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We critically examine the internal consistency of a set of minimal assumptions entering the theory of
fault-tolerant quantum error correction for Markovian noise. These assumptions are fast gates, a constant
supply of fresh and cold ancillas, and a Markovian bath. We point out that these assumptions may not be
mutually consistent in light of rigorous formulations of the Markovian approximation. Namely, Markovian
dynamics requires either the singular coupling limit (high temperature), or the weak coupling limit (weak
system-bath interaction). The former is incompatible with the assumption of a constant and fresh supply of cold
ancillas, while the latter is inconsistent with fast gates. We discuss ways to resolve these inconsistencies. As
part of our discussion we derive, in the weak coupling limit, a new master equation for a system subject to

periodic driving.

DOI: 10.1103/PhysRevA.73.052311

I. INTRODUCTION

The theory of fault-tolerant (FT) quantum error correction
(QEC) is one of the pillars that the field of quantum infor-
mation rests on. Starting with the discovery of quantum error
correcting codes [1,2], and the subsequent introduction of
fault tolerance [3], this theory has been the subject of many
improvements and important progress [4—17], leading to the
well-known error correction threshold condition. Most re-
cently, work by Steane [14] and Knill [17] (see also Rei-
chardt [16]) has pushed the threshold down to values that are
claimed to be very close to being within experimental reach.
A notable feature of much of the work on FT-QEC is that the
error models are “phenomenological.” By this we mean that
the underlying models often do not start from a Hamiltonian,
microscopic description of the system-bath interaction, but
rather from a higher level, effective description, most notably
that of Markovian dynamics. For example, Knill writes “We
assume that a gate’s error consists of random, independent
applications of products of Pauli operators with probabilities
determined by the gate” (our emphasis) [17]. This approach
is natural given the considerable difficulty of obtaining error
thresholds starting from a purely Hamiltonian description.
Nevertheless, Hamiltonian approaches to decoherence man-
agement in a fault-tolerant setting have been pursued, e.g., a
mixed phenomenological-Hamiltonian treatment of FT-QEC
[18-21], and a fully Hamiltonian study of fault tolerance in
dynamical decoupling [22]. Also noteworthy are recent
mixed phenomenological-Hamiltonian continuous time treat-
ments of QEC [23-25].

Here we are concerned with a critical reevaluation of the
physical assumptions entering the theory of FT-QEC. We
scrutinize, in particular, the consistency of the assumption of
Markovian dynamics within the larger framework of FT-
QEC. We point out that there may be an inherent inconsis-
tency in the theory of Markovian FT-QEC, when viewed

1050-2947/2006/73(5)/052311(16)

052311-1

PACS number(s): 03.67.Lx, 03.67.Pp, 03.65.Yz

from the perspective of the validity of the Markovian ap-
proximation. We begin by briefly reviewing, in Sec. II, a set
of minimal and standard, universally agreed upon assump-
tions made in Markovian FT-QEC theory. We then review, in
Sec. III, the derivation of Markovian master equations, em-
phasizing the physical assumptions entering the Markovian
approximation, in particular the requirement of consistency
with thermodynamics. Having delineated the set of assump-
tions entering FT-QEC and the quantum Markov approxima-
tion, we discuss in Sec. IV the internal consistency of Mar-
kovian FT-QEC theory. We point out where according to our
analysis there is an inconsistency, and discuss possible ob-
jections. In Sec. VI we then discuss how one may overcome
the inconsistency using a variety of alternative approaches,
including adiabatic quantum computing (QC), holonomic
QC, topological QC, and recent work on FT-QEC in a non-
Markovian setting [19-21]. We conclude in Sec. VII.

II. REVIEW OF STANDARD ASSUMPTIONS OF FT-QEC

The following are a set of minimal assumptions made in
the theory of FT-QEC [3-17].
(1) Al: Gates can be executed in a time 7, such that
w=0(m), where o is a typical Bohr or Rabi frequency.1
(2) A2: A constant supply of fresh and nearly pure ancil-
las. At every time step we are given a supply of many qubits
in the state |0), each of which can be faulty with some error
parameter p<<1.

(3) A3: Error correlations decay exponentially in time and
space.

Some remarks follow.

Tg

'One might object that slower (even adiabatic) gates could be
used instead. We analyze this possibility in detail in Sec. V D, and
show that it does not lead to an improvement.
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(i) Al is not typically stated explicitly in the FT-QEC
literature, but can be understood as resulting from the defi-
nition of a quantum gate, which is a unitary transformation
U=exp(iA); when A=7,H, where H is a Hamiltonian gener-
ating the gate, Al follows from the absence of a free param-
eter: when 7, is scaled up H (and hence its eigenvalues) must
be scaled down, and vice versa.

(ii) The distinction between Bohr and Rabi frequencies in
Al is related to the application of constant vs periodic con-
trol fields, respectively. In the case of a constant control field
Al can be understood as the condition that saturates the
“Margolus-Levitin theorem” [26], which states that the time
required to transform an initial state |} to an orthogonal
state |¢-) using a constant Hamiltonian H is lower bounded
by Tin=77/(2E), where E=(i{H|); when |¢) is an eigen-
state of H we have 7,= 7/(2w), where w=E/# is the Bohr
frequency. See also Ref. [27] for the adiabatic version of the
Margolus-Levitin theorem, and Ref. [28] for a lower bound
on the amount of energy needed to carry out an elementary
logical operation on a quantum computer, with a given accu-
racy and in a given time. In the case of periodic control fields
one can understand A1 as the result of the standard solution
to the driven two-level atom problem, where the probability
of a transition between ground and excited state is given by
(Qg/Qp)sin®(Qpt/2), where Qp is the Rabi frequency and
Qp=(Qg+ )2, where §is the detuning. This expression for
the transition probability yields 7,Qz=0(m).

(iii) A2 is shown to be necessary in Ref. [6]. A3 is stated
clearly in Ref. [7] (see the discussion in Secs. 2.10 and 10
there). These, and additional assumptions [such as constant
fault rate (independent of number of qubits) and parallelism
(to correct errors in all blocks simultaneously)] are explicitly
listed, e.g., also in Ref. [29], Sec. IL

(iv) A3 is usually related to the Markovian assumption,
however, both notions, the space-time correlations of errors
and the Markovian property, need some comments and ex-
planations. Using the convolutionless formalism in the
theory of open systems (see, e.g., Ref. [30]) it is always
possible to resolve the total superoperator A(z) as

A =11 AU, (1)
i=1

where U, are ideal unitary superoperators (corresponding to
quantum logic gates), and A; are linear maps, not necessarily
completely positive (CP) or even positive. If A; are CP then
we can always realize them by coupling to an environment
which is “renewed each time step.” This is the “Markovian
condition” as formulated in Ref. [7] (Sec. 2.10). However,
complete positivity is not a necessary condition for QEC,
which only requires a linear structure [31,32]. To obtain the
threshold theorem one needs the following bound on the
probability [7] [Eq. (2.6)]:

Pr(fault path with k errors) < c7/(1 — 5)*~, (2)

where 7 is the probability of a single error, ¢ is a certain
constant independent of #, and v is the number of error
locations in the circuit. This bound implies that the k-qubit
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errors should scale as ~ 77" i.e., that in the decomposition of
A; into k-qubit superoperators L (k)

LRl < e 3)

As discussed in Ref. [33] (within the Born approximation),
the condition (3) can strictly be satisfied only for temporally
exponentially decaying reservoir correlation functions, while
for realistic reservoir models the temporal decay is generi-
cally powerlike. The decay of reservoir correlation functions
(i.e., localization in time) translates into localization of errors
in space due to the finite speed of error propagation. On the
other hand, it is widely believed that the Markovian model
can be understood as arising, to an excellent approximation,
from coupling to a reservoir which is not only renewed at
each time step, but whose influence is independent of the
actual Hamiltonian dynamics of the open system, and is lo-
calized in space (independent errors model) [34]. A large part
of the present paper is devoted to a critical discussion of this
claim.

(v) We note that the recent papers on FT-QEC theory
[19-21] relax the (Markovian) assumption A3, but do make
Al (implicitly), and A2. We comment on these papers in Sec.
VIE.

III. REVIEW OF MARKOVIAN MASTER EQUATIONS

The field of derivations of the quantum Markovian master
equation (MME) is strewn with pitfalls: it is in fact nontrivial
to derive the MME in a fully consistent manner. There are
essentially two types of fully rigorous approaches, known as
the singular coupling limit (SCL) and the weak coupling
limit (WCL), both of which we consider below. See, e.g.,
Refs. [35,36] for more details, as well as the derivation in
Ref. [37].

Consider a system and a reservoir (bath), with self Hamil-
tonians H(S) and Hp, interacting via the Hamiltonian Hgg
=NS®R, where S (R) is a Hermitian system (reservoir) op-
erator and A is the coupling strength. A more general model
of the form Hgr=2,AS,® R, can, of course, also be con-
sidered and results in the same qualitative conclusions. Thus
the total Hamiltonian is

H:[Hg-'—HC(t)]®IR+IS®HR+HSR’ (4)

where H(t) describes control over the quantum device (sys-
tem) and [ is the identity operator.

