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A system of diagrams is introduced that allows the representation of various elements of a quantum circuit,
including measurements, in a form which makes no reference to time �hence “atemporal”�. It can be used to
relate quantum dynamical properties to those of entangled states �map-state duality�, and suggests useful
analogies, such as the inverse of an entangled ket. Diagrams clarify the role of channel kets, transition
operators, dynamical operators �matrices�, and Kraus rank for noisy quantum channels. Positive �semidefinite�
operators are represented by diagrams with a symmetry that aids in understanding their connection with
completely positive maps. The diagrams are used to analyze standard teleportation and dense coding, and for
a careful study of unambiguous �conclusive� teleportation. A simple diagrammatic argument shows that a
Kraus rank of 3 is impossible for a one-qubit channel modeled using a one-qubit environment in a mixed state.
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I. INTRODUCTION

In some sense the problem of entangled states and the
problem of noisy channels, two central issues in quantum
information theory, are one and the same problem. Parallels
between them have been well known for some time, at least
to those who know them. For an extensive and extremely
helpful discussion of this duality between quantum maps and
quantum states, with copious references to earlier literature,
see �1�. The present paper continues an effort, begun with the
study of channel kets in �2�, to systematize this relationship
in a manner which, as far as is practical, avoids making
reference to a particular choice of basis, thus using properties
of operators rather than their �basis-dependent� matrices. The
aim is to make these methods and the corresponding point of
view more accessible to those less familiar with their possi-
bilities, and to classify different problems of quantum infor-
mation theory, whether solved or unsolved, in a systematic
way which reveals underlying connections. In �2� a classifi-
cation scheme was proposed using properties of an entangled
system at a single time, for reasons there discussed. The
present paper, following this same motivation, is devoted to
procedures for reducing quantum circuits, together with
“preparation,” “measurement,” and �at least to some extent�
“classical communication,” to a form in which time plays no
role, using a system of what we call atemporal diagrams.

The atemporal form of a particular problem is not neces-
sarily the one which yields the best physical intuition. En-
tanglement is not an easier concept than transmission of
quantum information, and we often find that a good way of
extracting physical insight from an atemporal diagram is to
think of it as some sort of quantum channel. The diagrams

do, however, provide a precise and systematic notation for a
variety of things for which Dirac notation, despite its many
advantages, is not altogether ideal, and this without introduc-
ing a direction of time, something always present in quantum
circuit diagrams. Often an atemporal diagram will suggest an
analogy between a problem stated in terms of how a system
develops in time and another which refers to properties of a
quantum system at a single time. While some of these analo-
gies are already known �e.g., a noiseless quantum channel is
“like” a fully entangled state�, others are not so obvious. In
addition, the diagrams can speed up analysis of some situa-
tions by allowing one to say, “Well, that is obvious,” without
engaging in lengthy reasoning or complicated algebra. To be
sure, the effectiveness of diagrams of this sort is to some
extent subjective. We ourselves have found the scheme
presented in this paper to be extremely helpful, and we hope
other members of the community will share our enthusiasm
or, better yet, come up with a superior, more powerful
system.

Section II defines our notation for Hilbert spaces and ex-
plains the rules for constructing diagrams, together with a
small number of examples. These include diagrams for posi-
tive �semidefinite� operators, which exhibit a particular sym-
metry, “transposers” which change kets into maps and vice
versa, and the notion of the inverse of an entangled ket.

Applications begin in Sec. III A with a discussion of how
atemporal diagrams, and in particular the notion of the in-
verse of an entangled ket, can be used to “solve” certain
exercises in quantum circuits. The �by now� standard proto-
cols for teleportation and dense coding are the subject of
diagrammatic analysis in Sec. III B.

In Sec. IV atemporal diagrams are applied to the problem
of unambiguous or conclusive teleportation, in which a par-
tially entangled pure state replaces a fully entangled state as
the shared resource, and the agents know whether the process
succeeds or fails. Earlier work on this problem, summarized
in Sec. IV E, can be unified and generalized in a very sys-
tematic way by using the notion of the inverse of an en-
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tangled ket. �Somewhat analogous results on dense coding,
which also make use of map-state duality but not atemporal
diagrams, are the subject of a different publication �3�.�

Noisy quantum channels are the topic of Sec. V. In Sec.
V A diagrams corresponding to a channel ket, transition op-
erator, and dynamical operator are used to further illuminate
the meanings of objects named in �2�. �The “dynamical op-
erator” corresponds to the “dynamical matrix” of �1�.� In
particular, certain positivity conditions become self-evident
because of the symmetry of the diagrams, and this topic is
pursued further in Sec. V B with a discussion of completely
positive maps. With the help of diagrams one sees that the
Kraus rank of a noisy quantum channel is the same as the
�ordinary� rank of a suitable “cross operator.” This fact is
used in Sec. V C to construct a straightforward, simple proof
that the Kraus rank of a noisy one-qubit channel modeled
using a one-qubit environment in a mixed state cannot have
the value 3. Numerical evidence for this was reported in �4�;
however, ours is an analytic proof.

Section VI contains a summary and notes some open
questions. Appendix A, using a mathematical result derived
in Appendix B, addresses some technical points about the
unambiguous operations employed in Sec. IV.

II. DIAGRAMS

A. Hilbert spaces

Our notation treats bras, kets, operators, entangled states,
superoperators, and the like in a uniform manner: each is an
element of a suitable Hilbert space: a complex linear space
on which an inner product is defined. Since we will be deal-
ing with many such spaces, part of the notational problem is
making clear precisely which space it is to which a particular
entity or “object” belongs. We assume that all the Hilbert
spaces of interest to us are finite.

Just as in Dirac notation, where a ket ��� and a bra ���
mean different things, we find it useful to distinguish a Hil-
bert space H inhabited by kets from the dual space H† in-
habited by bras. Lowercase Roman letter subscripts are used
to distinguish Hilbert spaces for different systems, and we
adopt the abbreviations

Hab = Ha � Hb, Ĥa = Ha � Ha
†, Lba = Hb � Ha

† �1�

for the tensor product of two spaces �sums of dyads �a�
� �b��, the space of operators �sums of dyads �a��a���, and
the space of linear maps from Ha to Hb �sums of dyads
�b��a��. Omitting the � symbols in �1� and similar expres-
sions will cause no harm. Note that Hab=Hba, but the order
of the subscripts in Lba is important: it is that of the dyad
�b��a�, and also that of the subscripts in a matrix representing
such a map. Each of these compound spaces, and others like
them, is itself a Hilbert space, with addition and scalar mul-
tiplication defined in the obvious way, and a scalar inner
product which for two elements �a� � �b� � �c� and �a��
� �b�� � �c�� in Hab � Hc

†, to take a specific example, would
be �a �a�� · �b �b�� · �c� �c�. The dimension of a Hilbert space
Hx will be denoted by dx, and of course dab=da�db.

B. Examples of diagrams

Each “object” which is an element of some Hilbert space
can be denoted by a diagram in which a symbol representing
it is placed inside a circle or square or some other shape
forming the center, connected by a certain number of legs,
straight or curved lines, to nodes which specify the relevant
Hilbert space. Several examples are shown Fig. 1. A node is
open ��� or closed ��� depending on whether it refers to the
Hilbert space or its dual, and is identified by a letter placed
near it. Sometimes we shall refer to these as active nodes, in
contrast to the inactive nodes present on internal lines of a
diagram following contraction; the latter are generally not
shown on the diagram �see Sec. II C�. In addition to the
nodes, there are arrows on the legs pointing outward from
the center towards open nodes, and inward from closed
nodes towards the center. The identity operator I is indicated
by a single line, see �d�, without a center; this notation will
be justified in Sec. II C.

The Dirac notation, shown in the third column of Fig. 1,
resembles that in the diagrams, with an important exception.
The bra symbol ��� corresponds to an object with the label
�† rather than �; were the object labeled �, the bra symbol
would instead be ��†�. One can think of the Dirac �� as ef-
fectively placing a dagger on the symbol it contains.

There is no rule that prescribes the orientations of the legs
emerging from the center of an object; these may be chosen
as convenient, as illustrated in the opposite orientations
shown in parts �c� and �e� of the figure. Of course, if there
are several legs, restricting oneself to rigid rotations will
make visual identification simpler if the object is used more
than once �e.g., the box labeled V in Fig. 11 below�. But this

FIG. 1. Examples of simple diagrams �a�–�e� and product dia-
grams �f�–�h�.
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is not an absolute rule, as the symbol in the center and the
labels on the nodes or legs remove any ambiguity.

Objects which are tensor products of entities on distinct
Hilbert spaces can be drawn as disconnected pieces, illus-
trated in parts �f�–�h� of Fig. 1. Sometimes it may be helpful
to emphasize that different disconnected pieces belong to the
same diagram by placing a � between adjacent pieces �f�, or
enclosing the pieces inside a large pair of enclosing brackets
�g�. However, there is no rule that these constructions have to
be used, and they can be omitted when ambiguity is unlikely,
as in �h�. There is also no rule that says that tensor products
must be represented as disconnected pieces; the one in �h�,
for example, could be represented using a single center and
three legs terminating in open a and b nodes and a closed a
node.

