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Generation of bipartite spin entanglement via spin-independent scattering
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We consider the bipartite spin entanglement between two identical fermions generated in spin-independent
scattering. We show how the spatial degrees of freedom act as ancillas for the creation of entanglement to a
degree that depends on the scattering angle �. The number of Slater determinants generated in the process is
greater than 1, corresponding to genuine quantum correlations between the identical fermions. The maximal
entanglement attainable of 1 ebit is reached at �=� /2. We also analyze a simple �-dependent Bell’s inequality,
which is violated for � /4���� /2. This phenomenon is unrelated to the symmetrization postulate but does
not appear for unequal particles.
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I. INTRODUCTION

Bipartite and multipartite entanglement is the main re-
source that gives rise to many of the applications of quantum
information and computation, like, for example, quantum
teleportation �1,2� and quantum cryptography �3,4�, among
others �see, for instance, Refs. �5,6��. A compound system is
entangled when it is impossible to attribute a complete set of
properties to any of its parts. In this case, and for pure states,
it is impossible to factor the state in a product of independent
factors belonging to its parts. In this paper we will consider
bipartite systems composed of two s= 1

2 fermions. Our aim is
to uncover some specific features that apply when both par-
ticles are identical. They appear itemized in the next page.

States of two identical fermions have to obey the symme-
trization postulate. This implies that they decompose into
linear combinations of Slater determinants �SL’s� of indi-
vidual states. Naively, as these SL’s cannot be factorized fur-
ther, indistinguishability seems to imply entanglement. This
is reinforced by the observation that the entropy of entangle-
ment �EOE� is bounded from below by S�1, well above the
lower limit S=0 for a pair of nonentangled distinguishable
particles. So it looks like there is an inescapable amount of
uncertainty, and hence of entanglement, in any state of two
identical fermions. The above issue has been extensively ex-
amined in the literature �7–9� with the following result: Part
of the uncertainty �giving S=1� corresponds to the impossi-
bility to individuate which one is the first or second particle
of the system. This explains why the lower limit for the EOE
is 1. Consider, for instance, two identical s= 1

2 fermions in a
singlet state:

�S ª
1
�2

���1�↑��2�↓ − ��1�↓��2�↑� .

The antisymmetrization does not preclude the assignment of
properties to the particles, but only assigning them precisely
to particle 1 or particle 2. The reduced density matrix of any
of the particles is �= 1

21 with an EOE S���=1. The portion of
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S above 1 �if any� is genuine entanglement as it corresponds
to the impossibility of attributing precise properties to the
particles of the system �9�. Assume, for instance, that we
endow the previous fermions with the capability of being
outside ��=�� or inside ��=	� the laboratory ���i ,� j�=
ij,
�	i ,	 j�=
ij, ��i ,	 j�=0, i , j= ↑ ,↓�. We now have two differ-
ent possibilities: either the fermion outside has spin up ��↑�
or spin down ��↓�. Hence, there are two different SL’s for a
system built by a pair of particles with opposite spins, one
outside, the other inside the laboratory:

SL�1,2�1 =
1
�2

���1�↑	�2�↓ − 	�1�↓��2�↑� ,

SL�1,2�2 =
1
�2

���1�↓	�2�↑ − 	�1�↑��2�↓� . �1�

They form two different biorthogonal states: the combination
�SL�1,2�1−SL�1,2�2� /�2 corresponding to the singlet and
�SL�1,2�1+SL�1,2�2� /�2 to the triplet state �with respect to
the total spin s=s1+s2�. An arbitrary state ��1,2� would
then be a linear combination of these two SL’s:

��1,2� = c1SL�1,2�1 + c2SL�1,2�2, �
i

�ci�2 = 1, �2�

giving an EOE

S = 1 − �
i

�ci�2 log2�ci�2 � 1. �3�

Clearly, when c1 or c2 vanish, we come back to S=1, as the
only uncertainty left is the very identity of the particles.
Summarizing, while indistinguishability is an issue to be
solved by antisymmetrization within each SL, entanglement
is an issue pertaining to the superposition of different SL’s
�7–9�. At the end, we could even decide to label the variables
of the outside particle with 1 and forget about symmetriza-
tion,