The SCL and WCL derivations start from the expansion
of the propagator A for the reduced, system-only dynamics,

ps(1) = A(1,0)ps(0), (5)

computed in the interaction picture with respect to the renor-
malized, physical, time-dependent Hamiltonian Hg(r)=Hg
+H (1), where

Hy=Ho+ NHO"(0) + -+ . 6)

The renormalizing terms containing powers of \ are “Lamb-
shift” corrections due to the interaction with the bath (see,
e.g., Ref. [38]). The lowest order (Born) approximation with
respect to the coupling constant N\ yields H{*", while the
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higher order terms (---) require going beyond the Born ap-
proximation. Introducing a cumulant expansion for the
propagator

A(t,0) =exp 2 [N'K™(1)], (7)

n=1

one finds that K'=0. The Born approximation consists of
terminating the cumulant expansion at n=2, whence we de-
note K?=K:

A(£,0) = exp[N2K(1) + O(NY)]. (8)

One obtains

K(t)ps= f dsf duF (s — u)S(s)psS(u)" + (similar terms)
o Jo

)

as the first term in a cumulant expansion [37]. Here F(s)
=Tr{ pgR(s)R] is the autocorrelation function, where py is the
reservoir state and R(s) is R in the Hg-interaction picture,
and S(u) is S in the interaction picture with respect to the
physical Hamiltonian Hg(#). The “similar terms” in Eq. (9)
are of the form pgS(s)S(u)" and S(s)S(u)ps.

At first sight K(f)~ >, and this is true for small times
(Zeno effect [39]). The Markov approximation means that
we can replace K(r) by an expression that is linear in ¢, i.e.,

K(r) = ft/l(s)ds, (10)

0

where L(?) is a time dependent Lindblad generator. That the
Lindblad generator can be time dependent even after trans-
forming back to the Schrodinger picture is important for our
considerations below.

A. Singular coupling limit

The SCL approach we present in this subsection underlies
the standard derivation of the MME that can be found in
almost any text concerning the Markov approximation,
though not always under the heading “SCL” [e.g., Ref. [40],
p. 8, Eq. (1.36)]. The rigorous derivation of the SCL is
briefly discussed (with references) in Ref. [35], pp. 36-38. It
is based on a rescaling of the bath and system-bath Hamil-
tonians, which physically makes sense in the high-
temperature limit only. We will shortly see the emergence of
this limit.

In essence, the “naive SCL-Markov approximation” is ob-
tained by the ansatz F(s)=ad(s) for the autocorrelation func-
tion, whence

L(s)pg = aS(s)pgS(s)" + (similar terms). (11)

As a consequence, return to the Schrodinger picture gives a
MME with the dissipative part independent of the Hamil-
tonian

dp,

d_ts =—i[H(t),ps] + Lps,
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1
‘CpS =- Exza[s,[s,Ps]]- (12)

More precisely, we must consider the multitime bath cor-
relation functions F(ty,...,t,) =Tt pgR(t;)...R(t,)]
:=(R(t;)...R(t,)). Here R(1) := exp(iHgt)R exp(—iHgt) are the
bath operators in the interaction picture, pg=exp(—BHg)/Z
(where B=1/kT, Z=Tr[exp(-Hg/kT)]) is the bath thermal
equilibrium state at temperature 7, which is a stationary state
of the reservoir, i.e., [Hg,pg]=0. The influence of the envi-
ronment on the system is entirely encoded into the
{F(z,,... ,tn)}f;z.2 Heuristically, the Markov approximation
can be justified under the following conditions.

(1) The lowest order correlation function

F() ={(R(s + )R(s)) = J i G(w)e dw, (13)

can be approximated by a Dirac delta function®

—o0

F(t) = (Jw F(s)ds) (1) = G(0) &(r) (14)

(white-noise approximation). Equation (13) defines the spec-
tral density G(w), which is a key object in the theory.

(2) Higher order correlation functions exhibit a Gaussian-
type behavior, i.e., can be estimated by sums of products of
the lowest order ones, and then, by condition (14), decay
sufficiently rapidly.

Let us now comment on the physical relevance of the
white-noise approximation. First, the condition (14) cannot
be satisfied in general. For example, in the important case of
linear coupling to a bosonic field (e.g., electromagnetic field,
phonons in solid state), we have G(0)=0, which means (by
inverse Fourier transform) that [*2F(¢f)dt=0, and therefore
F(t) cannot be well approximated by &(t).

Second, even for models with G(0) >0 there exists a uni-
versal relation, the so-called Kubo-Martin-Schwinger (KMS)
condition (R(1)R(0))=(R(0)R(z+ifB)), which is valid for all
quantum systems at thermal equilibrium. This implies

G(- w) = e PG(w). (15)

(See, e.g., Ref. [35], pp. 90, 91, Ref. [41], pp. 176, 177, or
Ref. [36], p. 137.) The fundamental importance of the KMS
condition is captured by the fact that it is necessary in order
for thermodynamics to hold. The KMS condition implies a
strong asymmetry of the spectral density G(w) for low T,
where T is measured relative to the presence of kT energy
scales in the bath, i.e., relative to the range where G(w) is
nonvanishing. The KMS condition is relevant to our discus-

ba (¢,) is constant by stationarity. We reserve the notation F(z) for
F(ll . 12) = F(tz—tl) below.
Note that stationarity implies that F(z) does not depend on s.
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sion since we make the reasonably minimalistic assumption
that the reservoir (not the QC) is in thermal equilibrium.4
Third, G(w) need not be flat even at high T [indeed, the
KMS condition only implies that G(w) is symmetric at high
T]. For example, this is the case for the electromagnetic field
and for phonons, for which at 7>0 one has G(w)~ /(1
—e "7 for |w| < wey, and G(w)=0 for |w|> w,,. One can
see that for high T (kT>fiw,,), G(w) ~kTw? is symmetric.
Here w, is the Debye frequency in the case of phonons,
while for the electromagnetic field w,, should tend to infin-
ity in the renormalization procedure. A flat G(w) means a
structureless bath, while physical systems always have a
nontrivial structure depending on relevant energy scales.’
Now let us return to the implications of the SCL assump-
tions for the problem of FT-QEC. In order to derive the SCL
from first principles, one rescales Hyz— Hpy/ €, rescales
Hsr— Hgr/ €, but keeps Hg and pg fixed.® The idea of this
rescaling is that it accelerates the reservoir’s evolution (via
Hpy— Hy/ €%) and hence produces faster decay of the reser-
voir correlations, F(¢). To see this, note that the rescaling
Hgr — Hgg/ € increases the amplitude F(0) to F(0)/€* (pro-
portional to HéR), while keeping the strength of the noise
" F(t)dt=G(0) fixed (as can be seen via a change of vari-
ables t—t/ € in the integral). This implies a faster decay of
F(7). The rescaling procedure is specifically designed to yield
the delta correlation [Eq. (14)] in the limit as e— 0. Note that
if pg is at thermal equilibrium at temperature 7" with respect
to Hy, then, since pr=exp(—BHg)/Z is fixed, it must be at
thermal equilibrium with respect to Hy/ €* at the temperature

*One may challenge the notion that the bath must always be in
thermal equilibrium. For example, consider an atom in a microwave
cavity, with the cavity electromagnetic field initially in thermal
equilibrium. Now suppose the atom is driven and is coupled to the
cavity electromagnetic field, which therefore is no longer in equi-
librium. However, is the internal electromagnetic field the relevant
environment, or is it the external one? Clearly, the electromagnetic
field inside the cavity is not a reservoir but itself a part of the
system. This is because (a) its spectrum is discrete, (b) its coupling
to the atom (close to resonance) is enhanced. The reason these
considerations matter is because (b) implies the strong coupling
regime, hence failure of the initial state tensor product structure
assumption, hence difficulties with the separation of the system
from the reservoir (dressed atom picture); (a) implies that F(z) is
(quasi) periodic with short Poincaré recurrences, hence a strongly
non-Markovian regime, and thus associated difficulties for Markov-
ian FT-QEC. On the other hand the external electromagnetic field
has a continuous spectrum and the state product structure is easily
satisfied, hence qualifies as a reservoir. This example merely serves
to illustrate accepted notions regarding the division into well de-
fined system and bath; for most practical purposes a thermal equ-
librium is the simplest and most relevant model of an environment,
and FT-QEC theory must be applicable to this setting.

3t is interesting to note that even if we try to enforce a flat G(w)
by, e.g., choosing an appropriate form factor for the spin-boson
system, the obtained model—the so-called “Ohmic case”—is math-
ematically and physically ill defined (see Ref. [42]).

%Note that because different Hamiltonians are rescaled differently,
this rescaling procedure is not equivalent to a direct rescaling of the
time variable (which is what is done in the WCL, below).
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T/ € — %, whence our mention of the high temperature limit,
above. Further note that Hy is not rescaled since the SCL is
(artificially) designed to produce “white noise” on the natural
time scale of system’s evolution, which is given by Hj.

Another, equivalent way to understand the emergence of
the high-7 limit is the following. For the Markovian condi-
tion F(r)=ad(r) to hold the spectral density must be flat:
G(w)=const. However, this is possible only in the limit
T— » of the KMS condition. More precisely, the Markovian
condition can hold only if k7> w over the entire spectrum of
the system’s Bohr frequencies. Strictly speaking, G(w) is
never constant. The variation of G(w) happens over the
“thermal memory” time 7y,:= 1/k7. In the infinite 7" limit we
then recover the case of zero memory-time, i.e., Markovian
dynamics. Physically, it is enough to assume that G(w)
is essentially constant over the interval [-wg,w,] where
kT> wy> system’s Bohr frequencies. That is, system energy
scales must be compared to 1/7,;, and this leads to the im-
portant realization that the Markovian approximation can be
consistent with the KMS condition only in the high tempera-
ture regime k7> E, where E is the system energy scale. As
we argue below, this fact presents a serious difficulty in the
context of FT-QEC, the issue being essentially that the re-
quirement of a constant supply of nearly pure and cold an-
cillas contradicts the high-7 limit needed for the Markov
approximation to hold.

B. Weak coupling limit

In the SCL approach above there was no restriction on the
time-dependence of the system Hamiltonian. However, the
price paid is the high-7' limit. Moreover, while mathemati-
cally the SCL is rigorous in the scaling limit, it is inconsis-
tent with thermodynamics except in the 7— o limit. On the
other hand, the derivation by Davies, in his seminal 1974
paper [43], is perhaps the only derivation of the MME that is
entirely consistent from both the mathematical and physical
points of view. The Davies approach is based not on the
high-T limit, but rather on the physically plausible idea of
weak coupling. This is natural and consistent with thermo-
dynamics at all temperatures.