There is some redundancy in using both arrows and
nodes, and one or the other could be omitted without chang-
ing the significance of a diagram. Retaining the nodes makes
it easier to distinguish legs from other things in a compli-
cated diagram. On the other hand, it is convenient to elimi-
nate them when carrying out contractions; see below.

C. Contractions and matrices

A contraction, meaning an inner product, trace, or partial
trace, can be carried out on any object whose diagram con-
tains both a closed and an open node referring to the same
Hilbert space, i.e., to the Hilbert space and its dual. It is
performed by drawing a line connecting these two nodes,
with an arrow pointing from the open to the closed node.
There are several examples in Fig. 2. As the contracted ob-

ject makes no reference to the Hilbert space of the contracted
nodes, they can be omitted, and the three arrows pointing in
the same direction replaced by just one. It is useful to place
a single letter next to the remaining arrow on the contracting
line to indicate on which space the contraction has been car-
ried out. �The original nodes can be put back in, if desired,
but they should then not be confused with the active nodes,
which always terminate a single line.� This process of sim-
plification is indicated explicitly in Fig. 2�a� and �b�, but only
the end result in �c� and �d�. �One could also leave the two
nodes joined by the contracting line and omit the arrows, but
this is a bulkier notation.� Using the abbreviation just men-
tioned justifies the use of a single line to indicate the identity
operator, Fig. 1�d�, as can be seen by constructing the dia-
gram for I���= ���. Of course, both arrows and labels are
sometimes omitted when the context determines what they
should be. Figure 2�c� illustrates still another abbreviation
which is often, but not always, convenient. Two centers con-
nected by a single contraction line can be reduced to a single
center containing the symbol corresponding to the head of
the arrow to the left of that corresponding to the tail. The
order of these symbols is important, and �usually� agrees
with standard notation.

To obtain the matrix associated with some object, it is
necessary to specify a basis or bases. We limit ourselves to
orthonormal bases, although the same diagrammatic ap-
proach will work for more general choices. Examples are
shown in Fig. 3, together with the corresponding Dirac no-
tation for the matrix. Note that column vectors, row vectors,
and objects labeled by three or more indices are included in
the scheme, and the elements of a rectangular matrix may
turn out to be operators or matrices, as in �d�. The Dirac
notation for items �c� and �d�, while appropriate, can some-
times mislead; e.g., �aj�Y�cl� denotes a ket, not a complex
number.

D. Adjoints and positive operators

Given any object O on a tensor product of Hilbert spaces,
its adjoint O† is defined in the usual way using an antilinear
map in which all bras become kets and vice versa. For ex-
ample, the dagger in

�	 cjkl
�aj� � �ak� � �bl���†

= 	 cjkl
* 
�aj� � �ak� � �bl��

�2�

maps an object from ĤaHb to ĤaHb
†. Normally when using

Dirac notation one would omit the first � on both the left
and right sides of this equation, by using �aj��ak� and �ak��aj�,
respectively. The rule for diagrams is illustrated in Fig. 4�a�,
where the right and left sides are adjoints of each other:
change every open node to a closed node and vice versa
while keeping the node labels the same, reverse the direction
of every arrow, and place the adjoint superscript † on the
symbol appearing in each center, unless there is one already
there, in which case remove it. Note the usual rules, that
when † is applied twice to any symbol one gets the symbol
back again, and if a symbol is a product, as M� in the ab-

FIG. 2. Examples illustrating contraction.
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breviated form in Fig. 2�c�, one should reverse the order:
�M��†=�†M†. In Fig. 4�a�, the adjoint diagram has also been
reflected about a vertical axis. While this is often a conve-
nient thing to do, especially when one intends to carry out a
contraction to produce a positive operator �see below�, it is
not essential: the significance of any diagram does not de-
pend upon its orientation or the order of the legs �assuming
they are properly labeled�.

By a positive operator on a Hilbert space H we mean a

Hermitian operator in Ĥ whose eigenvalues are all non-
negative. The longer term “positive semidefinite” is more
precise. �It is important to distinguish a positive operator in
the sense just defined from a positive or completely positive
superoperator, referring to a map from a space of operators,

say, Ĥa to a different �or possibly the same� space of opera-

tors Ĥb; see Sec. V.� A positive operator P has a positive
square root, and hence it can be always be written in the
form

P = Q†Q �3�

by setting Q=Q† equal to this square root. Conversely, any
operator P of the form �3� is necessarily positive, even in

cases in which Q is a map of H to another Hilbert space H�,
in which case Q† maps from H� back to H.

The diagram representing the right side of �3� is formed
by a contraction of the diagram for Q with that of its adjoint,
Fig. 4�b�, and exhibits a characteristic symmetry which
is often useful for visually identifying positive operators:
reflection across a particular plane changes closed to open
nodes and vice versa, reverses the directions of all arrows,
and applies a superscript † to all symbols. Part �c� of
the figure shows how the well-known characterization of a
positive operator by the condition that ���P��� be positive
finds a natural expression in diagrammatic terms when P is
of the form �3�. Diagrams corresponding to the reduced
density operators

�a = Trb��������, �b = Tra�������� �4�

of an entangled ket ����Hab are shown in �d�. Finally, a
more complicated example is given in �e�, where the struc-
ture of the diagram shows that R is a positive operator on
Lba, i.e., as a map of the linear space of Ha-to-Hb maps onto
itself. �Think of R as “operating” through contraction of the
left pair of nodes with something in Lba in order to produce
something else in this space, corresponding to the right pair
of nodes.� The symmetry which shows it to be positive is
reflection about a line bisecting the c, d, and e lines; note that
not all of the arrows need go in the same direction. �One may

FIG. 3. Parts �a�–�d� are examples of matrix elements of differ-
ent objects, together with the corresponding Dirac notation; �e� is
the diagrammatic form of I as a sum of dyads.

FIG. 4. �a� The two objects are adjoints of each other. �b� A
positive operator can be formed by contraction of an object with its
adjoint. �c� Diagram symmetry illustrates positivity criterion for P.
�d� Reduced density operators for a bipartite ket. �e� Positivity of R
follows from symmetry of diagram.
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also think of R as a “top-to-bottom” map of Ĥa to Ĥb. As
such it is not a positive operator, since the domain and range
are different, though it is, as will be discussed in Sec. V, a
completely positive superoperator.�

E. Transpose, rank, inverse

Let �aj�� be an orthonormal basis for the space Ha, and
on the tensor product Ha � Ha of Ha with itself define the
transposer A and its adjoint A† as a fully entangled ket and
bra,

�A� = 	
j

�aj� � �aj�, �A� = 	
j

�aj� � �aj� , �5�

with normalization

�A�A� = da. �6�

�Readers who prefer to distinguish the two copies of Ha may
think of A as defined on Ha � Ha�, change the second aj to
aj� in each of the expressions in �5�, and make appropriate
modifications in Fig. 5.�

Figure 5�a� shows that A† is the inverse of A, which
makes �A� the analog of a unitary map. Parts �b�–�d� show
how a transposer can be used to convert open to closed nodes
and vice versa. In part �b� the transposer applied to a ket �
yields a bra A†� whose row vector in the basis �aj�� is the

transpose, in the usual sense of that term �without complex
conjugation�, of the column vector corresponding to the ket
in this same basis. The transpose of an operator P, part �c�,
requires the use of both A and A†, and the result can be
denoted A†PA, following the rule given in Sec. II C. The
conventional notation PT is more compact, but carries less
information, since it does not show the basis dependence of
the resulting operator.

Part �d� of the figure shows how a transposer can change
an entangled ket ��Hab into a map A†��Lba. Although
such a change is not ordinarily called a “transpose,” the term
�or, if one prefers, “generalized transpose”� seems appropri-
ate. In Dirac notation it takes a particularly simple form if,
along with the orthonormal basis �aj�� defining A, one
introduces a basis �bk�� for Hb and expands both � and
M =A†� in these bases:

��� = 	
jk

� jk�aj� � �bk�, M = �A��� = 	
jk

� jk�bk��aj� .

�7�

Note that the matrix � jk is the same in both expressions; all
the transpose does is change �aj� to �aj�. Also note that in the
case da=db, if ��� is a fully entangled ket normalized so that
�� ���=da, M is a unitary map, and vice versa.

The rank Rn�M� of the map M in �7� can be defined as the
rank of the matrix � jk �the dimension of the space spanned
by its columns�. This definition depends only on M and not
on the choice of bases, because the rank of a matrix is left
unchanged upon left and right multiplication by nonsingular
square matrices: see p. 13 in �5�. The rank of ��� can be
defined in exactly the same way, and is often called the
Schmidt rank, which we sometimes denote by �, because it
is the number of positive Schmidt coefficients in the diagonal
expansion

��� = 	
j

� j�āj� � �b̄j�, � j 	 0, �8�

obtained using appropriate orthonormal bases �āj�� and

�b̄j��. These Schmidt coefficients are none other than the
singular values of the map M.

