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Optimality of programmable quantum measurements
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We prove that for a programmable measurement device that approximates every POVM with an error ��,
the dimension of the program space has to grow at least polynomially with 1

� . In the case of qubits we can
improve the general result by showing a linear growth. This proves the optimality of the programmable
measurement devices recently designed in G. M. D’Ariano and P. Perinotti, Phys. Rev. Lett. 94, 090401
�2005�.
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I. INTRODUCTION

One of the most important features of present day com-
puters is their universality. That is, the same computer can
achieve many different tasks by changing the program that
runs in it. The analog quantum concept—the search for uni-
versal quantum devices—has attracted a lot of attention
along the short history of quantum information and quantum
computation. The idea behind this is the same as in the clas-
sical situation: the economy of resources. Given the diffi-
culty of creating a quantum device, it would be desirable to
create it as universal �or multipurpose� as possible. Most of
the work in this direction has been concentrated in the two
basic quantum operations: unitaries �or more generally chan-
nels� �1–6� and measurements �7–10�.

In this paper we will restrict ourselves to the latter. That
is, we will study measurement apparatus that can be pro-
grammed to achieve any generalized measurement �POVM�.
The program will be an ancillary quantum state that can be
changed depending on the POVM one wants to get. The
possible applications of these kind of devices are consider-
ably large: measurement based quantum computation, eaves-
dropping of quantum encrypted information, and in general
every quantum protocol in which one wants to change the
measurements on the fly. However, exact universally pro-
gramming of measurements is impossible �7,8� as a conse-
quence of the no-go theorem for programmability of unitary
transformations �1�. Hence, one has to restrict oneself to
schemes that approximate any measurement with a fixed er-
ror �.

The first universal programmable quantum device was de-
signed in �8�, but it needed a dimension m of the ancilla that
grows exponentially versus the inverse of the error �−1. This
was dramatically improved in �10�, where only a polynomial
�and linear in the case of qubits� growth of m is required. In
this paper we will show that the results in �10� are optimal,
by showing the following:

�1� The polynomial growth cannot be improved, that is,
the dimension of the ancillary system has to scale at least
like � 1

�
��d−1�/2, where d is the dimension of the original sys-

tem.
�2� The linear growth cannot be improved in the case of

qubits, that is, we have at least the scaling 1
� .

It is quite surprising that the estimate for the general case

does not give the optimal exponent in the case of qubits. The
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reason comes from the techniques used in the paper. Since
they come from the theory of convex bodies, we need a real
vector space. This is straightforward in the case of qubits,
where one has the Bloch sphere representation, but a much
more artificial trick has to be used in the general case.

II. PRELIMINARIES

Let us recall that in quantum mechanics, the statistics of a
generic measurement apparatus �with discrete sampling
space� is described by a positive operator valued measure
�POVM�, that is, a set of positive operators �one for each
possible outcome� Pj �0 on the Hilbert space of the system
such that � jP

j =1. The statistics of the outcomes j for an
input state � are given by the Born rule

p�j��� = tr��Pj� .

How to design then a programmable POVM? The idea is
to build a device that acts on the original system �we will call
its dimension d� and on some ancillary or program system
�with dimension m� that can be tuned just by changing the
state �“quantum software”� in the ancilla. Clearly, the most
general programmable measurement device would be a fixed
unitary U in both the system and the ancilla, followed by a
POVM �Fj� j in the joint system. That is, if the ancilla state is
�, we will get the statistics

p�j��� = tr�U�� � ��U†Fj� " j,� .

Including the unitary U in the POVM �Fj� j restricts our study
to programmable POVMs �Gj� j=1

d of the form

Gj = tra��1 � ��Fj� , �1�

where �Fj� j=1
d is a POVM in the joint system.

How to measure the distance between the original POVM
P= �Pj� j=1

d and the programmed one G= �Gj� j=1
d ? Maybe the

most natural measure is given by the usual distance between
the probability distributions of the outcomes; in our case

d�P,G� = max
�

�
j=1

d

�tr���Pj − Gj��� .

Clearly maxj�Pj −Gj���d�P ,G��d maxj�Pj −Gj��, and
1
since d � · �1� � · ��� � · �1, and d is a fixed constant �we are
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just interested in the asymptotics in m�, we will be able to
reason also with the trace norm � · �1.

So we want to construct a POVM �Fj� j=1
d in the joint

system such that, for any POVM �Pj� j=1
d in the original sys-

tem, there exists an ancillary state � such that d�G ,P���,
where G= �Gj� j is given by �1�. It is argued in �10� that it is
enough to approximate POVMs that are given by one-
dimensional orthogonal projectors Pj = �� j�	� j�. We will call
such a POVM �Fj� j=1

d a �-universal programmable measure-
ment ��-UPM�.