More specifically, Davies’ derivation does not invoke a
flatness condition on G(w) but is, of course, still subject to
the KMS condition. In the Davies approach the Markov ap-
proximation is a consequence of weak coupling (and hence
slow dynamics of the system in the interaction picture), and
time coarse graining, which leads to cancellation of the non-
Markovian oscillating terms. The price we pay is the inval-
idity of this approach for time-dependent Hamiltonians, ex-
cept in the adiabatic case. We explain this important
comment below. Hence, while the Davies approach does not
require the high-7 limit, it imposes severe restrictions on the
speed of quantum gates.

In his rigorous derivation Davies replaced the heuristic
condition (14) by the weaker
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f |F(t)|dt < . (16)

This condition avoids the difficulties originating from the
singularity of the SCL condition (14), and preempts the cor-
responding problems with the high-T limit.”® We now con-
sider the cases of a constant, periodic, and arbitrarily time-
dependent control Hamiltonians. The constant case is the one
originally treated by Davies [43], and extended in Ref. [44]
to time-dependent Hamiltonians assuming a slow (“adia-
batic”’) change on the dissipation time scale A\*. The noncon-
stant cases we study here have, as far as we know, not been
published before in the general scientific literature.

1. WCL for constant Hc: Summary
of the original Davies derivation

We present a simplified version of the discussion of the
Markov approximation in Ref. [37]. Denote by E, the Bohr
energies (eigenvalues of Hy), let w € {wy=E;—E};,, and let
S, be the discrete Fourier components of the interaction pic-
ture S, i.e.,

S(r) = exp(iHgt)S exp(— iHgt) = > S, explior), (17)

where Hy is the renormalized (physical) system Hamiltonian:
the sum of the “bare” H(S) and a Lamb shift term (bath in-
duced), as in Eq. (6). Equivalently,

[Hs,S,]= wS,. (18)

We remark that in the original Davies paper the Bohr ener-
gies and Eq. (18) are computed with respect to the bare
Hamiltonian Hg Here we use the physical Hamiltonian Hg in
order to take into account the fact that the Lamb shift term,
although formally proportional to A2, can be large or even
infinite after cutoff removal.

Then, it follows from Eq. (9) that

t

K(ps= SisSl/f

0,0" 0

1—u
ei(“’_“’,)“duf F(De'“dr
—U

+ (similar terms). (19)

The weak coupling limit is next formally introduced by re-
scaling the time ¢ to #/\” (van Hove limit). This enables two
crucial approximations, which are valid in the resulting
large-¢ limit.

In some sense the weak coupling limit is similar to the central
limit theorem (CLT) in probability, and condition (16) is analogous
to a rough upper bound on the second moment in the CLT. If it is
not satisfied then the noise may be not Gaussian in the weak cou-
pling limit. The value of [|F(t)|dt itself does not provide any mean-
ingful physical parameter and can depend on some regularization/
cutoff parameters.

$0ne can go further and ask how generic the Markovian case is, in
the sense that Eq. (16) is satisfied. In fact, typically F(z) decays as
1/t* (e.g., for the vacuum bath a=4 [33]), which means that in
some cases (e<1) Eq. (16) can be violated. For a systematic treat-
ment of these non-Markovian effects see, e.g., Ref. [30].
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(1) We replace9

t
f Mgy ~ 15, (20)
0

This makes sense for
t> max{l/(w- ")}. (21)

This violates A1, expressed in terms of the Bohr frequencies.
We see here already the emergence of an adiabatic criterion
for the validity of the Markov approximation.

(2) We replace ["'F(7)e'“"dr by the Fourier transform

J B F(ne'dr~ G(w) = J“’ F(ne'“dr. (22)

The physical validity of the last approximation is usually
ignored, though one can make the following argument. On
the left-hand side of Eq. (22), for a given Bohr frequency
the Fourier-like integral must sample the function F(7) with
sufficiently high accuracy so that the Fourier transform ap-
proximation will be valid. To this end one needs a time ¢
such that (i) > 1/w. This is a weaker condition than the
previous one [r>max{l/(w—w')}] which involves differ-
ences of Bohr frequencies. (ii) The time 7 must be also much
longer than the time scale of the wildest variations of F(7),
which is typically [as may be checked for simple models of
spectral densities G(w)] given by 1/w.y,, where w., is a
high-frequency cutoff. When o < w,, (i) implies (ii). There-
fore typically Eq. (20) is a stronger assumption than Eq. (22).

Applying the approximations (20) and (22), we obtain
K(t)psztEwSmpsSlG(w)+(similar terms), and hence it fol-
lows from Eq. (10) that £(s)=L is the Davies generator in
the familiar Lindblad form

dps
— =—i[Hg ps] + Lpg,
dt il sPs] Ps

1
Lps= EVE G(0)([S0psSL1+[Sups.SLD.  (23)

Several remarks are in order.

(i) The absence of off-diagonal terms in Eq. (23),
compared to Eq. (19), is the hallmark of the Markovian
limit. Namely, the Davies derivation relies on the can-
cellation of the non-Markovian off-diagonal terms
Ew¢w,SwpsSZ),fgei(w‘w/)”du. This time coarse graining is pos-
sible due to integration over the fast-oscillating [ gei(“’“”l)”
terms over a long time scale, i.e., over r>max{l/(w-w')}
(see also Ref. [38]). As remarked above, this violates Al,
expressed in terms of the Bohr frequencies.

(ii) It follows from Bochner’s theorem applied to the Fou-
rier transform definition of G(w) that G(w)=0 [35], p. 90,
[36], p. 136; this result is essential for the complete positivity
of the Markovian master equation in the WCL.

°In a more rigorous treatment the Cauchy principal value must be
used, but the result is essentially the same [37].
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(iii) Davies’ derivation showed implicitly that the notion
of “bath’s correlation time” is not well defined—Markovian
behavior involves a rather complicated cooperation between
system and bath dynamics. More specifically, the relations
(23) and (18) together imply that the noise and Hy are
strongly correlated. In other words, contrary to what is often
done in phenomenological treatments, one cannot combine
arbitrary H¢’s with given S,’s. This point is particularly rel-
evant in the context of FT-QEC, where it is common to as-
sume Markovian dynamics and apply arbitrary control
Hamiltonians.

Davies did not consider time-dependent system Hamilto-
nians in Ref. [43], but it is possible to generalize his deriva-
tion to allow for slowly varying system Hamiltonians
[37,44,45]. That is, whenever the time scale of the variation
of H(f) is much longer than the inverse of the typical Bohr
frequency (of Hy), it is possible to add H(f) to the system
Hamiltonian in Eq. (23), necessitating at the same time this
change also in Eq. (18). This is a type of adiabatic limit
(indeed, the S, in Eq. (18) can be interpreted, with Hy re-
placed by Hg+H (), as being adiabatic eigenvectors of the
superoperator [ Hg+H (1), - ]). We note that an alternative ap-
proach to adiabaticity in open quantum systems was recently
developed in Ref. [46]. This approach, while being very gen-
eral, is more phenomenological in that it postulates a convo-
lutionless master equation, and then derives corresponding
adiabaticity conditions. Closer in spirit to the Davies deriva-
tion is another recent approach to adiabaticity in open sys-
tems, which assumes slow system variation together with
weak system-bath coupling [47].

2. WCL for periodic driving: Floquet analysis

Before considering the case of periodic H let us consider
briefly once more the case of a constant Hamiltonian in the
so-called covariant dissipation setting. Covariance is the
commutation condition HL=LH where H=[Hg,---] is the
super-operator constant Hamiltonian, and £ is the Davies
generator. Covariance is an abstract propertgf which is auto-
matically fulfilled for the Davies generator.1 It is convenient
since it implies factorization of the full propagator into
Hamiltonian and dissipative parts. Markovian dynamics ob-
tained in the WCL as discussed above takes the form

d
P (—iH+L)p,

- t=0, 24
& (24)

where the most general form of the Lindblad (or Davies) £
satisfying Eq. (24) is

'9This can be verified by directly computing H L and making use
of Eq. (18) and the relation [A,BC]=[A,B]C+B[A,C] (for opera-
tors A, B, and C). A more elegant way to see this is to consider
L(t)=exp(-irH) L exp(itH) and note that Eq. (18) implies that S(z)
and ST(¢) rotate in opposite directions. Hence L(f)=L, whence
dL(t)/dt=0 gives the result.
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1 .
Lp=7 2 {lV(@).pV(0) T+ [Vi(@)p, Vi()]}. (25)
{whj
Here {w}=spectrum(H), i.e., the Bohr frequencies (differ-
ences of eigenvalues of H), and

HV(w) = wV(w) (26)

[i.e., Eq. (18)]. The solution, i.e., the dynamical semigroup is
p(0) = A(1)p(0), A1) = "e'”. (27)

Now consider a periodic control Hamiltonian with period ®

Ho(t)=H(t+0), Q=2m/0. (28)

(Note that € is not the Rabi frequency, which throughout this
paper we denote by ()g.) The situation is then very similar to
the standard (time-independent H.) WCL, but the set of “ef-
fective Bohr frequencies” (Floquet spectrum) w is now larger
and is of the form {w+¢{}}, g=0,%1,.... Here w are Bohr
frequencies for the Floquet unitary [defined in Eq. (30) be-
low], i.e., differences of eigenvalues €, of the Floquet uni-
tary, rather than {w}=Spectrum(?{) as above. As this set of
“effective Bohr frequencies” is discrete the WCL still works,
but the final Davies generator is more complicated, as we
now show.
Define the time-ordered unitary propagator

U(t,s) = Texp(— if Hs(u)du), t=s (29)

N
which satisfies the properties U(s,t)=U(t,s)"'=U(t,s)",
U(t,s)U(s,u)=U(t,u), Ut+0,s+0)=U(t,s), and %U(r,s)
=—iHy()U(t,s), SU(t,s)'=iU(t,s)'H(7). The Floquet uni-
tary operator is
F(s)=U(s+0,s), (30)
with corresponding super-operator action

F(s)p = F(s)pF(s)", €2V

and Floquet eigenvectors |¢,) and eigenvalues (quasiener-
gies) €, satisfying

F(0)| ) = 7%, (32)
It follows from standard Floquet theory that
U(1,0)| ) = ¢"a 2 ¢ (q)), (33)
qgel

i.e., the set {|{¢,(¢))} is a complete basis. Therefore we have
at most as many ¢’s as the dimension of the Hilbert space.
That the number of ¢’s is finite is important for our consid-
erations below.