Continuing the list of useful parallels between maps
and entangled kets, if the Schmidt rank � of ��� is equal to
da=db, one can define its inverse using the formula

���−1�†� = 	
jk


kj�aj� � �bk� = 	
j

� j
−1�āj� � �b̄j� , �9�

where 
 is the inverse of the � matrix in �7�: 	k� jk
kl=� jl.
As indicated in the diagram in Fig. 5�e�, �−1 is both the left
and right inverses of �. �The dagger on the left side of �9� is
absent in the diagram; see the remarks accompanying Fig. 1.�
Of course, � is the inverse of �−1. Although the first expres-
sion in �9� defines the inverse using a particular basis, it is
easy to show that the resulting bra does not depend on the
choice of basis. In addition, it is worth noting that the inverse
of �† is the same as the adjoint of �−1, so the order of minus
one and dagger in �−1† does not matter. When the rank of
��� is smaller than da, or if da�db, one can define a “gen-

FIG. 5. �a� The adjoint of a transposer is its inverse. �b�–�d�
Transposers change open to closed nodes, or vice versa. �e� Inverse
of an entangled ket.
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eralized inverse” by only retaining the terms with � j �0 on
the right side of �9�. See the discussion, for maps, in �5�, p.
421. In this paper we do not need such a generalized inverse,
so will not discuss it further.

In the case of an object with three or more nodes, such as
Y in Fig. 3, the discussion of rank becomes more compli-
cated, because Y can be turned into a map from one space
to another in several different ways. The most natural inter-
pretation of Y, given that the c node is closed and the a
and b nodes are open, is as a map Yab;c from Hc to Hab, and
as such it has a rank which can be written as Rn�Yab;c�. But
one can just as well regard Y as a map Ybc;a from Ha

† to
HbHc

†=Lbc, and as such it will have a rank Rn�Ybc;a� differ-
ent �in general� from Rn�Yab;c�. Or, equivalently, Rn�Ybc;a� is
the rank of Y�=A†YC, obtained by applying transposers to
the a and c nodes of Y, when it is regarded as a map Ybc;a�
from Ha to Hbc. One way to think about these different
possibilities is to write Y in the Dirac form

Y = 	
j,k,l


�aj,bk�Y�cl���aj� � �bk� � �cl� . �10�

using orthonormal bases �aj��, �bk��, �cl��. If one regards
�aj ,bk�Y�cl� as a matrix with columns labeled by l and rows
by the double label �j ,k�, its rank will be Rn�Yab;c�, whereas
to obtain Rn�Ybc;a� consider it a matrix with columns labeled
by j and rows by the double label �k , l�. There is no reason to
expect these two ranks to be equal, and of course there is a
third possibility Rn�Yac;b�, which could be different from the
other two. Note that our subscript notation simply divides the
collection of nodes into two sets, with the object understood
as a map from the space labeled by the second set to that
labeled by the first. Thus Yab;c and Yba;c denote the same
map. In addition, since transposing a matrix does not change
its rank, Rn�Yab;c� is the same as Rn�Yc;ab�, even though the
maps are distinct. Consequently there are only three possible
ranks associated with the object Y, and it makes no differ-
ence if one changes open nodes to closed nodes or vice versa
using appropriate transposers. Atemporal diagrams help one
to see that a single object can be associated with several
different ranks, but they do not in and of themselves place
any constraints on these different possibilities.

F. The virtue of being careless

The system of diagrams introduced above is precise in the
sense that the �tensor product� Hilbert space identified with
an object is specified by the types, open or closed, of nodes
in its diagram, along with the labels attached to them, with
the space H† of bras carefully distinguished from the space
H of kets, as in Dirac notation. One can convert an open to
a closed node or vice versa by introducing a transposer, Sec.
II E, but in this case the symbol for the transposer becomes
part of the diagram, as in Figs. 5�b�–5�d�, and indicates pre-
cisely which basis was employed for the transposition, a con-
cept that is not basis independent.

While such precision is often valuable, there are circum-
stances, especially when one is carrying out a first, informal
analysis of a problem, when it is useful to ignore the differ-

ence between open and closed nodes, or the direction of
arrows on contractions lines, and treat two diagrams that
differ only in these respects as “essentially the same.” To put
the matter in a different way, there are analogies between two
diagrams which are “identical” in this loose sense, analogies
which are worth exploring, because they might produce help-
ful insights.

For example, if � in Fig. 5�d� is a fully entangled ket on
two Hilbert spaces of the same dimension, the corresponding
map A†� is a unitary map, up to multiplication by a con-
stant. Thus “fully entangled” and “unitary” are “essentially
the same.” This helps one understand, at an intuitive level,
the essence of teleportation as discussed below in Sec. III,
using the diagrams in Fig. 7 below, in which �c� and �d� both
represent unitary channels. Another example is Schmidt rank
�see the discussion in connection with �8��, which is the or-
dinary rank of a map which is “essentially the same” as an
entangled ket. The Kraus rank discussed below in Sec. V A
can in a similar way be identified with the ordinary rank of
the “cross operator” V in Fig. 10�b� below, which maps the f
node part into the a, b node part, without worrying about
whether these nodes are open or closed; see the discussion of
rank in Sec. II E. A fourth example, not illustrated in the
present paper, is that of letting time flow backwards in a
quantum circuit.

In some cases one can easily identify the formal equiva-
lence that makes such diagrams “essentially the same.” Thus
a fully entangled state has equal Schmidt coefficients, and
these correspond to the equal singular values that character-
ize a scalar multiple of a unitary operator. However, experi-
ence suggests that it is generally more fruitful to think about
the analogy, and ask whether it provides some useful insight,
than it is to work out the formal correspondence.

III. INTERCHANGE: TELEPORTATION AND DENSE
CODING

A. Interchange

As a first example of how a quantum circuit can be rep-
resented by an atemporal diagram, consider the circuit equa-
tion in Fig. 6�a�: Given an entangled state ��� on Ha � Hb,
with db=da=d and an operator A on Ha, find, if possible, an
operator B on Hb such that

�Ia � B���� = �A � Ib���� . �11�

Part �b� of the figure shows the equation reduced to atempo-
ral diagrams, and part �c� shows a strategy for solving it if
��� is of rank d, and thus has an inverse: insert the identity in
the form �−1� between the a node and A on the right side of
�b�, and it is evident that the final set of three objects in �c�
represent the solution, as written in diagrammatic form in
�d�. It is not very easy to interpret the Dirac equivalent

B = ���−1�†�A��� �12�

apart from saying it means the same thing as �d� in the figure.
When the rank of ��� is less than d, this strategy will not

work, and in general �11� has no solution. However, a
weaker version, Fig. 6�e�, where the problem is to find B and
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two unitary operators U and V such that, for a given ��� and
A,

�U � V��Ia � B���� = �A � Ib���� , �13�

can always be solved, even when one imposes the additional
condition that B be unitarily equivalent to A, in the sense that
there is a unitary map S from Ha to Hb such that B=SAS†.
The strategy �see Appendix A of �6�� is to choose orthonor-
mal bases in which ��� has Schmidt form �8�, and define

B = 	
jk

�āj�A�āk� · �b̄j��b̄k� , �14�

which is obviously unitarily equivalent to A in the sense just

defined: S=	 j � b̄j��āj�. Given this definition for B, it is evi-
dent that the two entangled kets

��A� = �A � Ib����, ��B� = �Ia � B���� �15�

are mapped into each other by interchanging the two spaces
Ha and Hb, a symmetry which guarantees that they possess
the same set of coefficients when each is expanded in
Schmidt form, relative to appropriate Schmidt bases. The
“local unitaries” U and V are then those that map the
Schmidt bases for ��B� to those of ��A�.

The corresponding atemporal diagram in Fig. 6�f�, while
not used in deriving this result, immediately suggests an ex-
tension, especially with arrows omitted �the reader can easily
supply them�: Interchanging two objects A and � is possible
at a cost of unitary equivalence and introducing additional
unitaries. The objects could be two operators, or an en-
tangled ket and an entangled bra.

B. Teleportation and dense coding

The standard teleportation arrangement shown in Fig. 7�a�
employs three Hilbert spaces Ha, Hb, and Hc, of identical
dimension d. An initial fully entangled state ��� on Hab, is
used to teleport a state �c� of Hc, by means of a measurement
on Hac in a basis � j�� of fully entangled states. The out-
come j is used to select one of a set Uk� of d2 unitary
operators to apply to Hb in order to yield a final state equal
to V�c�, where V is some unitary map, fixed and independent
of j, from Hc to Ha. One usually thinks of V as the identity
operator, assuming that an appropriate correspondence has
been set up between these two Hilbert spaces; for a careful
discussion see Sec. V of �7�.

In constructing an atemporal diagram to represent telepor-
tation in the form just discussed, we first ignore the “classical
communication” step indicated by the dashed curve in part
�a� of the figure—we shall return to this aspect later—and
interpret the measurement outcome as indicating the prior
state of the quantum system, as indicated in the circuit in part
�b�. �Although not yet found in elementary textbooks, this is
a perfectly consistent way of viewing measurement out-
comes; see Chap. 17 of �8�.� If we expand the initial state

��� = �c� � ��� = 	
j

� j� � Mj�c� , �16�

in the basis � j��, the Kraus operator Mj can be formally
expressed in Dirac notation as

FIG. 6. The circuit equation �a�, or its atemporal equivalent �b�,
for the unknown operator B can be solved as shown in �c� and �d� if
� has an inverse. Solving �e� or �f� for B and the unitaries U and V
is discussed in the text.

