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Information-theoretic temporal Bell inequality and quantum computation
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An information-theoretic temporal Bell inequality is formulated to contrast classical and quantum compu-
tations. Any classical algorithm satisfies the inequality, while quantum ones can violate it. Therefore, the
violation of the inequality is an immediate consequence of the quantumness in the computation. Furthermore,
this approach suggests a notion of temporal nonlocality in quantum computation.
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I. INTRODUCTION

Separation between classical and quantum phenomena
plays a crucial role in understanding the weirdness of quan-
tum physics and has recently been extensively investigated,
especially in the context of quantum information science.
One way of drawing a rigid distinction between them is to
show the violation of the Bell inequality �1�. In this paper,
we develop a Bell-type inequality that distinguishes between
classical and quantum computations. Here, in order to allow
arguments based on conditional entropy between measure-
ment outcomes of two different observables, we employ the
information-theoretic Bell inequalities formulated by Braun-
stein and Caves �2,3�. Furthermore, instead of discussing
correlations between observables of distantly located physi-
cal systems, we focus on one and the same physical system
and analyze correlations between measurement outcomes at
different times as in the argument on the temporal Bell in-
equality initiated by Leggett and Garg �4�.

The information-theoretic temporal Bell inequality is for-
mulated for classical algorithms. It is satisfied by any classi-
cal algorithm but can be violated by quantum ones. As an
example to show the violation of the inequality, we discuss
the so-called “database” search problem, which is formally
stated as follows: Given a black box �oracle� that calculates
the function F of x� �0, . . . ,2n−1� such that, for unknown s,

F�x� = �0, x � s

1, x = s ,
�

find the unknown number s by asking the oracle as few times
as possible. Note that we do not assume any structure within
the black box, and thus all we can do is just input an n-bit
number and obtain an output. �Tricks such as requesting
some portion of n bits, e.g., whether the first bit of the n bits
is 0 or 1, are not allowed in the present setting.� It is well-
known that it takes O�2n� oracle queries in classical algo-
rithms to solve the problem, while it requires only O�	2n�
queries in Grover’s algorithm for quantum computation �5�.
It is shown that the information-theoretic temporal Bell in-
equality is violated in Grover’s algorithm.
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Bell-type inequalities are conventionally invoked to find
out whether some profound physical principle such as local
realism �1� or macroscopic realism �4� holds in quantum
theory. However, the information-theoretic temporal Bell in-
equality is proposed as just one way of discriminating be-
tween classical and quantum computations. It is not intended
here to try to refute nor confirm any physical principle.

Another motivation behind this work is to advance our
understanding of the role of temporal correlations in quan-
tum information processing. Temporal correlations in quan-
tum phenomena have been studied in the foundations of
quantum theory from the viewpoint of Bell-type inequalities
since the original proposal of the Leggett-Garg inequality
�4,6�. In the context of information processing, it was re-
phrased quite recently from a slightly different perspective
�7,8�. The present approach is developed in the belief that, in
some cases, the power of quantum information processing
may also lie in temporal correlations of a truly quantum na-
ture as well as in spatial correlations due to entanglement.

An information-theoretic aspect of the “database” search
problem has already been studied in �9�, where the maximum
amount of information obtainable from a single oracle query
is analyzed. The present scenario, on the other hand, mainly
focuses on the entire process of the algorithms and thus
rather discusses collective behavior of many successive
oracle queries in terms of information-theoretic quantities.

This paper is organized as follows. First, the information-
theoretic Bell inequalities derived in �2� are briefly revisited
in Sec. II. Next, we move to the formulation of an
information-theoretic temporal Bell inequality in Sec. III.
Then, Sec. IV gives a proof of the violation of the inequality
in quantum computation. In Sec. V, we discuss some impli-
cations of the inequality, especially a notion of temporal non-
locality suggested by the violation of the inequality, and fi-
nally summarize the paper.

II. INFORMATION-THEORETIC BELL
INEQUALITIES REVISITED

From a mathematical point of view, the existence of a
valid joint probability distribution of the measurement out-

comes of all relevant observables is essential to Bell
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inequalities1; any classical theory can assign definite values
to all observables irrespective of measurement processes in
principle and any marginal probability distribution must be
consistent with the entire joint probability distribution, while
this is not generally the case in quantum theory. The
information-theoretic version of Bell inequalities is a para-
phrase of this fact in terms of Shannon entropy �10�, which is
defined as H�X�=−
xp�x�log2p�x� for an observable X with
�p�x�� being the probability distribution of measurement out-
comes x. Since various inequalities between entropies in in-
formation theory are derived for valid joint probability dis-
tributions, the inequalities might not be satisfied for invalid
joint probability distributions generated in quantum theory.
This is the crux of the information-theoretic Bell inequalities.
In fact, they are derived by applying basic inequalities in
information theory to valid joint probability distributions in
classical theory as shown below.