We call a Lindblad generator £ a “covariant dissipative
perturbation of Hg(r)” if

"Note that the Floquet Hamiltonian Hg(r)—id/dt operates on a
different Hilbert space than F(0) (the space of periodic functions
with values in the system’s Hilbert space). But its eigenvalues co-
incide with €, from Eq. (32).
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FO)L =LF0). (34)

We will assume this property, similarly to the case of a
constant Hamiltonian described above. In fact, covariance
holds for a periodic Hg(t) and also for the corresponding
WCL Davies generator. One can then derive the covariant
master equation (we sketch the derivation below):

L)+ LO)lp, 120 35)
[compare to Eq. (24)], where
L(1) =U(1,0)LU(1,0)7, (36)
d .
—U(t,s) =—iH()U(,s), (37)
dt

and where the general form of £ appearing in Eq. (36) is
given by Eq. (25), with V,(w) now being eigenvectors of
F0),

FO)V{(w) =0V (), (38)

rather than of H, as in Eq. (26). Moreover, here {w}={e,
— €}, where €, are quasienergies (effective Bohr frequen-
cies) of the Floquet operator, rather {w}= Spectrum(*) as
we saw in the case of constant H.

The solution replacing Eq. (27) is

p(1) = A(z,5)p(s),

=y,

A(t,s) = Texp{ Jt [—iH(u) + E(u)]du} (39)

By direct computation one can prove the following proper-
ties:

L(t+0O)=L(), (40)
F(s)L(s)F(s)" = L(s), (41)
A(t,s)A(s,u) = A(t,u) for t = s = u, (42)
A+ 0,5+ 0)=A(z,s), (43)
A(t,5) =U(t,5)e™VE). (44)

To derive the covariant master equation (35) one consid-
ers the standard picture of an open system S+ R with the total
Hamiltonian

Hgg(1) = Hg(t) +Hp+ > Sy ® Ry, (45)
k

[we neglect the Lamb shift correction here; it can be in-
cluded, changing H{(z) into the physical Hamiltonian H(z),
by a suitable renormalization procedure], stationary reservoir
state pg, [Hg,prl=0, Tr(pg:)={)g, (R)r=0. Then, exactly
following a Davies-like calculation using a Fourier decom-
position of S(¢), now governed by a periodic Hamiltonian,
and making in particular again the crucial assumption Eq.
(21), which now reads
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t>max{l/(w-w +mQ)}, m=0,=1,+2,... (46)

with |m| upper bounded by the dimension of the Hilbert
space [see remark after Eq. (33)], one obtains Eq. (35) in the
Davies WCL. The explicit form of the generator is

Lp= %2 2 3 Rulw+q{I8/(q.0)p.5q.0)]

kl geZ {o}
+[Si(q, ), pSi(g, )T} (47)

Here {0} ={e,~€g}, the Floquet spectrum, and

ﬁkl(x)=f e ™ (Ry(1)R )gdt, (48)

Sk(qvw) = E 2

peZ {e,—€, =0}

(Do + QNS e (D)) o) Par]-

(49)

Si(q,w) is the part of S(r) which rotates with frequency w
+¢{) and can be computed using Eq. (33). Note that by di-

agonalizing the matrices Rj; one can transform the generator
L of Eq. (47) into the form of Eq. (25), which allows one to
read off the operators V;(w) appearing there. Now to some
important comments.

Time scale analysis: Note that for the periodic case the
differences of “Bohr frequencies” may be of the order of
1/0. Hence we conclude from Eq. (46) that one must aver-
age over many periods O, i.e., require > @®. This can be
interpreted as a condition that “the environment must learn
that the Hamiltonian is periodic.” This is exactly analogous
to the adiabaticity condition in the adiabatic case: H(f) must
be constant over many inverse Bohr frequencies to “be rec-
ognized” by the environment. The periodic WCL is also a
coarse-grained time description with the additional time
scale ©. Note that arbitrarily fast periodic driving (small ®)
is incompatible even with the kind of generalized, finitely
localized MME derived here, since then differences of Bohr
frequencies matter in Eq. (46) (recall that max|m| is bounded
by the—typically small—dimension of the system Hilbert
space).

Where is the Rabi frequency? Note the dependence of the
operators S;(q,®) on the Floquet eigenvalue differences ¢,
—€,. The usual Rabi frequency, Q=2dE/# (d is the dipole
moment, E is the electric field amplitude) arises in the dipole
approximation, which we have not made here. The usual
Rabi frequency is replaced in our nonperturbative treatment
(in the sense of no multipole expansion) by the difference of
Floquet eigenvalues €,— €, in Eq. (49)."

More on the Rabi frequency. As we saw, the non-

2One can see that such a term also arises in the usual dipole
approximation by considering, e.g., Eq. (2.94) in Ref. [40]. The
interaction picture raising and lowering operators o() (for a two-
level atom driven by a classical field) there oscillate with three
“Bohr frequencies” wy, w, £}, where 1=2dE/# denotes the usual
Rabi frequency. Hence the Rabi frequency is a difference of two
Bohr frequencies.
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Markovian terms vanish because of the time coarse-grained
description. To attain this, we must average over times
>max,, ,{1/(w-w')}, but must also keep in mind that the
longest relevant scale for coarse-graining is given by the ex-
ponential decay time 7 (a derived quantity), i.e., we must
have t<<7. The Rabi frequency () is a difference of two
Bohr frequencies w,w’: Qzr=w-w’. This implies that
coarse-graining does not makes sense if (2x7<<1 [since then
1<7<1/Qx=1/(w—w"), in contradiction to the fundamental
requirement on 7]. In physical terms this means that the width
of the spectral line (y=1/7) is larger than the level splitting
Oy (see, e.g., Figs. 2.5(i), 2.5(ii) in Ref. [40] for an illustra-
tion in the case of the incoherent fluorescence spectrum) and
therefore “the environment has no time to recognize the de-
tails of the spectrum.” On the other hand, when Qg7 1 (not
inconsistent with the WCL), () must appear in the genera-
tor, as appears from our treatment of the case of periodic
driving in the WCL, above. Unfortunately there are examples
in the literature where an MME is written down subject to
Qr7m>1 but Q% does not appear in the generator [e.g., Eq.
(2.96) in Ref. [40], where Qz~ 10'° Hz and 7~ 1078 s].

Quantum optics considerations. The Markov approxima-
tion is commonly accepted as an excellent approximation in
quantum optics; see, e.g., the discussion of resonance fluo-
rescence in Ref. [40], Chap. 2. This is also the basis for
substantial confidence in the possibility of FT-QEC in quan-
tum optical systems, such as trapped ions [48] and atoms
trapped in microwave cavities [49]. Such arguments are
based on the relative flatness of the damping constants y(w)
as a function of frequency. This argument is closely related
to the notion of the flatness of the spectral density G(w) in
the SCL, since the damping constants are proportional to
G(w) [see Eq. (23)]. For example, below Eq. (2.95) in Ref.
[40] the author argues that one can write down a Rabi
frequency-independent MME for resonance fluorescence
since y(wy) and y(w,=Qg) (wWhere w, is the Bohr fre-
quency) differ by less than 0.01% at optical frequencies and
reasonable laser intensities. However, this ignores the correc-
tions due to the Rabi frequency to the operators Si(q, ) [Eq.
(49)]. This disagreement can be traced to the question of at
which point in the derivation it is safe to neglect (; in Ref.
[40] this is done on the basis of the flatness of y(w) before “a
lot of tedious algebra” [40], p. 48, but our Floquet analysis
shows that, in fact, one cannot neglect the Rabi frequency
relative to the Bohr frequency. This is relevant for our gen-
eral discussion since the “finitely localized MME” which is
the outcome of the Floquet analysis (see next comment) ac-
tually exhibits a weak non-Markovian character. Such devia-
tions are, of course, important for FT-QEC, even if the ef-
fects are small. We revisit this point in Sec. V below.

Are there any non-Markovian effects at work here? It
seems that one should accept the generalized notion of a
quantum Markovian master equation as the one given by
Egs. (35), (36), and (25), i.e., a master equation with a pos-
sibly time-dependent Lindblad generator. In Davies’ gener-
alization to the time-dependent case [44] (“adiabatic WCL”)
the dissipative generator £(f) depends on the Hamiltonian at
the same time ¢. This is a type of “local generalized MME.”
On the other hand, in the periodic WCL treated here, the
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dissipative generator £(f) depends on the Hamiltonians
Hg(u) from an interval, say [0,¢] (< ®), as can be seen from
Eq. (36), which involves U(z,0). This is therefore a type of
“finitely localized MME,” though one could argue that it
exhibits a weakly non-Markovian character because of this
dependence of the dissipative generator on the past. On the
other hand, a non-Markovian master equation (in the convo-
lutionless formalism [36]) is also given by Eq. (35), but the
generator is not of Lindblad form and may depend on the
Hamiltonian in the distant past. The weight of distant past
contributions depends on the decay properties of F(r) which
are, generically, not exponential but rather powerlike. In the
WCL the non-Lindbladian terms vanish due to the oscillating
character of the ¢/@=¢"" terms in Eq. (19).