FIG. 7. Circuit diagrams �a� and �b� for teleportation, along with
atemporal diagrams �c� representing Mj, and �d� the effective quan-
tum channel from Hc to Hb. The dense coding quantum circuit �e�
leads to the atemporal diagram �f�.
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Mj = � j��� , �17�

or perhaps with greater clarity using the atemporal diagram
of Fig. 7�c�. When the final unitary Uk is added to the dia-
gram, we arrive at part �d�, which provides an atemporal
representation of the quantum channel starting at the initial c
and ending at the final b of parts �a� or �b� of the figure.

In interpreting the atemporal diagram in Fig. 7�c� it is
helpful to adopt the normalization

����� = � j� j� = d , �18�

in which case Mj will be a unitary operator. That is, there is
a unitary map from the c input to the b line preceding Uk in
part �a� of the figure, a map which depends on the measure-
ment outcome j. Note that one does not have to think of node
b in �c� as referring to a time following that at which the
measurement on Hac occurs; the channel, in the sense of
statistical correlations within an appropriate framework of
histories, is present both at earlier and later times. One ad-
vantage of an atemporal diagram is that one reaches this
conclusion without becoming entangled in misleading no-
tions like “wave function collapse.”

Once the unitary nature of �c� has been understood, the
role of the final unitary in �d� becomes obvious: in order to
obtain a perfect quantum channel corresponding to the iden-
tity map, the final unitary should undo the action of the pre-
ceding unitary, so that in the case of outcome j, one should
employ

Uj = Mj
†. �19�

This means, of course, using a different unitary for each
measurement outcome j, and that is why it is essential in
actual teleportation protocols that its value be transmitted
from the point where the measurement occurs to the point
where the unitary correction will occur. While this “classical
communication” plays a critical role in the protocol, it does
not play an essential role in understanding what is going on
in quantum mechanical terms. The virtue of the atemporal
diagram is that it focuses attention on the latter, which is to
say the quantum correlations whose correct calculation re-
quires the consistent use of quantum theory. Once these cor-
relations are taken care of, other aspects of the situation can
be understood through straightforward application of ideas
from classical physics.

The quantum circuit for dense coding, Fig. 7�e�, has been
drawn in a way to emphasize the similarity with teleporta-
tion. Initially there is a fully entangled state ��� on Hab, and
one of an appropriate collection of d2 unitaries is applied to
the Hb part, following which a measurement is carried out in
a fully entangled basis � j��. �The line connecting Uk to  j

is drawn curved in �e� as a reminder that one typically thinks
of this process as transmitting information from one physical
location to another, but this is obviously not essential for
understanding the quantum physics of the situation.� Upon
assuming, as before, that the measurement outcome repre-
sents the prior quantum state, one arrives at the atemporal
diagram in �f�. �The reader may want to insert the obvious
analog of part �b� of the figure as an intermediate step.�

This closed loop, as it contains no nodes, is a complex
number whose absolute square can be interpreted as a prob-
ability up to a suitable normalization constant. If, as before,
the normalization �18� is adopted, so that  j

†� is a unitary
operator, dividing by d2 will yield the conditional probability
of measurement outcome j given the use of the unitary Uk.
The conventional choice which makes the loop equal to 0 for
j�k is obtained using �19�. Since this is an atemporal dia-
gram, one could just as well have drawn �f� with  j

† to the
left of �, whence it is evident that �f� is obtained from �d� by
“closing the loop.” Whereas the close connection of telepor-
tation with dense coding has been pointed out in the past �see
in particular �9��, the diagrammatic approach provides a par-
ticularly simple way of seeing the relationship.

IV. UNAMBIGUOUS (CONCLUSIVE) TELEPORTATION

A. Introduction

If the state ��� in Fig. 7 is an entangled state of Schmidt
rank d=da=db=dc but not fully entangled, ordinary telepor-
tation of some arbitrary state is not possible, but a modified
protocol, which we call unambiguous teleportation, will suc-
ceed with a probability less than 1. In one version, Alice
carries out a POVM measurement on the initial state ��� in
�16� using a collection of positive operators Gj, j=0,1 , . . .�
on Hca which sum to the identity. If the outcome corresponds
to Gj for some j	1, the conclusive case, Bob applies an
appropriate unitary correction Uj, and the initial state �c� on
Hc has been successfully teleported to Hb. However, if it
corresponds to G0, the inconclusive case, the attempted tele-
portation has failed in the sense that in general there is no
way Bob can apply a correction which will ensure the correct
output. In a different version, Alice measures ��� in a fully
entangled basis of Hca, as in the standard protocol, but Bob
upon learning the value of j attempts to carry out a nonuni-
tary correction Lj, which, if successful, completes the tele-
portation. The two can be combined: some general POVM
by Alice and a nonunitary correction by Bob when he learns
the outcome, as discussed below in Sec. IV C

The adjective “unambiguous” refers to the fact that at
least one of the parties carrying out the process, who can
always inform the other, is aware of whether the protocol
succeeds �conclusive case� or fails �inconclusive case�.
While the term “conclusive teleportation” is often employed,
we think “unambiguous” has a somewhat clearer meaning.
Also, its use in this context agrees with the closely related
idea of unambiguous discrimination—see, for example,
�10�—and it is more precise than the term “conclusive” as
used at present by Mor �the originator of “conclusive tele-
portation”� and his associates: see Sec. IV E. �Other names
are sometimes employed, e.g., probabilistic teleportation.�
For any protocol of this type, let qj be the probability that
Alice obtains outcome j and rj for j	1 the probability that
Bob’s correction will succeed—if the latter is a unitary op-
eration, rj =1. Then the overall probability of success is

ps = 	
j	1

pj = 	
j	1

qjrj , �20�

with pj =qjrj the probability that Alice’s outcome is j and
Bob’s correction is successful.
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What might at first seem like a completely different strat-
egy is for Alice to carry out unambiguous entanglement con-
centration on ��� to obtain a fully entangled state �� f�. If the
process is successful, teleportation can then be carried out
using the standard protocol, employing �� f� as the entangled
resource. The optimum probability for successful unambigu-
ous entanglement concentration is pc=d�m

2 , Sec. IV B, where
�m is the minimum Schmidt coefficient in �8�, and conse-
quently it is always possible to carry out unambiguous tele-
portation using a two-step process with this probability of
overall success. On the other hand, pc is also an upper bound
on the probability of success of any unambiguous teleporta-
tion protocol for, as pointed out in p. 90 of �11�, Alice can
generate a fully entangled pair in her laboratory and teleport
half of it to Bob, thus effecting unambiguous entanglement
concentration by means of unambiguous teleportation. Of
course, the unambiguous entanglement concentration could
equally well be carried out by Bob, with the same probability
of success.

Based on this idea one can construct various protocols of
the type mentioned earlier that have the maximum probabil-
ity of success allowed by the partially entangled state used as
a resource. Some of these are considered in Sec. IV D fol-
lowing an analysis in Sec. IV C of the general case of an
arbitrary POVM by Alice leading to an arbitrary �in general
nonunitary� correction by Bob. We have found this analysis
helpful in, among other things, understanding why it is that
in the case of unambiguous teleportation, just as in regular
teleportation, Alice and Bob learn nothing about the nature
of the teleported state, despite the fact that in a general pro-
tocol of the sort described in Sec. IV C, Alice can acquire
statistical information about the initial state.

While our results could no doubt be obtained without us-
ing atemporal diagrams, we think they add both motivation
and clarity to arguments which are more difficult to under-
stand when expressed in purely algebraic form. Our ap-
proach serves to provide a unified perspective on a number
of different results in the literature, as discussed in Sec. IV E.

B. Entanglement concentration

The essence of ordinary teleportation resides in the obser-
vation that the operator Mj in �17�, with diagram in Fig. 7�c�,
is for every j a multiple of a unitary operator. This is no
longer the case if ��� is not fully entangled, but if it has a
Schmidt rank of d, and thus an inverse in the sense discussed
in Sec. II E, unitarity can be restored by inserting a suitable
operator K in the a link in part �c� of Fig. 7, provided K���
is a constant � times a fully entangled state �� f�, as indicated
in Fig. 8�a�. The explicit form of K can be obtained using the
inverse �−1 of �, as shown in Fig. 8�b�. In particular, it is
convenient to assume that

�� f� = �1/�d�	
j

�āj� � �b̄j� , �21�

using the same bases as in �8�, in which case

K = ��/�d�	
j

�1/� j��āj��āj� . �22�

Unambiguous entanglement concentration means that Al-
ice carries out the operation K in an unambiguous manner,
using an apparatus which clearly indicates success or failure;
e.g., think of a green or red light going on. Further details
and some subtleties are considered in Appendix A. The
maximum probability of success �the green light going on�,
which is also achievable, is given by

pc = ���K†K��� = d�m
2 �23�

when �=�d�m is chosen so that the maximum eigenvalue of
K†K equal to 1; here �m is the minimum of the coefficients in
the Schmidt expansion �8� for ���. �Note that in the special
case in which ��� is fully entangled, �m=1/�d and the prob-
ability of success is pc=1, as expected.� Needless to say, the
same thing can be achieved by placing �−1 in the b rather
than in the a link of Fig. 7�c�; i.e., Bob rather than Alice can
carry out unambiguous entanglement concentration, with ex-
actly the same probability of success.