SL�1,2� → c1��1�↑	�2�↓ + c2��1�↓	�2�↑, �4�

as both particles are far away from each other. In this case,
the EOE S=−�i�ci�2 log2�ci�2�0 is lesser than the one corre-

sponding to antisymmetrized states by a quantity of 1, which
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is just the uncertainty associated with antisymmetrization.
From now on we will consider the latter definition of S,
which gives a genuine amount of entanglement between the
two particles. Notice that for half-odd s, the number #SL of
Slater determinants is bounded by #SL� �2s+1�d /2, where
d is the dimension of each Hilbert space of the configuration
or momentum degrees of freedom for each of the two fermi-
ons.

Much in the same way as above, we could consider one of
the particles as right moving ��=�0� the other as left moving
��=���, giving rise to two SL’s in parallel with the above
discussion. This is the first step towards the inclusion of the
full set of commuting operators for the system. In addition to
the spin components �s1 ,s2� or helicities, there are the total P
and relative p momenta. In the center-of-mass �c.m.� frame
we could consider the system described by the continuum of
SL’s:

SL�1,2;p�s =
1
�2

���1�0
s��2��

−s − ��1��
−s��2�0

s� ,

SL�1,2;p�−s =
1
�2

���1�0
−s��2��

s − ��1��
s ��2�0

−s� , �5�

where ��1�0
s = �1 �p s	 and ��1��

s = �1 �−p s	. The labels 0 and
� are the azimuthal angles when we laid the axes along p.
Finally, there is a pair of SL’s for each p, so that a general
state made with two opposite spin particles with relative mo-
mentum p could be written in the form

��1,2�p
0 = �

s=±1/2
cs�p�SL�1,2;p�s, �6�

with �s=±1/2�cs�p��2=1. Again, we run into the impossibility
to tell which is 1 and which is 2. In addition there may be
some uncertainty about the total spin state, whether a singlet
or a triplet, or conversely, about the spin component of any
of the particles, �0 or ��.

After this discussion it should be clear to what extent
entanglement and distinguishability belong to different
realms �7–9�. The only requirement to include identical par-
ticles is to symmetrize the expressions used for unlike par-
ticles. Until now, we have only considered the free case. We
have to examine the case of two interacting particles, as in-
teraction is expected to be the source of subsequent entangle-
ment �10–19�. Obviously, the answer may depend in a tricky
way on the detailed form of the interaction, of its spin de-
pendence in particular. It also seems that the role of particles
identity, if any, will be played through symmetrization.

In the following we will show that spin entanglement is
generated for the case of two interacting spin-1

2 identical par-
ticles, with the following features.

�i� Spin-spin entanglement is generated even by spin-
independent interactions.

�ii� In this case, it is independent of any symmetrization
procedure.

�iii� This phenomenon does not appear for unlike par-
ticles.
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II. SPIN ENTANGLEMENT VIA SPIN-INDEPENDENT
SCATTERING

We first tackle the scattering of two unequal s= 1
2 particles

A and B which run into each other with relative c.m. momen-
tum p. We set the frame axes by the initial momentum p of
particle A and let the spin components be sa=s and sb=−s
along an arbitrary but fixed axis. We will consider a spin-
independent Hamiltonian H, so the evolution conserves sa
and sb. We denote by A�

s�B�
s� the state of particle A �B� that

propagates along direction � with spin s. In these conditions
the scattering proceeds as

�in = A0
sB�

−s → �out��� = fp���A�
sB�−�

−s , �7�

where � is the scattering angle and fp��� the scattering am-
plitude. We will consider � different from 0 or � to avoid
forward and backward directions. While the increase of un-
certainty due to the interaction is clear, because a continuous
manifold of final directions with probabilities �fp����2 opened
up from just one initial direction, spin remains untouched.
The information about sa is the same before and after the
scattering; as much as we knew the initial spin of A, we
know its final spin whatever the final direction is. In other
words, spin was not entangled by the interaction. We will
now translate these well-known facts to the case of identical
particles, where they do not hold true.