The original Davies derivation. We note that the Davies
result is a limit theorem which states that for a sufficiently
small coupling constant the WCL semigroup is a good ap-
proximation to the real dynamics. However, Davies’ theorem
itself does not provide the conditions under which a given
physical coupling is “small enough.” In particular, one can-
not extract from Davies’ theorem under what conditions the
fast oscillating terms vanish. This can, however, be done by
a more heuristic analysis, as done above.

3. WCL for an Arbitrary Pulse

We now consider the case
Hc(t) =H0 +f(t)Hl, (50)

i.e., an arbitrary driving field. This is, of course, the case of
most interest in FT-QEC. It follows from Fourier analysis
that this case can be treated qualitatively as a “superposition”
of periodic perturbations discussed above. For a single fre-
quency () the validity of the Markovian approximation is
restricted by the condition (46): r>max{l/(w-w’+m)}.
The discreteness of the frequencies {w} and {m{} is key: it
allows for condition (46) to be satisfied with finite 7. A pulse
f(z) has a continuous band of frequencies of width I'=1/7,

(where 7, is the gate duration), with amplitudes (Fourier

transform) f‘(Q) which add to and smear the effective Bohr
spectrum {w}. If the pulse is long (a slow gate) then only a
narrow band appears, and the smearing effect is unimportant.
More precisely, if 1/7, is much smaller than the typical dif-
ference of the Bohr frequencies, the “energy quanta” m{)
[with |m]| restricted by the (typically small) dimension of the
system Hilbert space] cannot fill the gap between w and o’
and the condition (46) can be satisfied. This is our adiabatic
approximation. For fast pulses, when 1/7, is comparable to
|o— '], the condition (46) cannot be fulfilled: the effective
Bohr spectrum becomes quasi-continuous and the denomina-
tor in condition (46) becomes abitrarily small. The result is
that the WCL analysis breaks down and non-Markovian ef-
fects dominate.

Thus, the condition for the adiabatic limit (Markov ap-
proximation valid) is: “the width of the band is much smaller
than the minimal difference of the effective Bohr frequen-
cies.” This is in contradiction with the fast gate assumption,
Al.
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C. Section Summary

The main advantage of the MME (23) is its consistency
with thermodynamics. Namely, as a consequence of the
KMS condition (15) and the condition (18), for a generic
initial state the system tends to its thermal equilibrium
(Gibbs) state at the temperature of the heat bath [35]. (An
important exception to this rule are states within a
decoherence-free subspace [50,51], but these states are not
generic due to required symmetry properties of the system-
bath interaction.) Therefore the dissipative part of the gen-
erator must depend strongly on the Hamiltonian dynamics.
This is consistent with the notion of a coarse-grained de-
scription familiar from the study of MMEs: the bath needs a
time much longer than maxwklll wy; (where wy; are the sys-
tem’s Bohr frequencies) to “learn” the system’s Hamiltonian
in order to drive it to a proper Gibbs state. In other words,
the Markov approximation is, equivalently, a long-time limit
(again compared to max,, 1/ wy;), and one cannot expect this
approximation to be valid at short times. However, FT-QEC
assumes operations on a time-scale that is short on the scale
set by maxm]dl/ Wy

Strictly speaking the MME (23) is valid only when Hy is
not time dependent. As we have shown, one can relax this by
assuming slowly varying Hg, giving rise to an “adiabatic
MME,” Egs. (35), (36), and (25). However, to accept Egs.
(35), (36), and (25) as a genuine Markovian description is
somewhat of a stretch, since the real question is not whether
one obtains the Lindblad form, but rather how L(z) depends
on the Hamiltonians Hg(u), locally (i.e., u=1) or nonlocally.
For fast gates and generic environments the dependence is
non-local, involving memory effects. In any case, the crucial
condition that must be satisfied for a (generalized) MME is
Eq. (46), which implies that the average Bohr spectrum must
be discrete. In essence, as long as the applied control does
not spoil this discreteness a (generalized) MME can be de-
rived. On the other hand, this means that fast gates are in-
compatible with the MME, in violation of Al of FT-QEC
theory. The corollary: finite speed of gates implies non-
Markovian effects.

IV. ARE THE STANDARD FT-QEC ASSUMPTIONS
INTERNALLY CONSISTENT?

We now briefly summarize our examination of the as-
sumptions of FI-QEC, in light of the considerations above,
and highlight where there may be internal inconsistencies in
FT-QEC. As discussed above, there are essentially two rig-
orous approaches to the derivation of the MME. (i) the SCL,
which is compatible with arbitrarily fast Hamiltonian ma-
nipulations, but requires the high-7 limit. (ii) The WCL,
which is compatible with thermodynamics at arbitrary 7, but
requires adiabatic Hamiltonian manipulations.

The standard theory of FT-QEC (excluding Refs. [19-21])
requires a quantum computer (QC) undergoing Markovian
dynamics, supplemented with a constant supply of cold and
fresh ancillas. These assumptions are contradictory under the
SCL, since the QC would have to be at high-7,, while the
ancillas require low-T on the same energy scale E (set by the
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Bohr energies of the system=computer+ancillas). Specifi-
cally, if we were to assume that for the ancillas too k7> E,
they would quickly become highly mixed. If we insist that
kT <E for the ancillas, then by coupling them to the QC we
can no longer assume, in the SCL, that the total system
=QC+ancillas is described by Markovian dynamics.

If, on the other hand, we approach the problem from the
(physically more consistent) WCL, then A3 is incompatible
with A1 (the assumption of fast gates). Namely, in the WCL
only adiabatic Hamiltonian manipulations are allowed. Spe-
cifically, the Markov approximation in the WCL requires a
discrete system (effective) Bohr frequency spectrum, such
that the condition Tg>maxwkll/ wy can be satisfied, hence
violating the 7,wp=0() condition of Al. These conclusions
are unavoidable if one accepts thermodynamics, since they
follow from seeking a Markovian master equation that satis-
fies the KMS condition—a necessary condition for return to
thermodynamic equilibrium in the absence of external driv-
ing. We take here the reasonable position that a fault tolerant
QC cannot be in violation of thermodynamics.

V. POSSIBLE OBJECTIONS TO THE INCONSISTENCY

In this section we analyze a list of possible objections to
the inconsistency we have pointed out.

A. Is thermodynamics relevant?

With respect to the SCL: “Thermodynamics is irrelevant
(since a QC need not ever be in thermal equilibrium).”

Note that we never claim that the QC is in thermal equi-
librium; only the bath is. This assumption is a simplification
which allows us to use a single parameter 7 and therefore a
single “thermal memory time” %/kT. There is no reason to
use a nonthermal bath or many heat baths with different tem-
peratures: this does not make the spectral density flat and can
only introduce more parameters.

B. Does the interaction picture not save the day?

With respect to the WCL: “Suppose we have the
following Hamiltonian in the Schrodinger picture: H=Hg
+H(t)+ Hg+Hy, where |Hg|>||H||=control Hamiltonian
>||Hgg||. Then in the interaction picture with respect to Hg
the term H is dominant and hence can implement fast gates.
However, in the original Schrédinger picture H - is small and
hence the adiabatic limit for the derivation of the MME is
satisfied. Thus we have an example where we can have fast
gates (in the interaction picture) and still the WCL can be
satisfied so that the Markovian limit can be reached. More-
over, this is the relevant limit relevant for quantum optics,
e.g., trapped ions.”

There are a number of problems with this argument. First,
one should be more careful about the formulation of the
condition for adiabaticity. It can be stated as |dw(t)/dt]
< w(1)?, where w(t) is a “relevant” Bohr frequency. Merely
comparing norms as above does not guarantee adiabaticity.
Second, in the quantum optics context we note the following.
For three-level trapped ions we have two Bohr frequencies: a
large, time-independent w;, and a small, time-dependent
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,(t) (degenerate levels splitting). Only w, is “relevant” be-
cause it is related to gates, and then the adiabatic condition
implies that |dw,(7)/dt| is correspondingly small, which con-
tradicts the fast gate condition Al. Third, the inequality
|Hc||>||Hgg| is in fact not satisfied in the Markovian WCL,
where |[Hgg|| diverges (one should not confuse the small
system-reservoir coupling parameter involved in the van
Hove limit with the operator norm, which can be infinite).

C. Does quantum optics not provide a counterexample?

With respect to the WCL: “Trapped ions and other quan-
tum optics systems provide a counter example: a system ex-
perimentally satisfying Markovian dynamics and allowing
fast Rabi operations.”