C. General teleportation protocol

Consider a protocol in which Alice carries out a POVM
Gj�, and when Bob is informed of outcome j he carries out
an unambiguous operation Lj with a probability of success
that may be less than 1. We shall assume that for every
j	1, Gj is proportional to a projector onto a pure state.
There is no harm in making this assumption for a protocol
which achieves the maximum possible probability of suc-
cess, since any positive operator in a POVM can always be
refined without reducing the amount of information available
to Alice, and thus to Bob. Hence we write

Gj = �� j��� j� for j 	 1, G0 = I − 	
j	1

Gj . �24�

If Bob’s operation Lj is successful, the net result will be a
unitary map V from Hc to Ha as indicated in Fig. 9�a�, up to
a constant of proportionality designated by �pj. Note that V
must be independent of j apart from a possible �uninterest-
ing� phase. Part �b� of Fig. 9 is the diagrammatic solution to
the equation for �� j� in �a�, and from it one can construct the
diagram for Gj in �c�. The probability that Alice will obtain
outcome j and Bob will succeed in carrying out the corre-
sponding operation Lj is given by

���Lj
†GjLj��� = ���Lj

†�� j��� j�Lj��� = ��� j�Lj����2 = pj ,

�25�

assuming an initial normalized state �16�. Here �� j�Lj���
�Hb is the ket indicated in Fig. 9�d�, and the right side of
this figure justifies the final equality in �25�, since �c� is nor-
malized and V is unitary.

For the POVM to be physically realizable it must be the
case that

FIG. 8. Definition of operator K using �−1.
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j	1

Gj � Ic � Ia, �26�

which implies that

d · Ia 	 	
j

Trc�Gj� 	 
	
j	1

pj��−1�−1†, �27�

where the second inequality, Fig. 9�e�, comes about from
the fact that the largest eigenvalue of the positive operator
Lj

†Lj cannot exceed 1 �Appendix A�, so the smallest eigen-
value of its inverse Lj

−1Lj
−1† is not less than 1, and therefore

Lj
−1Lj

−1†	 Ib. As the largest eigenvalue of the operator
�−1�−1† is 1 /�m

2 , �27� implies that

ps = 	
j	1

pj � d�m
2 = pc, �28�

in agreement with the argument given in Sec. IV A.

D. Optimum strategies

Since optimal unambiguous entanglement concentration
followed by a standard teleportation protocol achieves the
optimal probability of success, an obvious way to produce an
optimal strategy of the form described in Sec. IV C is to
produce Alice’s POVM by combining the operator K for en-
tanglement concentration with the fully entangled basis
� j�� appropriate for standard teleportation, setting

�� j� = �Ic � K†�� j� . �29�

in �24�. Using the fact that 	 j� j�� j� is the identity on Hac,
one can check that

	
j	1

Gj = 	
j	1

�� j��� j� = Ic � K†K � Ic � Ia, �30�

as the largest eigenvalue of K†K is 1, so the POVM, with G0
given by �24�, is physically realizable. Bob, on the other
hand, carries out unitary corrections which always succeed,
as in standard teleportation. By combining �29�, �22� with
�=�d�m, �8� and �25�, with Lj and Lj

† omitted from the last,
one finds that pj =�m

2 /d, independent of the initial �c� and
independent of j, so �28� is an equality, as expected.

Obviously, Bob rather than Alice could carry out the en-
tanglement concentration which takes ��� to �� f� using an
operator L which is the analog of K in �22�, and, if success-
ful, utilize the outcome of Alice’s measurements in the fully
entangled basis � j�� to apply a unitary correction Uj in case
j to his half of �� f�. His two steps can be combined into one
by defining an operation

Lj = UjL . �31�

Thus in this protocol Alice’s POVM is the standard projec-
tive measurement in a fully entangled basis, whereas Bob’s
correction Lj will typically not be unitary, and will some-
times fail. Because the shared resource is only partially en-
tangled, the probability that Alice will obtain outcome j de-
pends in general on the state �c� she is trying to teleport,
contrary to what one might have expected from the general
rule �see, for example, �7�� that teleportation is only possible
when neither Alice nor Bob learns anything about the state
being teleported. However, the combined probability pj that
Alice obtains j and Bob succeeds in carrying out Lj is �m

2 /d
independent of �c�, in agreement with the general rule.
It is also independent of j, so �28� is again an equality, as
expected.

One can design other optimum procedures by imagining
the entanglement concentration task shared by Alice and
Bob; e.g., each could do half of it based upon

��−1/2� = 	
j

� j
−1/2�āj� � �b̄j� . �32�

After that they carry out measurements and unitary correc-
tions as in the standard protocol. Upon combining Alice’s
concentration and measurement steps in a single POVM, and
Bob’s concentration and unitary correction steps in nonuni-
tary operators as in �31�, one arrives at a combined protocol
with, once again, the optimal probability of success. There
may well be other possibilities, but it seems clear that in one
way or another they will have to employ the inverse, �9�, of
the partially entangled ket ���, and can be understood in
terms of how they achieve this.

E. Literature

Unambiguous entanglement concentration is our term for
the “Procrustean method” introduced by Bennett et al. �12�.
It is often referred to as distillation or entanglement concen-

FIG. 9. Diagrams associated with unambiguous teleportation us-
ing a POVM followed by a nonunitary correction.
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tration of a single copy, in contrast to schemes �again see
�12��, where operations are carried out on multiple indepen-
dent systems in the same entangled state. That the probability
of success in �23� is the maximum possible using local op-
erations and classical communication was shown by Vidal
�13� and by Lo and Popescu �6�.

The notion of unambiguous teleportation was introduced
by Mor in 1996 in unpublished work �14� for d=2, using a
protocol in which Alice carries out a POVM and Bob a uni-
tary correction. For a complete account including further de-
velopments �15�, see �11�. During this development the term
conclusive teleportation acquired a broader sense, and in �11�
it is “perfect conclusive teleportation” that corresponds to
our “unambiguous teleportation.” Among other things, these
authors obtained the optimum probability of success, �28�
with d=2, and pointed out the close connection between un-
ambiguous teleportation and entanglement concentration, as
noted above in Sec. IV A. Their thinking of a POVM carried
out on an entangled state as producing some sort of a mys-
terious choice-at-a-distance �telePOVM�, a perspective de-
rived from Hughston et al. �16�, employs vivid imagery that
is not actually necessary for a sober discussion of teleporta-
tion in terms of local quantum mechanics when conditional
probabilities are used in a consistent way; see �17�, and
Chaps. 23 and 24 of �8�.

Nonunitary corrections by Bob in the d=2 case, as well as
modifications of Alice’s measurement scheme relative to the
standard teleportation protocol, were considered by Li et al.
�18� and by Bandyopadhyay �19�. Both articles contain ex-
plicit protocols which achieve the optimum probability of
success. By contrast, Agrawal and Pati in �20,21� �the two
papers are quite similar� restricted Alice to projective mea-
surements and Bob to unitary corrections, so their protocol
does not have the optimum probability of success. However,
they made the interesting observation that the measurement
basis states used by Alice must have the same entanglement
as that of the shared resource. From our perspective this
arises from the fact that a d=2 bipartite ket and its inverse
have the same entanglement, since they have the same
Schmidt coefficients when normalized in the same way.
However, this is no longer true in higher dimensions d	3,
where the entanglement of the inverse is in general not the
same as that of the original ket. �The term “entanglement
matching” occurs in �18�, but its significance is not clear.�

There have been several studies of unambiguous telepor-
tation in the case of general d=da=db=dc, the one we have
been considering. Son et al. �22� and Roa et al. �23� both
employ protocols in which Alice uses a POVM and Bob
applies a unitary correction. In both cases the probability of
success is optimal in the sense that �28� is an equality. How-
ever, their arguments that they have optimal procedures are
not easy to follow, and in �23� the aim seems to be that of
maximizing the average fidelity �over all pure input states�
of the imperfect teleportation scheme, rather than maximiz-
ing the probability ps �in our notation� of conclusive telepor-
tation with unit fidelity.

The approach of Kurucz and colleagues �24,25� is similar
to ours in focusing attention on the inverse of the partially
entangled resource state. They construct the inverse by first
using the entangled state ��� �in our notation� to produce an

antilinear map from Ha to Hb, which then has an inverse of
the usual sort. They use this to place conditions on Alice’s
measurement, again converted to an antilinear map, so that it
will result in a unitary channel from Hc to Hb, with Bob
carrying out a final unitary correction. They consider general
d, but do not address the question of a measurement strategy
that achieves the maximum overall probability of success,
unlike the work cited in the previous paragraph. The use of
antilinear maps, which were also discussed in connection
with teleportation by Uhlmann �26,27�, has a certain el-
egance in that these maps are basis independent, unlike their
linear counterparts, such as the one on the right side of our
Fig. 5�d�, for which a basis needs to be specified. In our own
approach the inverse of a bipartite entangled ket is also
�when it exists� a basis-independent concept, so it is not clear
to us that antilinear maps possess a significant conceptual
advantage, but we are happy to leave this to the reader’s
judgment.