III. RESULTS

The first result of this paper is to relate the dimension of
the ancillary system with the existence of disjoint nets of
balls in some Hilbert space �we will prove it at the end of the
paper�.

Theorem 1. For a �-UPM, the dimension m of the ancil-
lary system verifies m�

1
dA, where A is the cardinality of a

net of normalized pure states ���	��	=1
A in a d-dimensional

Hilbert space such that

D���	�, ��
�� � 
8d� �2�

for any 	�
, where

D����, ���� = 1
2 ����	�� − ���	���1 = 
1 − �	�����2. �3�

Then, to establish large lower bounds for the dimension of
the ancilla m, it is enough to obtain large lower bounds for A.

A. The case of qubits

Let us start with the case of qubits. The key estimate will
be given by the following lemma.

Lemma 2. Let us consider a small  �0��
1

10
�. Then, in

the unit sphere S of a n-dimensional real Hilbert space H
�n�2�, one can take 1

�10�n−1 elements xj with the property

that �xj −xi�� if j� i.
Proof. Let us consider a maximal subset �xj� j=1

J such that
�xj −xi��2� if j� i. By maximality, S can be covered by
balls of radius 2 centered in the xj’s. Moreover, if 1� �x�
�1−, we have that there exists a j such that � x

�x� −xj��2
and so

�x − xj� � �x −
x

�x�
+

x

�x�
− xj� � �x −

x

�x�� + 2 � 3 .

This means that, if B is the unit ball of H, the set C
=� j=1

J �xj +3B covers the shell R= �x�H :1−� �x��1.
Therefore

J3nn vol�B� � vol�C� � vol�R� = �1 − �1 − �n�vol�B� ,

and so

J �
1

3nn„1 − �1 − �n
…���

�
1
n�1 − �n−1

�
1

n−1 . �� � �

3  �10�
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To see ��� one has to show that 1− �1−�n��1−�n−1,
which is clearly true since

1 � �1 − �n−1 = �1 − �n−1 + �1 − �n.

To see ���� it is enough to notice that 1
3n �

1
9n−1 �since

n�2� and that �1−��
9

10 �since 0��
1

10�. �

Now we consider the Bloch sphere. The distance D of �3�
corresponds to 1

2 the usual �Hilbert� distance in the Bloch
sphere ��11� page 404�. Therefore, using Lemma 2 �now
n=3, =2
8d�, and d=2�, we can take a net of 1

6400
1
�

pure states with property �2�. This immediately implies by
Theorem 1 �now d=2� that the dimension m that we need in
the ancilla to get a �-UPM has to verify

m �
1

12800

1

�
.

That is, the linear growth obtained in �10� is optimal.
Remark 3. Since the main aim under study is the growth

of m with 1
� , we are quite careless with the constants and

then, as one can easily see, the constant 1
12800 is far from

optimal.

B. The general case

Let us now turn to the general case. Since we do not have
now such a good real representation as the Bloch sphere, we
will play the trick of restricting to some real part HR of our
d-dimensional Hilbert space H. That is, we fix one orthonor-
mal basis �i� and we consider the elements that are of the
form �i=1

d �i�i� with the �i’s real. This is a d-dimensional real
Hilbert space HR with the inherited norm �given by
��i��i�2�1/2�.

Now we also have to identify vectors up to global phases.
For this reason we consider in the unit sphere of HR a maxi-
mal set X= �xj� j=1

J of J elements with the following two prop-
erties:

�P1� �xj −xi��2 if j� i,
�P2� if x�X, then −x�X.
We have that the unit sphere SR of HR can be covered by

balls of radius 2 centered in the xj’s. Let us see it.
If it is not the case, there exists an x�SR such that

�x−xj��2 for every j. By �P2�, also �−x−xj��2 for every
j, and this implies that X� �x ,−x also fulfills �P1� and �P2�,
which contradicts the maximality of X.

Then, we can reason as in Lemma 2. For any x�HR,
with 1� �x��1−, there exists a j such that � x

�x� −xj��2
and so �x−xj��3. This means that, if BR is the unit
ball of HR, the set C=� j=1

J �xj +3BR covers the shell

R= �x�HR :1−� �x��1. Therefore

J3dd vol�BR� � vol�C� � vol�R� = �1 − �1 − �n�vol�BR�

and hence J�
1

�10�d−1 .

Now we choose either x or −x for every x�X and obtain
another sequence ��� j�� j=1

J/2 of J
2 elements, that one can see in
the original Hilbert space H, for which, if j� i,
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��� j� − ��i�� � 2 by �P1� ,

��� j� + ��i�� � 2 by �P1� applied to − ��i� .