Let particle B be identical to A. Consider the same initial
state as before: A particle A with momentum p and spin s
runs into another A with momentum −p and spin −s. Notice
there is maximal information on the state. We could write
�in=A0

sA�
−s and eventually symmetrize. We now focus on the

final state. It is no longer true that particle A will come out
with momentum p� and spin s with amplitude fp��� while the
amplitude for coming out with momentum p� and spin −s
vanishes. Recalling that B above did become A, the two
cases fp���A�

sB�−�
−s and fp��−��A�−�

s B�
−s fuse into a unique

state

�out��� = fp���A�
sA�−�

−s + fp�� − ��A�−�
s A�

−s, �8�

as shown in Fig. 1. Notice the uncertainty acquired by the
spin: Now particle A comes out from the interaction along �
either with spin s or with spin −s, with relative amplitudes
f ��� and f ��−��, respectively. In other words, spin was

FIG. 1. �Color online� Schematic picture of the two channels
that contribute to the spin-independent scattering of two identical
fermions. The shaded regions denote an arbitrary spin-independent
interaction between the two fermions. The vertical arrows ↑, ↓ in-
dicate the corresponding third component of spin.
p p
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entangled during the spin-independent evolution. Here, it is
not the spin dependence of the interaction, but the existence
of additional degrees of freedom which generates spin-spin
entanglement. These act as ancillas creating an effective
spin-spin interaction that entangles the two fermions. The
ancilla and degree of entanglement depend on the scattering
angle �. Notice that for �=� /2 both amplitudes fp��� and
fp��−�� become equal, so that the degree of generated en-
tanglement is maximal, 1 ebit. On the other hand, for �
0,
fp���� fp��−�� generally holds, so that in the forward and
backward scattering almost no entanglement would be gen-
erated. However, this depends on the specific interaction. In
Sec. III we will clarify this point with Coulomb interaction.

Symmetrization does not change this; it only expresses
that we cannot tell which one is 1 and which one is 2. The
properly symmetrized initial state is

�in = SL�1,2;p�s =
1
�2

�A�1�0
sA�2��

−s − A�1��
−sA�2�0

s� . �9�

The scattering process could be written in terms of SL’s as

SL�1,2;p�s → fp���SL�1,2;p��s − fp�� − ��SL�1,2;p��−s,

�10�

where p� is the final momentum and the Slater determinants
are given in Eqs. �5�. Both this expression and Eq. �8� de-
scribe the same physical situation and lead to the same en-
tanglement generation.

The bosonic case may be analyzed in an analogous way.
The modification for two-dimensional spin Hilbert spaces
�i.e., photons� would be a sign change in Eqs. �5�, �9�, and
�10�, as bosonic statistics has associated symmetric states.
The equivalent of Eq. �10� for bosons is a genuine entangled
state for ��0,�, much as in the fermionic case.

III. SPECIFIC EXAMPLE: COULOMB SCATTERING AT
LOWEST ORDER

We now consider Coulomb interaction at lowest order to
illustrate the reasonings presented above. In this case,

fp��� =
N�e�
t���

,

fp�� − �� =
N�e�
u���

, �11�

where N�e� is a numerical factor depending on the charge e.
Here t��� and u��� are two of the Mandelstam variables,
associated with t and u channels, respectively, and depending
on the scattering angle �. For the initial p and final p� rela-
tive 4-momenta of the scattering fermions, they are given by
t= �p− p��2, u= �p+ p��2. In the c.m. frame,

t��� ª 2�m2 − E2��1 − cos �� ,

u��� ª 2�m2 − E2��1 + cos �� , �12�

where m is the mass of each fermion and 2E is the available

energy.
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According to this, the spin part of the state �8� for this
case, properly normalized, is

���	 = f+����↑↓	 − f−����↓↑	 , �13�

being

f±��� ª
1 ± cos �

�2�1 + cos2 ��
. �14�

The two amplitudes f+ and f− vary monotonously as � grows,
becoming equal for �=� /2. The physical meaning for this is
that for �→0, knowledge about the system is maximal and
the entanglement minimal �zero�, and for increasing �
knowledge of the system decreases continuously until reach-
ing its minimum value at �=� /2. Accordingly, the entangle-
ment grows with � until reaching its maximum value for
�=� /2.