Inverses may also be taken in a manner that makes ex-
plicit use of particular bases, as in the work of Li et al. �28�.
They allow a very general measurement on Alice’s part and
also a nonunitary correction by Bob, for a system of arbitrary
dimensionality, as in Sec. IV C above. However, they only
consider a single measurement by Alice, and thus do not
address the issue of optimizing unambiguous teleportation.

We have deliberately omitted referring to the substantial
literature on some closely related topics: teleportation using
a mixed state as a resource, teleportation between systems of
different dimensionality, and the average fidelity in cases
where the resource is partially entangled. It may be that
atemporal diagrams are of some use in this broader context,
but that remains to be seen.

V. NOISY QUANTUM CHANNELS

A. Channel operators

A standard model of a noisy quantum channel is shown in
Fig. 10. It begins with a unitary time-development operator T
in �a�, which maps the channel input Ha and environment He
to the channel output Hb and environment H f at a later time.
Unitarity implies that Hae and Hbf have equal dimension, but
the dimensions da and db of Ha and Hb might be different.

FIG. 10. Model for a noisy channel based on �a� the unitary map
T which induces the isometry V in �b� if the environment is initially
in a pure state �e0�. Transposing the isometry yields the channel ket
��� in �c�. A Kraus operator �d� obtained using �33�.
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�The notation used here follows that of �2�, with minor modi-
fications, to facilitate comparison.� The diagram can be
thought of as a quantum circuit to which nodes and arrows
have been added, thus converting it to the corresponding
atemporal diagram. If one assumes the environment is ini-
tially in a pure state �e0�, the appropriate diagram in part �b�
of the figure has three active nodes and represents the isom-
etry V=T�e0� mapping Ha to Hbf. Part �c� of the figure shows
the channel ket ����Habf obtained by applying a transposer
A to the a node of V. �In �2� a fully entangled state ��� was
used instead of �A�, giving the same result apart from nor-
malization.� Part �d� is the diagrammatic form for a Kraus
operator

Kl = �f l�V , �33�

an element of Lba, where �f l�� is some orthonormal basis for
H f. �One can, if one wants, think of Kl as associated with a
measurement on H f.�

The collection of Kraus operators Kl� depends, of course,
on the choice of basis �f l�� used to define them. However,
the subspace of Lba spanned by their linear combinations is
independent of this choice, and we shall refer to its dimen-
sion as the Kraus rank � of the noisy channel. This subspace
is the range of the “cross operator” obtained when V is re-
garded as a map from H f

† to Lba, from the bottom to the top
of Fig. 10�b�, written Vba;f in the notation employed in Sec.
II E. Consequently, the Kraus rank is the �ordinary� rank of
this cross operator,

� = Rn�Vba;f� � mindadb,df� , �34�

where the inequality reflects the fact that the rank of a matrix
cannot exceed the number of rows or the number of columns.

A channel is usually discussed in terms of the superopera-

tor V that maps Ĥa to Ĥb; in particular, it maps density
operators at the channel entrance to density operators at the
channel output. Two ways of writing it are

V�A� = Tra��A � I�Q� = 	
l

KlAKl
†, �35�

where Q�Ĥa � Ĥb is the transition operator, in the notation
of �2�, and the Kraus operators were defined in �33� above.
The object Q corresponds to an atemporal diagram with four
legs obtained by contracting the tensor product of V with its
adjoint V†, Fig. 11�a�. By replacing the f contraction line,
thought of as If, with 	l�f l��f l�, see Fig. 3�e�, one obtains Q in
the form shown in Fig. 11�b� as a sum of tensor products of
Kraus operators. Thus parts �a� and �b� of the figure corre-
spond to writing Q as

Q = Trf�V � V†� = 	
l

Kl � Kl
†. �36�

The meaning of these equations is probably clearest if they
are used in conjunction with the atemporal diagrams in part
�a� and �b� of Fig. 11. The way in which Q generates the
superoperator V in �35�, as a map from the left pair of nodes
to the right pair of nodes, is indicated in part �c� of this
figure; note how contraction with the operator A yields a
diagram with the open and closed b nodes signifying an op-
erator on Hb.

The dynamical operator

R = A†QA �37�

is the partial transpose of Q in the basis �aj��, �5�, and a map
of Hab onto itself. The corresponding diagram is shown in
Fig. 11�d�, where R acts from left to right and Q has been
rotated by 90° relative to its orientation in �a�. The left-to-
right reflection symmetry of the final diagram shows that R is
a positive �semidefinite� operator, of the general form WW†,
where W=VA, regarded as a map from H f

† to Hab, may be
thought of as a transposed form of the Vba;f cross operator
introduced previously. Thus the rank of W is equal to the
Kraus rank �, and since the rank of WW† is the same as that

FIG. 11. �a� Definition of the transition operator Q. �b� Equivalent expressions for Q in terms of Kraus operators. �c� Contraction with
Q yields the superoperator map V�A�; see Eq. �35�. �d� The dynamical operator R is the partial transpose of Q
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of W �see, e.g., p. 13 of �5��, the Kraus rank can also be
defined, as in �2�, to be the �ordinary� rank of the dynamical
operator R. This in turn is the rank of Q when it is regarded
as a map from Lba to Lba, i.e., from bottom to top in Fig.
11�a�.

B. Complete positivity

As is well known, the superoperator V for a quantum

channel is a completely positive map from Ĥa to Ĥb in the

following sense. Let Ĥs be the space of operators on a Hil-
bert space Hs distinct from any of those we have been con-

sidering, and define the superoperator W mapping Ĥ=Ĥa

� Ĥs to Ĥ�=Ĥb � Ĥs through

W�A � S� = V�A� � S , �38�

for any S in Ĥs; i.e., W is the tensor product of V with an

identity map on Ĥs. Then V is defined to be a completely
positive map provided any superoperator W constructed in
this manner is a positive map, in the sense that whenever P

�Ĥ is a positive �semidefinite� operator, W�P��Ĥ� is also
a positive �semidefinite� operator.

This definition is neither simple nor constructive: it pro-
vides no direct way to check whether some superoperator is
or is not completely positive. The diagram in Fig. 11�a� sug-
gests a simpler characterization. If one thinks of Q as acting
from “bottom to top,” which means as a map of Lba to itself,
the atemporal diagram has the characteristic symmetry of a
positive �definite� operator; see Sec. II D and the examples in
Fig. 4�b� and 4�e�. In fact, the positivity of this “cross opera-
tor” of the transition operator Q is a necessary and sufficient
condition that V be a completely positive map, as first
pointed out by Choi. �See theorem 2 of �29�; the reader who
finds the argument difficult to follow may wish to consult
�30�.� A diagrammatic proof of this result is given in Fig. 12.

Figure 12�a� shows that if A is a positive operator on Ha,
V�A� is a positive operator on Hb. Here A has been written in
the form N†N, see Fig. 4�b�, and one can see that the operator
on Hb which results from contraction with Q is positive,
because of the �top-to-bottom� reflection symmetry of the
diagram. The transition operator corresponding to the super-
operator W in �38� is shown in Fig. 12�b�, where the two

horizontal lines representing the identity superoperator on Ĥs
are drawn in a way which preserves the top-to-bottom reflec-
tion symmetry. Thus when W is applied to an arbitrary posi-
tive operator, shown in �c� as X†X, the result is an operator
which is positive. Note that any positive operator on Lba can
be expressed in the form of a diagram similar to that used for
Q in Fig. 11�a�, with V some object that need not be an
isometry. Thus what we have shown is that if the “cross
operator” of the transition operator defining any superopera-
tor V is positive �semidefinite�, the superoperator V itself is
completely positive, according to the standard definition
based on �38�.

The converse argument, from W in the form �38� as a
positive map to the positivity of Q as an operator on Lba,
begins in Fig. 12�d�. We have chosen Hs to be a copy of Ha

and allowed W to act on a particular operator A � A† formed
from the transposer defined in Sec. II E and its adjoint, which
by symmetry is a positive �semidefinite� operator on Ha
� Ha. Since by assumption W maps positive operators to
positive operators, the result must be a positive operator on
Hab, and thus of the form Y†Y shown on the right side of �d�.
The equation for Q in �d� is solved in �e�, and the symmetry
of the diagram on the right side �read from bottom to top�
implies that the cross operator of Q acting on Lba is positive
semidefinite. This completes the proof of equivalence.

In constructing the proof we have, incidentally, proven
that the complete positivity of V is equivalent to the positiv-
ity of the dynamical operator R=A†QA, the partial trans-
pose of the transition operator Q with respect to the ortho-
normal basis of Ha giving rise to A. While the preceding
results are not new, the diagrammatic analysis makes the
derivation particularly simple by showing that everything
hinges on properties of a single “object” Q viewed in various
different ways.

C. Channel based on mixed-state environment

For simplicity the following discussion is limited to the
case of a noisy channel in which the input and output have

FIG. 12. Argument that complete positivity of the superoperator
V corresponding to the transition operator Q is equivalent to posi-
tivity of the “cross operator” mapping Lba to itself.
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the same dimension db=da. In order to model this channel
using a unitary T applied to the system together with an
environment initially in a pure state, as in Fig. 10�b�, the
dimension de=df of the environment must be at least as great
as the Kraus rank �; see the remarks in Sec. V A. But �
cannot exceed dadb=da

2, consistent with the well-known fact
that using an environment of dimension de=da

2 and a suitable
T one can model any channel of this sort.

