser frequency on
two-photon resonance with the respective 1SÛnS or 2SÛnS tran-
sition, as obtained via Eq. �C5� from the dynamic Stark coefficient
ioni. This table is provided for convenient comparison with other
cross section calculations. Therefore, the values are here given in
the usual units cm2 instead of SI units.

n 1SÛnS 2SÛnS

�ioni�nS� �cm2� �ioni�nS� �cm2�

2 6.174
10−18

3 1.231
10−18 0

4 4.563
10−19 1.613
10−17

5 2.204
10−19 6.694
10−18

6 1.236
10−19 3.477
10−18

7 7.640
10−20 2.055
10−18

8 5.057
10−20 1.322
10−18

9 3.522
10−20 9.037
10−19

10 2.552
10−20 6.462
10−19

11 1.909
10−20 4.786
10−19

12 1.466
10−20 3.647
10−19

13 1.150
10−20 2.844
10−19

14 9.188
10−21 2.262
10−19

15 7.458
10−21 1.830
10−19

16 6.137
10−21 1.501
10−19

17 5.111
10−21 1.247
10−19

18 4.301
10−21 1.047
10−19

19 3.654
10−21 8.881
10−20

20 3.131
10−21 7.598
10−20

FIG. 10. Combined induced-spontaneous decay process leading
to a depopulation of the excited state �e�. Absorption or stimulated
emission of one laser photon with energy �	L and subsequent spon-
taneous decay of the virtual intermediate states �dashed� to the
ground state can take place, via emission of a photon of energy �	+

or �	−, respectively.

TABLE XII. Combined induced-spontaneous two-photon decay
coefficients is between two S states interacting with a laser field on
two-photon resonance, as defined in Eq. �D6�.

Transition is �Hz/ �W/m2��

1S-2S 8.05160
10−11Z−2

1S-3S 1.11235
10−11Z−2

2S-3S 1.00370
10−8Z−2
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APPENDIX E: OTHER LITERATURE SOURCES

1. 1S-2S transition

This section is dedicated to a comparison of the results
given in this paper with previous work. For the convenience
of the reader, we try to describe all the prefactors in detail,
where different conventions and different units are used. The
collection of articles covered in the following is not claimed
to be comprehensive.

For the 1S-2S transition matrix element, we obtain
ge=3.68111
10−5 Hz/ �W/m2� �see Table II�, with

ge = −
e2

2hc�0
�2S�z

1

H0 − �E1S + �	L�
z�1S�

= −
e2

2hc�0
�

n

�2S�z�n��n�z�1S�
En − E1S − �	L

, �E1�

with intermediate states �n�. To relate our result in SI units to
atomic units, where �=a0=e=me=1, one has to apply the
conversion

ge �a.u.� = ge �SI� 

�2

mea0
4�

, �E2�

in which these constants are reinstated, resulting in a value of
ge=7.853 66 atomic units. In Ref. �57�, the authors define

D�J0� =
3

2 � �1 + P12�
ê1 · �2S�r/a0�n��n�r/a0�1S� · ê2

��n� − ��1s� − �2

�E3�

as the two-photon transition probability amplitude and obtain
a value of −11.7805 atomic units, which differs precisely by
a factor of − 3

2 from our result. The opposite sign is obviously
just a consequence of a different definition of the Green’s
function. The operator P12 interchanges the polarization vec-
tors ê1 and ê2 and the frequencies of the two photons. In that
work, the light fields are treated more generally to have dif-
ferent frequencies. For distinguishable photons, there are two
different ways to excite the atom, one path with first low-
frequency and then high-frequency photon absorption and
another with first high-frequency and then low-frequency
photon absorption.

To reduce definition �E3� to the case of equal polariza-
tions and equal frequencies, as considered in this paper, we

have to set the polarization vectors ê1= ê2= êz and we have to
omit the part where the polarizations and frequencies are
interchanged, because the photons are indistinguishable.
Then the manifest prefactor of 3

2 in Eq. �E3� explains the
numerical difference as being only a matter of definition,
while the physical results agree. This value of D�J0� is cited
and used by Ref. �58�; therefore the same considerations ap-
ply there.

2. 1S-3S transition

The result of this work for the 1S-3S transition matrix
element, reads ge=1.003 33
10−5 Hz/ �W/m2� �see Table
II�, or ge=2.140 61 when converted to atomic units. This
equals the value given in Ref. �3�. Also the other S-S transi-
tion matrix elements calculated there, namely, for the
2S-6S and 2S-8S transitions, are equal to the results pre-
sented here, if converted according to Eq. �E2�.

In Ref. �59�, Table 20, the squares of the transition matrix
elements, called M, for the transitions 1S-nS, 1S-nD, 2S-nS,
and 2S-nD with n up to 6 are given. Out of these 18 squared
matrix elements �given in atomic units�, our results are in
agreement with 16 values. The cases in which differences
occur are the values for the 1S-3S and the 2S-6S transitions
�see Table XIII�. The value for M�1S-3S� given by Tung et
al. is equal to twice the transition matrix element from this
work �2.140 61�, not the square, so it is likely that Tung et al.
inadvertently doubled their correct result for the transition
matrix element instead of squaring it. The second inconsis-
tency might be explained by a twist of digits.

In an even older study �60�, the authors work in the ve-
locity gauge, as opposed to the length gauge used in all ar-
ticles considered previously. Tung et al. �59� agree with their
results for the absorption cross section, which is related to
the transition matrix element. This supports the assumption
that Tung et al. have obtained matrix elements in agreement
with the results presented here, while the numerical differ-
ences originated in the compilation process.

3. Light shifts

The complete set of results for the light shifts of S states,
for transitions where the 2S state acts as the ground state �see

TABLE XIII. Comparison of squared transition matrix elements
M, as defined in Ref. �59�.

Literature source Transition M

Tung et al. �59� 1S-3S 4.2812

This work 1S-3S 4.5822

Tung et al. �59� 2S-6S 261.44

This work 2S-6S 216.4420
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Table V�, agree with Table Ic of Ref. �6�. In that work, where
atomic units are used, only the real parts of the dynamic
Stark shifts are presented; the light shift of 20S in the
2S-20S transition, for example, is 261.18 atomic units in
Ref. �6�, which can be converted via relation �E2� into

ac�20S�=1.224 20
10−3 Hz/ �W/m2� in agreement with
the value given in Table V. The light shifts of the D states
given in the same table in Ref. �6� agree with the values
obtained in this paper, when the atomic FS and HFS are
unresolved.
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