We plot in Fig. 2 the EOE �17� S���=−f+���2 log2 f+���2

− f−���2 log2 f−���2 of state �13� as a function of �, for
0���� /2. The entanglement grows monotonically until
�=� /2, where it becomes maximal �1 ebit�.

IV. � DEPENDENCE OF BELL’S INEQUALITY VIOLATION

In order to analyze the role the � scattering angle plays in
the generation of these genuine quantum correlations, we
consider now the degree of violation of Bell’s inequality as a
function of �. To this purpose, we define �20,21� the observ-
able

E�â,b̂� ª ����
�1� · â � 
�2� · b̂���	

= − �âzb̂z + 2fp���fp�� − ���âxb̂x + âyb̂y�� , �15�

where ��	ª��out���	 is the �normalized� state �8� and â, b̂
are arbitrary unit vectors. In Eq. �15� we consider the ampli-
tudes fp��� and fp��−�� normalized for each �, in the form
�fp����2+ �fp��−���2=1. We consider three coplanar unit vec-

tors, â, b̂, and ĉ: �â , b̂
ˆ�=� /3, �â , ĉ

ˆ�=2� /3, and �b̂ , ĉ
ˆ�=� /3.

We have

ˆ ˆ ˆ ˆ

FIG. 2. �Color online� EOE S��� as a function of �.
�E�a,b� − E�a,c�� = 1,
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F��� ª 1 + E�b̂, ĉ� =
5

4
−

3

2
fp���fp�� − �� . �16�

Bell’s inequality, given by �20,21�

�E�â,b̂� − E�â, ĉ�� � 1 + E�b̂, ĉ� , �17�

will then be

F��� � 1. �18�

For the particular case of a Coulomb interaction at the
lowest order here considered, 2fp���fp��−��=2f+���f−���
= �1−cos2 �� / �1+cos2 ��, and thus the critical angle for
which the inequality becomes violated is �c=� /4 for
F��c�=1. For �c���� /2 Bell’s inequality does not hold.
We show in Fig. 3 the � dependence of F��� together with

FIG. 3. �Color online� F��� as a function of �. The classical-
quantum border corresponds to F��c�=1, with �c=� /4.
the classical-quantum border, F=1, at �c=� /4. Thus, for ex-

�12� J. Pachos and E. Solano, Quantum Inf. Comput. 3, 115 �2003�.
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periments with ��� /4 one could be able in principle to
discriminate between local realism and quantum mechanics.
This is in contrast with recent analyses of Bell’s inequality
violations in elementary particle systems �22–24�, where the

emphasis was placed on flavor entanglement, K0K̄0, B0B̄0,
and the like. These analysis presented �25� two kinds of
drawbacks coming from the lack of experimenter’s free will
and from the unitary evolution with decaying states. These
issues reduce the significance of the experiments up to the
point of preventing their use as tests of quantum mechanics
versus local realistic theories. The spin-spin entanglement
analyzed in this paper does not have this kind of problems
and could be used in principle for that purpose.

V. CONCLUSIONS

In summary, we analyzed the relation between entangle-
ment and antisymmetrization for identical particles in the
context of spin-independent particle scattering. We showed
that, in order to create genuine spin-spin quantum correla-
tions between two s= 1

2 fermions, spin-dependent interactions
are not compulsory. The identity of the particles along with
an interaction between degrees of freedom different from the
spin suffice for this purpose. The entanglement generated
this way is not a fictitious one due to antisymmetrization,
but a real one and violates a certain Bell’s inequality for
���c=� /4.
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