We have already addressed quantum optical systems in
Sec. III B 2. Let us add a few comments. We do not know of
any quantum optics experiment testing the Markov approxi-
mation with the accuracy relevant for FT-QEC (for quantum
dots, on the other hand, non-Markovian effects are very vis-
ible). We know that for constant, and also for strictly peri-
odic Hamiltonians (which corresponds in quantum optics to
a constant external laser field), the Davies derivation can be
applied (or extended, as in Sec. III B) and the Markov ap-
proximation is applicable. The problem appears for fast
gates. It would be difficult to test the Markov approximation
in this case with the required accuracy, because, e.g., the
results depend on the shape of the pulse. A relevant example
is resonance fluorescence, as described in Ref. [40], pp. 43—
61, and as discussed in Sec. III B 2. The damping effects are
only present in the widths of spectral lines—see Ref. [40], p.
61, Fig. 2.5. The Markov approximation gives Lorentzians
while non-Markovian dynamics may give rise to more com-
plicated line shapes. Consider a two-level atom as in Ref.
[40], Sec. 2.3.2, and in particular the final formula (2.96),
which describes resonance fluorescence via a MME. The au-
thor claims that for typical parameters in quantum optics the
dissipative part does not depend on the Rabi frequency
[recall our discussion in Sec. III B 2]. Hence, as the gates are
entirely related to (g, it appears that either fast or slow gates
are possible. The argument is based on the small ratio
O/ w,<10'/10'5 (Where w, is the Bohr frequency). This is
fine for replacing the spectral density at w,+{); by the den-
sity at wy, but the subsequent argument that we can replace
[in Eq. (2.94)] Q by 0 is inaccurate. This would be correct
only if the decay time 7=1/7 is short enough such that
QOr7<1. However, as explained in Sec. III B 2, in this case
the Davies type averaging makes no sense physically. In fact,
typically for radiation damping 7=107%s, and then Qg7
<100 only. Hence for a fixed )3 we do in fact not have a
simple Lindblad generator [of the type (2.96) in Ref. [40]],
but rather a more complicated generator with Lindblad op-
erators depending on the Rabi frequency, as in Eq. (47).
Again, in the derivation of a proper generator an averaging
over terms of the form
exp(—iQxt) must be performed. Therefore the condition for
the adiabatic approximation involves the Rabi frequency
and cannot be satisfied for fast gates. For experiments based
on spectral measurements the difference between the two
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types of generators we have just discussed is probably irrel-
evant for many reasons; however, the quantum state of the
atom at a given moment is sensitive to a small change in the
Lindblad operators, and this is important in a fault tolerant
implementation of quantum logic gates.

D. Is Al truly an assumption of FT-QEC?

With respect to the WCL: “Does Al not impose an un-
necessary constraint on FT-QEC, in that gates are not re-
quired to satisfy the condition 7,0=0(m)?”

In other words, one might argue in favor of slow gates,
where instead the condition is 7,w>O(7). Such gates are
certainly relevant in the context of the adiabatic quantum
computing (AQC) paradigm [52], holonomic QC [53,54], or
topological quantum computing (TQC) [55-57]. We com-
ment in more detail on AQC, HQC, and TQC in Sec. VI. The
question of interest to us is whether an adiabatic gate satis-
fying 7,0> O() is applicable to the standard FT-QEC para-
digm we are considering here, and which is very different
from AQC, HQC, and TQC.

First, let us clarify that by gates we mean one and two-
qubit unitaries picked from well-known discrete and small
sets of universal gates [58]. An algorithm is constructed via a
sequence of such gates, and computational complexity is
measured in terms of the minimal number of required gates.
Of course one can instead join all gates used in a given
algorithm into a single unitary and call this a gate, but then
one runs into the problem of finding a relevant (physical)
Hamiltonian and quantifying computational complexity. For
a given gate there are infinitely many Hamiltonian realiza-
tions. Among these are fast ones (optimal) which satisfy
7,0=0(m) and slow ones (adiabatic) satisfying 7,w> O(m)
(all inequalities here are in the sense of orders of magnitude).
For example, consider a 7 rotation. The fast (optimal) real-
ization satisfies T,w=1r (compatible with A1), while the slow
(adiabatic) one satisfies 7,w=+27mn with n>1 (contradicts
Al).

Now, one may ask whether a slow realization of gates can
prevent the inconsistency with the WCL. We argue, based on
computational complexity considerations, that the answer to
this question is negative. To see this, note first that non-
Markovian errors are uncorrectable in standard FT-QEC.
Therefore such non-Markovian errors accumulate during the
computation (by definition, they are not corrected by “Mar-
kovian FT-QEC”), and in order to keep them under control,
the probability of such errors per gate p,..s should scale as

Pron-ym ~ O[1/(volume of algorithm)] = O[1/(input size)*],
(51)

where « is some fixed power. Now, it follows from our dis-
cussion in Sec. III B that the more adiabatic the evolution,
the smaller is the probability of the non-Markovian errors per
gate. Therefore, if one writes the adiabaticity condition as
T,0>M, where M > 1 is the “adiabatic slowness parameter,”
then the probability of non-Markovian errors should satisfy
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Pronyt ~ O(1IMP), (52)

where B is another fixed power [w (the Bohr or Rabi fre-
quency) is limited essentially by the choice of physical sys-
tem]. Comparing the two expressions for p,,,.x» We see that
M must grow with input size. This means that if one works
with adiabatic gates in order to keep the dynamics (approxi-
mately) Markovian, the result is that one must slow the gates
in proportion to the input size (to some power). This, how-
ever, violates the threshold condition of FT-QEC, in which
the input size and gate times are independent parameters
(see, e.g., theorem 12 in [7]).

E. Measurements

With respect to both the WCL and the SCL: “Recent re-
sults on fault-tolerant QC using measurements only (e.g.,
Refs. [59,60]) render all the claimed problems irrelevant.”

Indeed, we have so far discussed only the problems with
quantum logic gates. Moreover, measurements are an inte-
gral part of FT-QEC theory as well, in particular to reset and
disentangle ancillas before they are introduced into an error-
correction circuit. Therefore some remarks on the use of
measurements are in order.

In the most advanced FT-QEC scheme of Ref. [7], mea-
surements are performed at the end of the computation.
However, this approach demands a high resource overhead,
which may make it impractical. Therefore, more recent pro-
posals (e.g., Refs. [17,61]) rely on feedback mechanisms em-
ploying the results of quantum measurements. Those “mea-
surements in the middle of computation” are treated for
simplicity as certain von-Neumann projective measurements
(but with efficiency <1) satisfying a repeatability condition.
The latter implies that the subsequent measurements reduce
the measurement error exponentially as their number in-
creases. This assumption should be carefully scrutinized,
within realistic Hamiltonian models of quantum measure-
ment treated as a dynamical process. Here, again one can
expect that the tacit assumption of statistical independence of
repeated measurements is in conflict with the non-Markovian
character of the dynamics of open quantum systems.

As all proposed measurement schemes are based on elec-
tromagnetic interactions, it should be possible to construct a
rather general Hamiltonian framework and apply it to vari-
ous particular implementations. Indeed, this has been done,
e.g., for a single-electron tunneling (SET) transistor coupled
capacitively to a Josephson junction qubit [62]. Rather than
assuming that the measurement apparatus is coupled to the
system whenever measurements must be performed—an op-
tion which is hard to achieve in mesoscopic systems—Ref.
[62] makes the reasonable assumption that the measurement
apparatus is always coupled to the system, but is in a state of
equilibrium when it is not needed. A measurement is then
performed by driving the measuring device out of equilib-
rium, in a manner that dephases the qubit to be measured.
Generic features emerging from this analysis are the exis-
tence of three different time scales characterizing the mea-
surement: the dephasing time, the measurement time (which
may be longer than the dephasing time), and the mixing time
(the time after which all the information about the initial
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quantum state is lost due to the transitions induced by the
measurement). Reference [62] thus arrives at a criterion for a
“good” quantum measurement: the mixing time should be
longer than the measurement time. A time-scale analysis of
measurements in optical systems, accounting for spontane-
ous emission, can be found, e.g., in Ref. [63]. A fully con-
sistent analysis of FT-QEC should account for the existence
of such time scales in a dynamic description of the measure-
ment process. In particular, it is important to set appropriate
bounds on these time scales, so that they may be taken into
account in a threshold calculation (an analysis based on a
stochastic error model was reported in Ref. [14]).

F. Degenerate qubits

With respect to the SCL, “Degenerate qubits automati-
cally satisfy the high T limit since their intrinsic energy scale
vanishes.”

Examples of degenerate qubits are common, e.g., in
trapped ion quantum computing implementations where a
pair of degenerate hyperfine states can serve as a qubit, with
an auxiliary third level used to implement quantum logic
gates via Raman transitions [64]. The case of degenerate
qubits is somewhat more subtle to analyze within the context
we have explained above. Naively, in such a case the high-T
limit is indeed automatically satisfied, since the system en-
ergy scale is zero. Therefore it appears that one could claim
that the SCL version of the Markov approximation is attain-
able. However, upon closer examination this still seems
problematic. Indeed, the vanishing of an energy scale for
degenerate qubits holds, strictly speaking, only for fully
adiabatic techniques, e.g., HQC [53,54]. Otherwise transfor-
mations between logical states are achieved by resorting to
effective Hamiltonians which involve virtual transitions. For
instance, if |0) and |1) denote degenerate qubit levels (e.g.,
hyperfine levels of an ion), one can introduce far-detuned
(e.g., laser) couplings of |0) and |1) with a third auxiliary
level. Second order perturbation theory then yields the effec-
tive Hamiltonian Hg=—(Q%/A)[1){0[+H.c., where Qp and
A are the laser Rabi coupling and detuning, respectively.
Therefore we see that an effective, small but nonvanishing,
energy scale E; = Q%/ A is introduced. (Note that in order for
perturbation theory to be valid one must have 1 <<A, which
in turn implies E; <<A.) Yet another energy scale is provided
by the spectral width E, of the laser pulse shape Qg(?); in
order to suppress unwanted real transitions, one must impose
in addition that E,<<A. At any rate, the appearance of these
new system-energy scales implies that once again the SCL-
type contradiction applies. On the other hand, we can make
both E| and E, small at the price of lengthening the gating
time (7,=max{1/E,,1/E,}). This implies, once again, an
adiabatic limit and the applicability of the WCL. Therefore it
appears that as long as one restricts manipulations to adia-
batic ones (thus contradicting A1), quantum computing with
degenerate qubits is possible even in the Markovian limit.
We expand on this viewpoint below.