However, if the environment is initially in a mixed state
�e, de

2 rather than de becomes the upper bound on � �see
below following �40��, and thus one might have supposed
that any noisy channel could be modeled using an environ-
ment of dimension de=da, rather than de=da

2, by allowing it
to be initially in a mixed state. In fact this is not the case
�31�, but good criteria for distinguishing channels which can
and cannot be modeled using an environment of dimension
de�da

2 in a mixed state are not known at present. In the case
de=da=2, numerical evidence �4� indicates that � for such a
channel can only take on the values 1, 2, and 4; 3 is ex-
cluded. We shall present a simple proof of this result based
on a diagrammatic analysis which, while not resolving the
general mixed-environment channel problem, does focus at-
tention on what could be a helpful tool: properties of the
cross operator corresponding to a unitary operator on a bi-
partite system.

Figure 13�a� shows the situation we wish to consider as an
atemporal diagram drawn in a way which makes it resemble
a quantum circuit. The initial mixed state �e of the environ-
ment has been “purified” in the usual fashion by introducing
a hypothetical reference system Hg with dimension dg=de,
so that �e is the partial trace over Hg of an entangled state
�� on Heg. Thus we are back to the case considered in Fig.
10: an �enlarged� environment in an initial pure state, with a
time development operator T=U � Ig, where U is a unitary
operator acting on Hae, while the final environment Hilbert
space H f in that figure is now Hcg, with dc=de.

The Kraus rank � of this channel is the rank of the cross
operator Vba;f, �34�, and in studying what values it can take it
is helpful to represent it in the form, see Fig. 13�b�,

Vba;f = Vba;cg = Uba;ceSce;cg �39�

of a product of the cross operator �from bottom to top in the
figure� Uba;ce for the unitary U and a second �from bottom to
top� map Sce;cg corresponding to the object S defined in the

figure. In fact, Sce;cg is a tensor product of the map generated
by ��, times the identity on Hc, and thus its rank is dc=de
times the Schmidt rank � of ��. Since the rank of the matrix
product of two matrices cannot exceed that of either one,
�39� leads to the conclusion that

� � minRn�Uba;ce�,de�� �40�

in the notation of Sec. II E, where Rn�¯� stands for rank.
If �=1, meaning �� is a product state and the environment
He is initially in a pure state, �40� tells us that � cannot be
larger than de. The other extreme is �=de=dg, so that de

2

replaces de as a bound, and since Sce;cg is in this case nons-
ingular, �=Rn�Uba;ce�, as Rn�Uba;ce� cannot exceed de

2.
In the particular case in which de=da=2, a one-qubit

channel modeled using a one-qubit mixed-state environment,
there is a convenient parametrization of the two-qubit unitary
U which allows one to show that the rank of its cross opera-
tor can only take the values 1, 2, and 4; 3 is excluded. See
Sec. IV of �32�, where this result is stated, in the notation
employed there, as proposition 2. This means that � cannot
be 3, because either �=1, in which case ��2 by �40�, or
else �=2, which means the operator Sce;cg is nonsingular and
the Kraus rank is equal to that of the cross operator for U. As
noted above, the absence of �=3 was conjectured on the
basis of numerical work in �4�; so far as we know, ours is the
first analytic proof of this result.

In the case of a unitaries acting on two qutrits, de=da=3,
it has been shown �33� that there are no restrictions on
the rank of the cross operator, which can take any value
between 1 and 9, contrary to a conjecture in �32�. Studies by
one of us �34� confirm that de=da=2 is in this respect some-
what exceptional.

VI. SUMMARY AND OPEN QUESTIONS

The system of diagrams defined in Sec. II has been care-
fully constructed to make it easy to convert quantum circuits
into atemporal diagrams, as illustrated in the various ex-
amples in Figs. 6, 7, and 10. Nonetheless, it should be em-
phasized that the arrows in atemporal diagrams have an ab-
stract significance not connected with the direction of time,
and thus one need not be concerned as to whether compli-
cated diagrams, such as those in Fig. 11 with arrows pointing
in various different directions, can be given a temporal inter-
pretation. One of the principal advantages of map-state du-
ality resides precisely in the possibility of removing temporal
references. It is, for example, useful when interpreting the
diagram in Fig. 7�c� to remember that one can think of Mj as
a quantum channel from Hc to Hb without requiring that Hb
be at a time later than the one at which Alice’s measurement
takes place.

To be sure, the reader may well object that the atemporal
feature of such diagrams, however useful it may be for solv-
ing formal problems, serves to empty them of any physical
or intuitive content. In response, note that such diagrams are
best thought of as pre-probabilities in the terminology of
�8�—useful for computing probabilities once appropriate
frameworks of quantum histories have been introduced- and
not physical reality �i.e., actual quantum histories�. Wave

FIG. 13. Channel based on mixed-state environment obtained by
tracing ���� over Hg. In �b� the atemporal diagram in �a� is
redrawn in a way which helps interpreting it as a cross operator.
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functions obtained by unitary time development and used to
calculate Born probabilities are also pre-probabilities �Sec.
9.4 of �8��, and thus atemporal diagrams are no less “real”
than a variety of other tools used by quantum physicists. This
response, while formally correct, conceals an interesting
question: when can one find a framework of quantum histo-
ries in which a given atemporal diagram makes sense �i.e.,
assigns physically meaningful probabilities� in terms of a
narrative of Alice preparing something, Bob measuring
something, and the like? Alice and Bob live in a world which
is irreversible in the thermodynamic sense, which makes
preparation very different from measurement, whereas mi-
croscopic quantum theory is reversible. Connecting the two
is not an altogether trivial task, and while physicists typically
assign it to philosophers, there may be some aspects which
physicists themselves will have to disentangle in order to
attain clear ideas about quantum information.

We have given two applications of atemporal diagrams
yielding results which represent a generalization or clarifica-
tion of work in the previous literature. The first concerns
unambiguous teleportation, for which our discussion in Sec.
IV, in particular Sec. IV C, includes in a unified scheme all
the various examples and results in the previous literature for
the situation in which the three relevant Hilbert spaces have
the same dimension d. By using the notion of the inverse of
the shared entangled ket it is easy to produce a variety of
optimal protocols and understand how they are related to
each other. �The corresponding problem of unambiguous
dense coding, the topic of a different paper by some of us
�3�, turns out to be much more difficult to analyze.� Of
course, when teleportation is discussed outside the “unam-
biguous” framework by considering a mixed state as a re-
source, or allowing for transmission of states with fidelity
less than 1, the problems become more difficult, and it is not
known whether or not atemporal diagrams will aid in their
solution.

The second application, showing that the Kraus rank of a
one qubit noisy channel with one-qubit mixed-state environ-
ment cannot have Kraus rank 3, Sec. V C, while of some-
what limited interest in itself—good numerical evidence for
it was available some time ago �4�—raises interesting ques-
tions about the relationship of a noisy channel �i.e., the cor-
responding superoperator� to the “cross operator” of the
isometry V, or unitary T, used to model it, Fig. 10�b�. This is
related to, but not the same as the question of how much
entanglement can be produced by a unitary, or some more
general operation, acting on a bipartite system; see the ex-
tensive discussion in �32�. Since a unitary acting on two
qubits seems to be exceptional �33,34� the Kraus rank does
not look like it will be useful for understanding what is spe-
cial about other noisy quantum channels based on a mixed-
state environment. However, other properties of the cross
operator may be relevant. A better understanding of the con-
nection between a quantum channel and the cross operator of
the isometry, or the properties of the dynamical operator
�matrix�, remains an open question whose significance has,
we believe, been somewhat sharpened by our diagrammatic
approach, even though it did not originate there.
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APPENDIX A: PROBABILITY OF AN UNAMBIGUOUS
OPERATION

Let K be a linear map from Ha to Hb, where these are any
two Hilbert spaces. We are interested in the probability that
K can be carried out physically as an unambiguous operation
in the sense that one could, at least in principle, construct an
apparatus such that for any input state ����Ha, the output is
guaranteed to be K����Hb, provided an auxiliary system at
the end of the process has a property S indicating that the
operation has been successful.

To be more precise, suppose there is a unitary transforma-
tion T that maps Ha � Hx to Hb � Hy, where Hx and Hy are
the Hilbert spaces of the initial and final auxiliary systems
�which could be the same if da=db�. Assume the initial state
is ��� � ��0��Ha � Hx, with ��0� fixed, and that success cor-
responds to a subspace of Hy with projector S�Hy chosen
in such a way that

SV��� = K��� � ���� , �A1�

where the isometry V :Ha→Hby is defined by

V��� = T���� � ��0�� , �A2�

and �����Hy might depend on the initial ���, as suggested
by the subscript. Note that K, T, ��0�, V, and S are all re-
garded as fixed quantities characteristic of the apparatus,
whereas the initial ��� is thought of as variable, or unknown,
and the fixed apparatus must perform in such a way that �A1�
is true for any initial ���.