Therefore,

D��� j�, ��i�� = 
1 − �	� j��i��2 � 
1 − �	� j��i�����

= min�
1 − 	� j��i�,
1 + 	� j��i��� � �

=
1

2

min���� j� − ��i��,��� j�

+ ��i�� � 
2 �  .

��� is simply because we are inside a real Hilbert space HR.
���� comes from the equality ��� j�± ��i��2=2�1± 	� j ��i��,
which is true also because we are in a real Hilbert space.

So now, taking =
8d�, one can apply Theorem 1 to get
that the dimension of the ancilla m needed to have a �-UPM
has to be m�

1
d

J
2 , since we have a net of J

2 pure states veri-
fying property �2� in Theorem 1. But J�

1
�10�d−1 , and this

gives

m � k�d��1

�
��d−1�/2

,

for 1
k�d� =2d�10
8d�d−1 �which is again far form optimal�.

So the best growth for m is polynomial in 1
� . This implies

that the control unitary �which has polynomial growth �10��
is essentially optimal among the programmable quantum
measurements.

C. The proof of the theorem

Let us finish the paper with the proof of Theorem 1. We
will need the following lemma.

Lemma 4. If �for every 1� i� I� 0��i�1, ��i� and ���
are normalized and

��
i=1

I

�i��i�	�i� − ���	���
1

�  , �4�

then there exists an i0 such that D���� , ��i0
���
2.

Proof. Taking trace in �4� we have that �=�i�i verifies

��−1��. By defining �̃i=
�i

� we get that �i�̃i=1 and still

��
i

�̃i��i�	�i� − ���	���
1

= ��
i

�i��i�	�i� − ���	�� + �
i

�i� 1

�
− 1���i�	�i��

1

�  + �
i

�i� 1

�
− 1� =  + �1 − �� � 2 .

Now

1 − �
i

�̃i�	���i��2 = �	����
i

�̃i��i�	�i� − ���	�������
� ��

i

�̃i��i�	�i� − ���	��� � 2 ,

�
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which means that there exists an i0 with �	� ��i0
��2�1−2;

and hence D���� , ��i0
���
2. �

Now we want to choose a programmable POVM
�Fj� j=1

d that approximates any observable ��� j�	� j�� j=1
d with an

error ��. This means that

d„�Gj� j,��� j�	� j�� j… = max
�

�
j

�tr���Gj − �� j�	� j���� � � ,

where Gj =tra��1 � ���	���Fj� for some ��� �by convexity it is
enough to consider pure states in the ancilla�.

This implies, in particular

�G1 − ���	���� � max
�

�tr���G1 − ���	����� � �

for any arbitrary pure state ��� �where the ancilla ��� that
defines G1 can depend on ����. Using that 1

d � · �1� � · ��

� � · �1 we obtain �G1− ���	���1�d� for every ���. That is, if
we take a sequence ���	��	=1

A of pure states with property �2�
�as in the statement of Theorem 1�, we have that for every
	 there exists a ��	� such that ��	− ��	�	�	��1�d�, where
�	=tra��1 � ��	�	�	��F1�.

Now we take the spectral decomposition F1

=�i=1
I �i��̃i�	�̃i� �0��i�1 and ��̃i� normalized�. Theorem 1

will be then proven if we can show that

A � I .

To see it let us fix an 	. Calling ��i
	�= 	�	 � �̃i� we have

that �	=�i�i��i
	�	�i

	�. By Lemma 4 �with =d�� we have
that there exists an i	 such that

D���	�, ��i	
	 �� � 
2d� . �5�

Now, for 	�


D���̃i	
�, ��̃i


�� � D���	���	�, ��
���
�� − D���̃i	
�, ��	���	��

− D���̃i

�, ��
���
�� � 0.

To see it, it is enough to notice that, by �5�, both

D���̃i	
� , ��	���	�� and D���̃i


� , ��
���
�� are bounded by

2d�; and by �2�, D���	���	� , ��
���
���
8d�.

Therefore, if 	�
, we have that ��̃i	
�� ��̃i


�, which
means that i	� i
; and hence A� I. QED.

IV. CONCLUSION

In conclusion, we have proven that the universal program-
mable measurements designed in �10� are optimal in the
sense of the resources �dimension of the program space�
needed to build them. This opens the door of a key question:
how to physically implement them?

Another question that arises from this paper, apart from
improving the constants �see Remark 3�, is to fill in the gap
between the lower and the upper bounds �10� found for the
exponents in the general case: d−1

2 �exponent�d�d−1�. No-
tice that in the case of qubits the optimal exponent 1 does not

coincide with any of the general bounds.
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As for the techniques, this paper shows once more the
close connection between quantum information and the rich
mathematical theory of convex bodies �other recent applica-
tions can be found for instance in �12–17� and the references
therein�. Our belief is that this connection will give much
more in the near future.
052315
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