Consider, say, four observables A0, A1, A2, A3 and their
joint entropy H�A0 ,A1 ,A2 ,A3�. The chain rule for conditional
entropies yields H�A0 ,A1 ,A2 ,A3�=H�A3 �A0 ,A1 ,A2�
+H�A2 �A0 ,A1�+H�A1 �A0�+H�A0�. �For details of basic in-
equalities in information theory, see �11�, for example.� Since
conditioning never increases entropy, e.g., H�A2 �A0 ,A1�
�H�A2 �A1�, we have

H�A0,A1,A2,A3� � H�A3�A2� + H�A2�A1� + H�A1�A0� + H�A0� .

�1�

Our information-theoretic temporal Bell inequality is
based on this form, but before moving on to it, it is worth-
while mentioning how Eq. �1� is related to the well-known
argument on the �spatial� Bell inequality between two dis-
tantly located parties �Alice and Bob� with two qubits �12�.
Suppose A0 and A2 �with even subscripts� represent Alice’s
observables and A1 and A3 �with odd subscripts� Bob’s. The
information contained in some quantities is never smaller
than that in a subset of them, i.e., H�A0 ,A3�
�H�A0 ,A1 ,A2 ,A3�, thus we have

H�A3�A0� � H�A3�A2� + H�A2�A1� + H�A1�A0� , �2�

which is one of the information theoretic �spatial� Bell in-
equalities given in �2�. The conditional entropy between Al-
ice’s and Bob’s local observables satisfies Eq. �2� classically,
because there exists a valid joint probability distribution of
all the observables. However, it can be proved to be violated
in quantum theory, although we will not go into the details of
the spatial case here. Roughly speaking, the existence of a
�possibly invalid� joint probability distribution over all the
observables corresponds to the assumption of realism, and
the consistency of all the marginal probability distributions
corresponds to the assumption of locality in the spatial argu-
ment. �Schumacher also proved inequalities similar to Eq.
�2� and described an intuitive geometric picture of violating
the inequality �13�. Cerf and Adami explored entropic Bell

1From a physical point of view, needless to say, it is essential for
the conventional �spatial� Bell inequalities that we be able to draw
the conclusion that quantum theory cannot be described by any

local hidden variable theory.
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inequalities by considering entropy Venn diagrams �14�.�
The form of Eq. �1� is suitable for our argument on a

temporal version and can be easily generalized to the one
with L+1 observables,

H�A0, . . . ,AL� � H�AL�AL−1� + ¯ + H�A1�A0� + H�A0� .

�3�

In the next section, we switch to an argument on temporal
correlations by choosing observables Ai as those of one and
the same physical system at different times from t0 to tL,
which correspond to L different computational steps in our
scenario. This inequality also should be satisfied when there
exists a valid joint probability distribution for all observ-
ables, although it may be violated in time evolution governed
by quantum theory.

III. INFORMATION-THEORETIC
TEMPORAL BELL INEQUALITY

Next, we derive an information-theoretic temporal Bell
inequality by applying Eq. �3� to the “database” search prob-
lem mentioned above. Consider an algorithm solving the
problem deterministically with L oracle queries. Suppose
there exists a bit �or a qubit� in which the output of the oracle
query is stored, and the observables Ai �i=0, . . . ,L� corre-
spond to the two-valued �0 or 1� measurement on the �qu�bit
after the ith oracle query. �For a reason stated below, A0 is
defined to have the fixed initial value of the output register
“0.”� Hence, at least classically, by measuring all observables
Ai, the solution to the problem can be found. For instance, in
the most straightforward classical algorithm, we input the
numbers from zero to 2n−1 to the oracle successively and
read each output of the oracle as a measurement outcome of
Ai. This process requires at most L=2n queries and yields the
solution with probability 1. The aim of this problem is to find
the unique item x=s out of 2n equally likely numbers; hence,
we eventually obtain n bits of information by solving the
problem. Furthermore, the amount of information obtained
by measuring the outputs of the oracle cannot be less than
the amount of information that is supposed to be obtained by
solving the problem itself. Therefore, we have

n � H�A0, . . . ,AL� . �4�

If it were possible to infer the solution by observing random
variables containing less information than the solution itself,
then it would be a contradiction. �Note that H�A0 , . . . ,AL�
might be smaller than n bits in unsuccessful algorithms, but
here we concentrate only on deterministic algorithms solving
the problem successfully.�

By combining Eqs. �3� and �4�, we obtain the
information-theoretic temporal Bell inequality for the present
problem,

n � H�AL�AL−1� + ¯ + H�A1�A0� . �5�

�Note that the last term on the right-hand side of Eq. �3�,
H�A0�, is omitted because A0 is defined to have the fixed
value “0” so that this unwanted term always vanishes.� From
a classical point of view, this inequality means that the sum
-2
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of the conditional entropy between successive oracle queries
is sufficient to constitute the amount of information con-
tained in the solution. �In fact, it can be proven that the
inequality in Eq. �5� holds, for instance, in the most straight-
forward classical algorithm given above by an explicit cal-
culation.� In other words, suppose there are many identical
copies of a classical computer running the algorithm sepa-
rately, but only the outputs of two randomly chosen succes-
sive oracle queries are measured and the relevant conditional
entropy is calculated independently; for the first computer,
only A2 and A3 are measured, and for the second one, only
A10 and A11, and so on. Then, accumulating all the small
pieces of “progress” achieved in different computers, we can
infer the solution to the problem. This picture makes it easy
to draw an analogy with ordinary experiments on spatial Bell
inequalities: First, prepare many identical copies of an en-
tangled pair and then measure randomly chosen observables.
In our scenario, the timing of measuring the outputs of the
oracle is randomly chosen instead in the manner of Leggett
and Garg.2 The point is that outputs of the oracle, i.e., ob-
servables Ai have predetermined values and that there exists
a valid joint probability distribution of them in any classical
computation.

IV. VIOLATION IN QUANTUM COMPUTATION

As we have seen in the previous section, the information-
theoretic temporal Bell inequality �5� holds in any classical
algorithm. However, this is not the case for quantum compu-
tation. In this section, we show that the inequality is actually
violated in Grover’s algorithm �5�. For details of Grover’s
algorithm, see �15�. Let the initial state of a quantum com-

puter be ���= 1
	2n 
 j=0

2n−1 � j�i �0�o, where the first and second reg-
isters denoted as � �i and � �o represent the input and the out-
put of the oracle, respectively. The output register is usually
defined as 1

	2
��0�o− �1�o� instead of �0�o so that the phase flip

operation is automatically performed and the number of
oracle queries is reduced by half. Nevertheless, we stick to
�0�o because we need to measure the outputs of oracle que-
ries in the middle of the computation. Hence, the Grover
iteration is represented as G= �2 ���� �−I�O�zO, where the
first term represents the “inversion about average” operation,
O is the oracle operator defined as O �x�i �y�o= �x�i �y
� F�x��o, and �z is the Pauli matrix acting only on the output
register � �o. �The second oracle operation in G is inevitable
in order to erase �undo� the previous oracle operation and
disentangle the output register from the input one so that the
interference due to the “inversion about average” operation
works properly.� When we measure the outputs of oracle
queries �as is explained in the next paragraph�, the output
register � �o is measured in the computational basis ��0� , �1��
right after the first oracle operation O in the relevant Grover
iteration. Note that this measurement is not included in the
original version of Grover’s algorithm. It is introduced here

2In the original Leggett-Garg inequality, we randomly choose two
different times, say t1 and t3, out of four possibilities, t1 , . . . , t4,

however.
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to carry out the scenario showing the violation of our in-
equality.

An “experiment” to test our inequality goes as follows,
which certainly parallels the classical argument. First, we
prepare many identical copies of a quantum computer, and
then run Grover’s algorithm in each computer independently.
Then, we randomly choose two computational steps k and
k+1 out of O�	2n� possibilities for each computer and mea-
sure the output register � �o only at the kth and �k+1�th
Grover iterations. �We measure it right after the first oracle
operations O in each Grover iteration G.� After the first mea-
surement on the output register, the state of the input register
jumps into either the state we are looking for, �s�i, or the
�2n−1� dimensional subspace orthogonal to �s�i, which we
denote as ���i=

1
	2n−1


 j�s � j�i. In either case, the quantum
computer continues the rest of the Grover iteration, i.e.,
�2 ���� �−I�O�z, and thus the state becomes a superposition
of ���i and �s�i again. We carry out these procedures in all the
quantum computers independently with random choices of
k�0.3

By an explicit calculation, for k�1, we have
H�Ak+1 �Ak�=H�cos2 ��, where � is defined as cos �

2

�	1− 1
2n and H�x��−x log2x− �1−x�log2�1−x� is the binary

entropy. We also have H�A1 �A0�=H�cos2 �
2

�. In what follows,

we prove that inequality �5� with L=O�	2n� is violated. First,
since sin2 �= 1

2n−2 − 1
22n−2 , we have sin2 ��

1
2n−2 �

1
2 �n�3�.