None of the kets in �A1� need be normalized, and K could
be replaced by cK, c any nonzero constant, without altering
the following discussion �e.g., the constant could be ab-
sorbed in �����. That is, the operation should be thought of as
mapping rays �one-dimensional subspaces� in Ha to rays in
Hb. The key point is that in the case of success the outcome,
�A1�, must be a product state; if it is entangled, the desired
result will arise with, at best, some probability less than 1.
Note also that �A1� is assumed to hold for all ��� in Ha. If
producing �the ray corresponding to� K��� for a single ��� is
all that is required, it is trivial to construct an apparatus to do
this with certainty. One can interpret success as the positive
outcome of an ideal measurement carried out on Hy to dis-
tinguish S from I−S; e.g., a green light flashes in case S and
a red light for I−S. Since we have allowed an arbitrary aux-
iliary system, there is no need to talk about POVM’s; pro-
jective measurements are sufficient. And if one uses a frame-
work in which idealized measurements indicate pre-existing
properties �Chap. 17 of �8��, there is no need to even talk
about measurements.

The linearity of the operators in �A1� and the fact that it
holds for all ��� in Ha means—set E=K and F=SV in Ap-
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pendix B—that there is a fixed ket ��̄��Hy, independent of
���, such that

SV��� = K��� � ��̄� = K̄��� � ��0� , �A3�

where the second equality introduces the normalized
quantities

��0� = ��̄�/��̄�, K̄ = ��̄�K , �A4�

with ��̄�=���̄ � �̄� the usual norm.
The probability of success given an initial normalized

state ���, ���=1, is given by the Born rule

Pr�S��� = ���V†SV��� = ���K̄†K̄��� � 1, �A5�

where the final inequality, necessarily true of a probability,
can be checked by writing Ia=V†V as a sum of the two posi-
tive operators V†SV and V†�I−S�V. As this inequality holds
for any �normalized� ���, the maximum eigenvalue of the

positive operator K̄†K̄ cannot exceed 1. Thus the probability
of success is bounded by

Pr�S��� � ���K̂†K̂��� , �A6�

where K̂ is defined as cK when c�0 chosen so that the

maximum eigenvalue of K̂†K̂ is precisely 1.
In fact, the upper bound is achievable using the following

strategy. Since I− K̂†K̂ is a positive operator, the same is true

of its positive square root L̂, and we can define an isometry

V��� = K̂��� � ��0� + L̂��� � ��1� , �A7�

using any two orthonormal states ��0� and ��1� in Hy. With

S= ��0���0�, �A3� holds with K̄= K̂, making �A6� an equality.
�Extending V to a unitary T is a straightforward exercise.�

APPENDIX B: VECTOR CONSTANT OF
PROPORTIONALITY

Let Va, Vb, and Vc be any three linear spaces—we
are interested in Hilbert spaces, but the inner product
plays no role in the following argument—and suppose that
E :Va→Vb and F :Va→Vb � Vc are two linear maps such that

F��� = �E���� � ���� �B1�

for every ��� in Va, where ���� might depend upon ���, as
indicated by the subscript.

Theorem. Equation �B1� implies that there is a fixed
vector ��̄��Vc such that

F��� = �E���� � ��̄� . �B2�

Even in the case in which Vc is one dimensional, the
collection of scalars, the result is not trivial, and it is useful
to state it as:

Corollary. If G and E are two linear maps from Va to Vb
such that

G��� = c���E��� �B3�

for all ���, where c��� is a scalar that may depend on ���,
then there is a fixed scalar c̄ such that G= c̄E.

In constructing the proof, note that if E���, and hence
F���, is zero, ���� can be anything. Thus our the task is to
show that for all nonzero E ��� the corresponding ���� does
not, in fact, depend on ���. Then if we set ��̄� equal to this
constant vector, �B2� will hold in all cases, including those in
which E ��� vanishes. Let ��0� and ��1� be any two distinct
elements of Va for which

��0� = E��0� � 0, ��1� = E��1� � 0, �B4�

and let ��0� and ��1� be the corresponding elements of Vc in
�B1�. In showing that ��1�= ��0� we shall consider three cases
that exhaust all the possibilities.

Case 1. The vectors ��0� and ��1� are linearly dependent,
say, ��1�=c��0�. Then by linearity ��1�=c��0�,
F��1�=cF��0�, and from �B1� it follows at once that
��0�= ��1�.

Case 2. The vectors ��0� and ��1� are linearly indepen-
dent, but ��0� and ��1� are linearly dependent, so that

��1� = c��0� �B5�

for some c�0. This means that E���1�−c��0��=0 and there-
fore F���1�−c��0��=0. Rewrite the second equality as

F��1� = ��1� � ��1� = cF��0� = c��0� � ��0� . �B6�

Using �B5� and ��1��0, see �B4�, we conclude that
��1�= ��0�.

Case 3. The vectors ��0� and ��1� are linearly indepen-
dent. Then use �B1�, with ����= ��2� when ���= ��0�+ ��1�,
and linearity, to obtain

F���0� + ��1�� = ���0� + ��1�� � ��2�

= ��0� � ��0� + ��1� � ��1� . �B7�

Rewrite the second equality as

��0� � ���2� − ��0�� = ��1� � ���1� − ��2�� �B8�

to make it obvious that, since the �� j� are linearly indepen-
dent, ��2�= ��0� and ��1�= ��2�, so ��1�= ��0�.

�1� K. Życzkowski and I. Bengtsson, Open Syst. Inf. Dyn. 11, 3
�2004�, eprint quant-ph/0401119.

�2� R. B. Griffiths, Phys. Rev. A 71, 042337 �2005�.
�3� S. Wu et al., Phys. Rev. A 73, 042311 �2006�.
�4� B. M. Terhal, I. L. Chuang, D. P. DiVincenzo, M. Grassl, and

J. A. Smolin, Phys. Rev. A 60, 881 �1999�.
�5� R. A. Horn and C. R. Johnson, Matrix Analysis �Cambridge

University Press, Cambridge, England, 1985�.
�6� H.-K. Lo and S. Popescu, Phys. Rev. A 63, 022301 �2001�.
�7� M. A. Nielsen and C. M. Caves, Phys. Rev. A 55, 2547

GRIFFITHS et al. PHYSICAL REVIEW A 73, 052309 �2006�

052309-16



�1997�.
�8� R. B. Griffiths, Consistent Quantum Theory �Cambridge

University Press, Cambridge, England, 2002�.
�9� R. F. Werner, J. Phys. A 34, 7081 �2001�.

�10� A. Chefles and S. M. Barnett, Phys. Lett. A 250, 223 �1998�.
�11� G. Brassard, P. Horodecki, and T. Mor, IBM J. Res. Dev. 48,

87 �2004�.
�12� C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schuma-

cher, Phys. Rev. A 53, 2046 �1996�.
�13� G. Vidal, Phys. Rev. Lett. 83, 1046 �1999�.
�14� T. Mor, e-print quant-ph/9608005.
�15� T. Mor and P. Horodecki, e-print quant-ph/9906039.
�16� L. P. Hughston, R. Jozsa, and W. K. Wootters, Phys. Lett. A

183, 14 �1993�.
�17� R. B. Griffiths, Phys. Rev. A 66, 012311 �2002�.
�18� W.-L. Li, C.-F. Li, and G.-C. Guo, Phys. Rev. A 61, 034301

�2000�.
�19� S. Bandyopadhyay, Phys. Rev. A 62, 012308 �2000�.
�20� P. Agrawal and A. K. Pati, Phys. Lett. A 305, 12 �2002�.
�21� A. K. Pati and P. Agrawal, J. Opt. B: Quantum Semiclassical

Opt. 6, S844 �2004�.

�22� W. Son, J. Lee, M. S. Kim, and Y.-J. Park, Phys. Rev. A 64,
064304 �2001�.

�23� L. Roa, A. Delgado, and I. Fuentes-Guridi, Phys. Rev. A 68,
022310 �2003�.

�24� Z. Kurucz, M. Koniorczyk, and J. Janszky, Fortschr. Phys. 49,
1019 �2001�.

�25� Z. Kurucz, M. Koniorczyk, P. Adam, and J. Janszky, J. Opt. B:
Quantum Semiclassical Opt. 5, S627 �2003�.

�26� A. Uhlmann, e-print quant-ph/0301116.
�27� A. Uhlmann, e-print quant-ph/0407244.
�28� C. Li, H.-S. Song, and Y.-X. Luo, Phys. Lett. A 297, 121

�2002�.
�29� M.-D. Choi, Linear Alg. Appl. 10, 285 �1975�.
�30� D. W. Leung, J. Math. Phys. 44, 528 �2003�.
�31� C. Zalka and E. Rieffel, J. Math. Phys. 43, 4376 �2002�.
�32� M. A. Nielsen, C. M. Dawson, J. L. Dodd, A. Gilchrist, D.

Mortimer, T. J. Osborne, M. J. Bremner, A. W. Harrow, and A.
Hines, Phys. Rev. A 67, 052301 �2003�.

�33� J. E. Tyson, J. Phys. A 36, 10101 �2003�.
�34� L. Yu �unpublished�.

ATEMPORAL DIAGRAMS FOR QUANTUM CIRCUITS PHYSICAL REVIEW A 73, 052309 �2006�

052309-17