G. Impure ancillas

With respect to the SCL: “Do ancillas really need to be
pure?”
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What precisely is the role of the ancillas in QEC? A popu-
lar answer is that they serve as an “entropy sink” for the
errors accumulated during the quantum computation. This
entropy in the system arises from the entanglement between
system and bath, and the role of the ancillas is to remove this
entanglement. That is, in a perfect quantum error correction
step the entanglement between system and bath is transferred
to the ancillas and bath. A natural objection to our SCL-
based inconsistency is to claim that, in fact, ancillas need not
be pure, or could perhaps even be highly mixed. However,
this is not supported by the (current) standard theory of FT-
QEC. Consider, e.g., an error correction circuit based on the
Steane seven-qubit code. It takes as input ancillas prepared
in the |),=(|0,)+|1,))/V2 state, where |0;) and |1,) are
code words. The physical qubits which comprise such ancil-
las are coupled bitwise via controlled-NOT (CNOT) gates to
the physical qubits making up the encoded data qubits in the
circuit. If instead we input an ancilla in a mixed state, this is
equivalent to inputting a classical mixture with erred code-
words, e.g., (1-p)|) (¥ +p|d)d|, where |p), is an erred
codeword. If one of these errors is a phase flip, it feeds back
(via the CNOT gates) into the data qubits, producing an error
[65]. Without fault tolerance this means that there are now
two errors (in the ancillas block and the data block), which
may be more than the code can handle. In FT-QEC theory
such errors are accounted for, but their magnitude is bounded
from above (e.g., p in the above example must be small). We
note that an ancilla which is initially entangled with the data
qubits (violating the assumption of being introduced into the
circuit in a tensor-product state) is essentially equivalent to
the case of an impure ancilla just described (tracing over the
data qubits yields an impure ancilla state).

A more general approach showing the importance of the
assumption of pure ancillas is the following (fairly standard
account of QEC).

(i) Preparation. Let the initial state of system+reservoir
+ancillas, with respective Hilbert spaces Hg,Hg,H4, be
Para=|s)is| © |0g)(0| ® ps, Where we have allowed for
ancillas in a mixed state p,.

(ii) System-reservoir interaction (decoherence).

Usr
PgRA—> PéRA= > Ue|¢s><¢S|UZ/ ® leg)eg| ® pa,

ee' el

(53)

where e’s denote the errors belonging to the set £ that the
code C can correct, and where |eg) are the corresponding
states of the reservoir. The error operators U, are assumed to
be unitary and with linear span of dimension |€|.

(iii) System-ancilla interaction (syndrome extraction).
This interaction takes the form Ugy=2,.¢I1,® T, where the
T,’s are unitaries over H, such that T,|0,)=l|e,) and II,
=1.®|e)e|:"

BWe  know that Hs=C®S®D [S=syndrome subsystem,
dim D=|&]; D=remainder (=0 for subspace-based codes)]
[31,66,67].
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Usa
PSRA —— P3rA = > Ue|¢s><¢S|UZI ® |eg)eg]

ee' e

® ToppT,r. (54)

(iv) Error recovery. Unitary recovery is implemented via
Usa=|E[Z,ceUS @ I ® les)en

need (ey|e})= 6,.'- By applying ﬁSA and tracing over both R
and A (assuming the |eg)’s too are orthonormal) one obtains

, where for unitarity we

1
P?EH > VU)W ULUA S Al TopaT(Lf ). (55)
efeE

In the case of a pure ancillas p,=[0,){0,] one has
FAlTopaTf2Y=|(f1lea)|*= ), and therefore the ideal case
' =|ihs)(if| is recovered. One can also consider the fidelity

F = (il p$" ) = €' 2 |<¢S|U;Ue|l//s>|2<fA|TePATZ|fA>-
efeE

(56)

Provided the error operators U, satisfy the condition for
a nondegenerate code <¢S|U;Ue(lli5>=5f’e [31], one obtains
F=|€|_lzee.€<eA|TepATZ|eA>=<OA|pA|OA>' Clearly, F=1 iff
p4=]04)0,|, i.e., the ancillas are pure. One can also con-
sider nonunitary recovery via ancilla measurements and con-
ditional unitaries, with Kraus operators given by
A,=|&"PUl ® Iy ® e ){es|. The conclusion that the ancillas’
state must be pure is unchanged.

We note that FT is obtained by adding concatenation and,
in steps (iii) and (iv), preparing and coupling encoded ancil-
las with the system in a suitable way, e.g., as in the Steane-
code example above. In this case it is permissible to allow
slightly impure ancillas, and relax the assumptions that, in
step (ii) the environment couples only to the system, and in
steps (iii),(iv), the environment does not act. This formula-
tion, however, does not allow arbitrarily mixed-state ancillas,
as argued in the Steane-code example. While such a formu-
lation of FT-QEC theory might still emerge (for example, by
using algorithmic cooling techniques [68,69], which, how-
ever, at present assume perfect gates), it does not appear
possible at present to relax the assumption of cold ancillas.

H. Hot QC, cold ancillas, and fast QC-ancilla interactions

With respect to the SCL: “One can keep the ancillas
coupled to a separate cold bath and then couple them for
only a short time to the QC: what matters then is the 7 time
scale and that one can be very long compared to the required
ancilla-QC coupling time.”

Let us paraphrase this objection. If one can make Hgp
(system ancillas) very large then one could beat the rate of
ancilla heating by strongly coupling the QC and ancillas.
That is, suppose one would like to bring the ancillas in from
their cold reservoir to couple to the system, which is coupled
to a hot reservoir as required for the SCL. The ancillas then
heat up fast, but there is a timescale associated with this
heating (“T,”), which one wishes to beat. Now if one could
make the system-ancilla coupling very strong then one could,
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presumably, use the ancillas (e.g., for syndrome extraction)
faster than their heating rate, while they are still sufficiently
pure for fault tolerance purposes.

The simplest argument against this objection is the fol-
lowing. In the setting of the objection, the QC is described
by the SCL (high T) while the ancillas are described by the
WCL (low T). Strong and fast coupling between the QC and
the ancillas is unacceptable according to the WCL because it
is fast (only adiabatic manipulations are allowed), and ac-
cording to the SCL because it is strong (“strong” refers to the
system’s Hamiltonian part, while in the SCL this Hamil-
tonian is weak in comparison with the system-bath cou-
pling).

However, one could go on to argue that the ancillas are a
different species than the QC qubits, and in particular have a
different intrinsic (less dense) energy scale, so that they are
at low T on the scale set by the QC qubits. In this case both
ancillas and QC are described by the SCL. Then the problem
with the objection is the following: recall that in the SCL
(see Sec. IIT A) one must rescale Hgg and Hag as Hgg/ € and
H g/ €, respectively, where here R denotes the common res-
ervoir the system and the ancillas are coupled to. The heating
rate is proportional to the square of the coupling strength to
the reservoir, i.e., to 1/€, and hence diverges in the SCL.
Therefore to beat the ancilla heating process via fast manipu-
lation of the system-ancilla coupling one would have to res-
cale Hg, at least by 1/€, but this contradicts the SCL deri-
vation, where in fact one must keep Hg, fixed while
rescaling Hgg. The reason for this is that, in the SCL deriva-
tion, it is the system (now including the ancillas) that sets
the timescale against which reservoir correlations must be
accelerated."

'*Let us also consider the issue from the perspective of thermo-
dynamics. This is not really necessary, since the arguments above
about the SCL are rigorous, but is interesting in its own right. First,
we remark that error correction should really be made to work at the
common lower (initial ancillas’) temperature. Heating a part of a
QC only to be closer to the Markovian limit is a suboptimal strat-
egy, because it increases the strength of the noise and stimulates
entropy production. Second, in standard FT-QEC heat (entropy)
flows from the QC to the ancillas only, while in reality one should
expect a flow in both directions and additionally an entropy produc-
tion. To see this let us ignore for the moment the coupling of the QC
to the bath, and consider ancillas coupled to a heat bath at tempera-
ture 7. The ancillas can be kept pure by maintaining an energy gap
>kT. Assume that the initial state of the QC (C) and ancillas (A) is
a product state |¢c) ® |¢h). Switching on the interaction He, we
induce an equilibration process (because the dynamics is Markov-
ian) of C+A towards the Gibbs state py=exp(—H4/kT)/Z, which
is entangled (here for simplicity H, contains not only the inter-
action but is the total Hamiltonian of C+A). After a single step
of error correction the total state of C+A can be modeled by
(1=-p)Ulpe) @ |h)UT+ppcs, where U is unitary and 0<p<1.
Then we switch off the interaction with the ancillas. Whatever we
do next separately with C and A, we cannot eliminate the error due
to the entanglement present in the term ppc4. This type of incor-
rectable error accumulates and destroys FT-QEC. This is the back
flow of entropy from the ancillas bath to the QC, mentioned above.
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VI. ALTERNATIVES TO MARKOVIAN FT-QEC
A. Nature of the non-Markovian errors in the WCL

While we have pointed out that, in the WCL, the applica-
tion of fast gates is likely to violate the conditions required
for Markovian dynamics to persist, we have not been specific
about the type of non-Markovian effects that will emerge. It
is well known that FT-QEC is capable of dealing with errors
that change due to the application of gates. Namely, assume
that (slightly) faulty gates correcting a specific error model
described by a CP map A [recall Eq. (1)], are applied in
sequence, AUyAU,_,---AUj, and these gates are (in some
appropriate norm) close to the ideal gates {U,-}fil, i.e., for all
i, |U/UI =1 <1. Then by inserting UU,’s everywhere one
obtains the new sequence AyUnApn_Uy_i---A;U;, where
A;=AU] Uf, and FT-QEC is capable of dealing with such a
(gate-modified) error model. However, the non-Markovian
effects that arise due to the application of fast gates in the
WCL will in general not be describable by a simple time-
local modification such as A— AU U}. This can be worked
out, e.g., using the methods of Ref. [30].