Thus, H�cos2 ��=H�sin2 ���H� 1
2n−2 �. Defining f�x��−x

�log2x, the inequality f�x�� f�1−x� holds for 0�x�
1
2 .

Hence, we have H� 1
2n−2 �= f� 1

2n−2 �+ f�1− 1
2n−2 ��2f� 1

2n−2 �= n−2
2n−3 .

Furthermore, we clearly have H�cos2 �
2

��1. By combining
these inequalities, we can estimate the right-hand side of
inequality �5� for L=	2n as follows:

H�A	2n�A	2n−1� + ¯ + H�A2�A1� + H�A1�A0�

= �	2n − 1�H�cos2 �� + H�cos2 �

2
�

� �	2n − 1�
n − 2

2n−3 + 1

=
n − 2

2�n/2�−3 −
n − 2

2n − 3
+ 1. �6�

Therefore, for large n and L=O�	2n�, we obtain

3For an exact correspondence to the classical scenario, we should
not continue the Grover iteration when we luckily find the solution
s in the first measurement of the output, i.e., in the kth Grover
iteration. The succeeding dynamics should be replaced by a trivial
one to make the value of the output register “0” thereafter. How-
ever, it is easily shown that the quantity H�Ak+1 �Ak� in this scenario
is always smaller than that calculated in the present scenario. That
is, if the inequality is violated in our scenario, then it is violated in
the above exact one as well. Therefore, we choose the one devel-

oped in the text to make the following argument simpler.
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H�AL�AL−1� + ¯ + H�A1�A0� � n . �7�

This violation of the inequality is an immediate consequence
of the quantumness in the computation. Note that the present
inequality is defined only for algorithms solving the problem
successfully. Thus possible violations of the inequality in
unsuccessful classical algorithms are not necessarily due to
the quantum nature of the computation. It is no wonder that
the inequality can be violated by unsuccessful classical algo-
rithms because they fail in accumulating a sufficient amount
of information to reach the solution.4

V. DISCUSSION

In this section, we discuss some implications of this ap-
proach. First, we deal with some possible objections to it,
and then discuss a notion of temporal nonlocality suggested
by the violation of our inequality.

There may be an objection that unnecessarily interrupting
the quantum algorithm by measurement obviously precludes
the computation and seems pointless. However, the whole
point of this paper is not to provide any useful techniques to
improve quantum algorithms but to offer a novel way of
characterizing quantum computation. In fact, in our argu-
ment, many identical copies of a quantum computer are re-
quired and are not fully exploited. One copy of the quantum
computer would be sufficient to achieve fast quantum com-
putation. Nevertheless, this does not necessarily mean that
the present scenario is useless, which can be seen in analogy
to the well-known argument on spatial Bell inequality ex-
periments. We consume many copies of an entangled pair to
demonstrate the nonlocal character of the pair, while we need
only one copy to accomplish quantum teleportation �16� or
superdense coding �17�. Similarly, we require many copies of
a quantum computer and spoil their computational processes
to demonstrate the quantumness in the computation, while
we need only one copy to accomplish fast quantum compu-
tation. Therefore, in spite of the fact that it seems quite indi-
rect and inefficient, the present approach over numerous
computers seems promising as a means of fully appreciating
the essential difference between classical and quantum com-
putations from a physical point of view.5

The number of terms in inequality �5� is different in clas-
sical and quantum algorithms; classically, it has O�2n� terms,
while quantumly, O�	2n� terms. Thus, it might not be sur-
prising that the inequality is violated in quantum computa-
tion. The point is, however, whether we can assign definite
values to the outputs of all the oracle queries and there exists

4This is reminiscent of the condition in standard spatial Bell in-
equality experiments that local measurements performed by two
distantly located parties, Alice and Bob, should be spacelike sepa-
rated. If they were allowed to communicate and organize their mea-
surement settings, they could violate Bell inequalities even within
classical theories.