In order to formulate consistent alternatives to standard,
Markovian FT-QEC theory, it seems useful to start with a
Hamiltonian formulation. As the discussion below will illus-
trate, it appears that a hybrid approach will be necessary,
which combines alternatives to standard QC with a new ver-
sion of FT-QEC.

B. Adiabatic quantum computing (AQC)

We keep A2 and A3, discard Al (fast gates), and work in
a purely adiabatic mode, thus permitting a consistent WCL.
This may indeed be possible using the adiabatic quantum
computing (AQC) approach of Farhi et al. [52]. At present
there is little understanding of the fault-tolerance of AQC.
Some recent works explore AQC in the presence of decoher-
ence and/or control errors [70-75]. Indeed, the subject of the
adiabatic approximation in open quantum systems has only
very recently been addressed [46], and used to study AQC in
open systems [74]. Error correcting codes for AQC were
introduced very recently in Ref. [76], but the corresponding
universal Hamiltonians involve many-body interactions
(four- and six-body for one-local and two-local errors, re-
spectively).

C. Holonomic quantum computing (HQC)

Another possibility for keeping A2 and A3, and discard-
ing Al, is provided by HQC [53,54]. HQC is an adiabatic
scheme which relies on Abelian or non-Abelian geometric
phases to implement quantum logic gates. Quantum informa-
tion is encoded in a degenerate set of eigenstates of a Hamil-
tonian depending on a set of controllable parameters, e.g.,
external laser fields (recall our discussion of degenerate
states above). When these are adiabatically driven along a
suitable closed path, the initial quantum state is transformed
by a nontrivial unitary transformation (holonomy) that is
geometrical in nature. The key point is that the geometrical
nature of the quantum holonomies is believed to render HQC
inherently robust against certain kinds of errors. This alleged
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fault tolerance has only recently been seriously begun to be
examined [77]; the emerging picture is that, while stability
against decoherence must still be assessed, HQC seems to
exhibit a strong robustness against stochastic errors in the
control process generating the required adiabatic loops [78].
Moreover, in the adiabatic limit of Markovian dynamics it
has been shown that the geometric phase of a single qubit
coupled to a magnetic field is robust against both dephasing
and spontaneous emission (but not against bit flips) [79].
Nevertheless, since deviations from strict adiabaticity are in-
evitable, and adiabaticity is particularly challenging to sat-
isfy in open quantum systems [46], it is tempting to combine
HQC with FT-QEC in order to address the performance of
HQC in the presence of decoherence errors. Alternatively, we
note that a hybrid approach that seems to be rather promising
is the embedding of HQC within a DFS [80]. This amounts
to realizing a set of universal quantum gates, acting on a
DFS, by means of non-Abelian quantum holonomies. This
strategy brings together the “best of two worlds:” the quan-
tum decoherence avoidance virtues of DFSs and the fault-
tolerance of the all-geometric holonomic control. It is pos-
sible that such an approach can be implemented for quantum
information processing in, e.g., trapped ions and quantum
dots.

D. Topological quantum computing (TQC)

A robust way of performing quantum computations is
based on excitations with fractional statistics, since they have
several fault-tolerant properties built in. This idea is known
as topological quantum computing (TQC) [55-57]. Physical
realizations of the simplest versions of TQC have been con-
sidered in the literature, using, e.g., rotating Bose-Einstein
condensates [81] and superconducting circuits [82]. Let C
denote the manifold of quantum code words. Strikingly, in
TQC, one can have a trivial Hamiltonian, e.g., H|C=0, but
nevertheless obtain nontrivial quantum evolution due to the
existence of an underlying topological global structure
(boundary conditions). Quantum encoding is typically per-
formed in a properly designed degenerate ground state C.
This fact implies, for low enough temperature, an exponen-
tial suppression of errors on encoded quantum information
due to thermal fluctuations. More importantly, topological
features can render such a ground state stable against errors
represented by local operators, namely, error operators that
do not involve a number of qubits of the order of the size of
the system. For example, in the so-called toric codes [55,83],
qubits are encoded in the ground-state manifold of a lattice
of interacting spins in such a way that degenerate ground
states are mutually connected only via high powers (scaling
linearly with lattice size) of local operators. Thus, here the
fault-tolerance properties are already built in at the physical
level. However, while one can argue that topological encod-
ing provides a stable and passive quantum memory, it is not
self-correcting as in today’s “effectively naturally fault-
tolerant” classical architectures (see Ref. [84] for an eloquent
exposition of this point). Moreover, it is important to realize
that as far as we know, in its present state TQC still requires
active intervention, in the form of FT-QEC, when one tries to
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compute fault-tolerantly. Indeed, Preskill writes in Ref. [85],
p. 62, “It is therefore implicit that the temperature is small
enough compared to the energy gap of the model that ther-
mally excited anyons are too rare to cause trouble, that the
anyons are kept far enough apart from one another that un-
controlled exchange of charge can be neglected, and in gen-
eral that errors in the topological quantum computation are
unimportant. If the error rate is small but not completely
negligible, then the standard theory of quantum fault toler-
ance can be invoked to boost the accuracy of the simulation
as needed.” Reference [29] takes this approach and explicitly
lists A2 and A3 as necessary requirements for fault-tolerant
TQC. In contrast, Al is definitely not required in TQC: one
performs computations by adiabatically dragging quasiparti-
cles around one another, and these operations must be slow
relative to the gap between the ground state and the first
excited state. The larger the gap the easier it is to satisfy this
adiabaticity condition, so this requirement is compatible with
the thermal suppression of errors mentioned above. In addi-
tion, TQC requires time-dependent controls to read out the
encoded data (Ref. [86] shows that all measurements can be
postponed until the readout of the final result of the compu-
tation). However, a fully Hamiltonian analysis of the fault
tolerance of such measurements is still lacking. Nevertheless,
one could argue that the error rate in a topological quantum
computer could be made arbitrarily small by increasing the
system size and careful engineering, so that (similarly to to-
day’s self-correcting, fault-tolerant classical computers), one
could ultimately perform TQC without any active interven-
tion other than a readout of the encoded data. An interesting
recent development in this direction was reported in Ref.
[84], which suggests that certain three-dimensional quantum
spin lattices might be self-correcting.

E. Non-Markovian quantum computing

We keep Al and A2 but discard A3 (the Markov approxi-
mation) at least in part. This appears to be a reasonable ap-
proach in many cases, since the Markov approximation is
clearly a highly idealized limit (though it does hold remark-
ably well in some optical systems and in liquid state NMR).
Indeed, the degree of accuracy to which the Markov approxi-
mation must be satisfied has been quantified, e.g., by Steane
in Ref. [61]: the probability of an uncorrectable (i.e., non-
Markovian) error per gate must be <107'° for a computation
involving 10° gates (this probability must scale with the in-
put size, as explained in Sec. V D). Alternative approaches to
dealing with non-Markovian baths are therefore of interest.
For example, Refs. [19-21] present an extension of FT-QEC
theory to a non-Markovian setting. We offer in this context
the following observations.

(1) An important ingredient carried over directly and
without change from Markovian FT-QEC theory is the cru-
cial role of the fresh and nearly pure ancillas [19-21]. We
believe that the detailed mechanism for introducing and dis-
carding ancillas at specific times should be reconsidered
within a fully Hamiltonian framework.

(2) As recognized and discussed in Ref. [19], the impor-
tant assumption of a small norm of the system-bath interac-
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tion Hamiltonian [e.g., Eq. (58) in Ref. [20]] is not satisfied
for some standard models of open systems. For example, a
linear coupling to a bosonic heat bath involves unbounded
interaction Hamiltonians and a high-frequency cutoff. In
general, the assumption of a small norm of the system-bath
interaction Hamiltonian is much stricter than the WCL and is
not satisfied for most standard models of reservoirs.

Another approach to fault-tolerance in a non-Markovian
setting is the recently developed time-concatenated dynami-
cal decoupling method [22] (see also Ref. [87] for a version
of dynamical decoupling with bounded-strength controls).
However, comment (2) above about the small norm of the
system-bath interaction Hamiltonian applies here as well.
Therefore more general methods are required to deal with the
full scope of baths one can expect in quantum computing
implementations. A promising possibility in this direction is
to incorporate fault-tolerant dynamical decoupling in a feed-
back loop.

VII. CONCLUSIONS

We have listed a set of minimal assumptions made in the
theory of fault-tolerant quantum error correction (FT-QEC):
(1) fast gates (on the time scale set by the inverse of the
relevant Bohr or Rabi frequency), (2) a supply of fresh and
nearly pure ancillas, (3) a Markovian bath.

We have also reviewed the only two known rigorous gen-
eral limits leading to Markovian dynamics: the singular cou-
pling limit (SCL), which involves taking a high temperature
limit, and the weak coupling limit (WCL), which requires
either a constant or an adiabatic system Hamiltonian, and
averaging over long times in comparison with the inverse of
the relevant Bohr frequency. These two limits allow one to
replace the reservoir autocorrelation function by a Dirac
delta, which leads to the Markovian limit.
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A close examination of the assumptions of FT-QEC has
led us to conclude that assumption (3) can be sustained to-
gether with assumption (1) in the SCL, and together with
assumption (2) in the WCL. However, it is not possible to
maintain all three assumptions in either the SCL or the WCL.
We therefore conclude that, at present, there exists an incon-
sistency in the formulation of the theory of FT-QEC for Mar-
kovian baths. We have also listed a number of alternatives to
Markovian FT-QEC which, from the point of view adopted
here, are free of inconsistencies. However, none of these al-
ternatives is so comprehensive as to include the full range of
errors one might expect in a full-scale implementation of
quantum computing. In particular, recent results on fault tol-
erance in non-Markovian settings [19-22], while represent-
ing a significant step forward, make a crucial assumption
about the smallness of the norm of the system-bath interac-
tion Hamiltonian, which severely restricts the class of physi-
cal reservoirs.
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