5Incidentally, I believe that quite a few physicists would be inter-
ested in the principle underlying qualitative differences between
classical and quantum computations, even if there were no compu-

tational speed-up in quantum computation.

052308
a valid joint probability distribution over all the outputs. De-
tecting the violation of the inequality is considered as one
way of clarifying this point. In a conventional view, we usu-
ally think that a quantum computer is in a superposition and
thus that there exists no definite value of registers in each
computational step. This view underlies the standard inter-
pretation of quantum computation: parallel computation due
to quantum superposition.

However, what if we try to interpret Grover’s algorithm in
a realistic way with a �global� hidden variable model? Every
input and output of oracle queries should have a predeter-
mined value in this view. Nevertheless, the algorithm still
succeeds in finding the solution in O�	2n� steps. This seems
quite bizarre but is possible once we accept this perspective.
The trick is that the quantum computer somehow selects
promising inputs to the oracle without exhausting all the pos-
sibilities. Strangely, the solution x=s is always included in
those promising O�	2n� inputs. It looks as if the quantum
computer partially knew which one would fail if it were fed
into the oracle. Classically, it is natural to keep excluding the
previously used inputs until we hit the solution. However, the
quantum computer could refer to the outcomes of the oracle
queries corresponding to previously unused inputs. In other
words, the quantum algorithm seems to be able to reach the
solution without accumulating a sufficient amount of infor-
mation from a classical point of view. Classically, the solu-
tion can be found only by accumulating a sufficient amount
of information step by step through the process of excluding
unsuccessful inputs. Our inequality �5� and its violation in
Eq. �7� offer one way of expressing these facts mathemati-
cally.

One possible explanation of the above counterintuitive in-
terpretation is that the quantum computer can invoke tempo-
ral nonlocality to select promising inputs without exhausting
all possibilities. It looks as if the queries performed by the
quantum computer were connected in a nonlocal way in
time. Therefore, it is fair to say that the violation of our
inequality in quantum computation represents the temporal
nonlocality. As the violation of conventional �spatial� Bell
inequalities implies that quantum theory is intrinsically non-
local, the violation of the information-theoretic temporal in-
equality suggests the notion of temporal nonlocality in quan-
tum information processing.

Spatial correlations due to entanglement between many
qubits are considered to be an origin of the power of quan-
tum computation in the standard view of quantum parallel-
ism. However, the above interpretation focuses on temporal
correlations between different computational steps and suc-
ceeds in revealing another weird aspect of quantum compu-
tation. Parallel computation due to quantum superposition is
counterintuitive, but exploiting seemingly unperformed com-
putation is far more so. These two different but not conflict-
ing perspectives are based on spatial and temporal ap-
proaches, respectively.

The information-theoretic temporal Bell inequality is for-
mulated only for the so-called “database” search problem
here, but it can be generalized to other problems in principle.
Suppose the amount of information obtained by solving the
problem is I bits. �This can be easily determined as n bits in

the unstructured database search problem discussed above,
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although determining it is generally a nontrivial task.� Then,
in a similar way to deriving Eq. �4�, we have

I � H�A0, . . . ,AL� , �8�

where A0 , . . . ,AL are some observables from which the solu-
tion to the problem is inferred. By combining this inequality
with Eq. �3�, we have

I � H�AL�AL−1� + ¯ + H�A1�A0� . �9�

�The last term on the right-hand side of Eq. �3�, H�A0�, can
be omitted as is done in the derivation of Eq. �5�.� This also
should be satisfied by any classical algorithm deterministi-
cally solving the problem and can be violated by quantum
algorithms, if any. It remains open to apply the inequality to
other quantum algorithms and obtain further insights into

essential features of quantum computation.

ph/0402127.
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VI. SUMMARY

An information-theoretic temporal Bell inequality was
formulated for the so-called “database” search problem. Pro-
vided that the problem is successfully solved with certainty,
any classical algorithm satisfies the inequality, but Grover’s
algorithm for quantum computation violates it. Separating
classical computations from quantum ones by means of a
Bell-type inequality suggests a novel way to contrast them,
which is similar to analyzing nonlocal effects due to en-
tanglement. Furthermore, a notion of temporal nonlocality
was suggested by the violation of the inequality. I hope the
present approach will eventually contribute to shed new light
on the nature of quantum computation and temporal correla-
tions in quantum information processing in general.
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