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We present a spin-bus concept of quantum computing where an electron spin S=1/2 acts as a bus qubit
connected to a finite number N of nuclear spins I=1/2 serving as client qubits. Spin-bus clusters are considered
as local processing units and may be interconnected with other spin-bus clusters via electron-electron coupling
in a scaled up version. Here we lay the ground for the basic functional unit with long qubit registers, provide
the theory and experimental verification of correlated qubit states, and demonstrate the Deutsch algorithm.
Experiments were performed on a qubyte plus one nuclear spin in a solid state system.
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I. INTRODUCTION

Experimental implementations of quantum algorithms by
liquid state NMR �1� such as Deutsch’s algorithm �2,3�,
Grover’s quantum search algorithm �4,5�, and Shor’s algo-
rithm �6� have dominated the experimental quantum comput-
ing scene since the beginning. Although the concept of
pseudopure states �7,8� introduced in these implementations
is conceptually rather appealing it was criticized because of
the separability of the generated density matrices �9,10�. In-
terest has therefore been shifted more recently towards solid
state devices which can be cooled to low temperatures and
can reach the quantum limit. In this contribution we want to
introduce a solid state concept of quantum computing where
the topology can be viewed as a spin-bus system where a bus
qubit, in our case labeled S-spin �S=1/2�, couples to many
I-spins �I=1/2� client qubits. We call this in the following
the S-bus system. Since all client qubits are initially uncor-
related this resembles the interesting concept of the power of
one bit of quantum information by Knill and Laflamme �11�.

In Fig. 1 we have sketched the basic unit of an S-bus
system which can be extended by interconnecting several
units via couplings among the S-spins to create a network.
This requires a controllable wave function delocalization
among S1 , . . . ,SM bus qubits similar to the Kane proposal
�12�. This might also be applicable to electron qubits in
quantum dots �13–15�. In the following sections, however,
we will restrict ourselves to the basic unit of an S-bus system
as presented in the bottom part of Fig. 1. In addition the
global coupling of the S-spin to all I-spins also local cou-
plings among the I-spins by direct and indirect spin-spin in-
teractions can be considered. In this concept the S-spin
serves not only as the qubit which monitors the state of the
I-spins but also allows one to correlate the I-spins among
themselves as will be discussed in the following. Although
we demonstrate the principle here for the case of CaF2:Ce3+

this concept could equally well be applied to 29Si:P+ �16�. It
is also not restricted to spins 1/2 but can be extended two
any ensemble of two-level systems coupled to a central bus
qubit.

II. BASIC CONCEPTS

The general processing sequence of the S-bus system is
displayed in Fig. 2. It begins with a preparation sequence
consisting of unitary transformations applied to both the
S-spin as well as a selected number of I-spins.

The general sequence of events when performing quan-
tum algorithms within the S-bus concept is sketched in Fig.
2. First a preparations sequence, represented by the unitary
transformation UP

�S�, is applied only to the S-spin which re-
sults in a highly correlated state of the I-spin qubits as will
be shown. This is followed by a sequence of unitary trans-
formations UI applied only to the qubit spins Ij which in-
cludes special initial density matrix preparations as well as
implementing quantum algorithms followed by tomography
and readout pulses with projection to the qubit eigenstates.
All quantum algorithms applied to the client qubits lead at
the end of the sequence of events to a state which is pro-
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FIG. 1. Top: Sketch of a controllable S-bus system where the
hyperfine interaction is controlled via A gates and the coupling be-
tween different S-bus systems is mediated via a J-gate �12�. Bot-
tom: Basic unit of an S-bus system with bus qubit S and client
qubits Ij.
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jected to a diagonal state by the detection sequence. This is
monitored by a remote electron spin echo detection. We note
that the S-bus system comprises two different nuclear qubit
subsystems, namely, those coupled to electron spins in state
mS= +1/2 and mS=−1/2. In the experiments to be discussed
only one of these subsystems is selected.

A. Initial state preparation

We consider an electron spin S=1/2 coupled to many
nuclear spins Ij by hyperfine interaction expressed by the
Hamiltonian HSI=� j

NajIzjSz. For simplicity we restrict our-
selves here to the secular components of the hyperfine tensor.
The general case will be discussed elsewhere. No initial
nuclear spin polarization is assumed, i.e., we start from an
initial Boltzmann density matrix for M electron spins as

�B = �
j=1

M �1

2
I2 − �Szj� �1�

with �=tanh��� / �2kBT�� and where I2 is the 2�2 identity
matrix. When expressed as a series expansion Eq. �1� con-
tains Szj spin operator products of power m with prefactors
�m representing Boltzmann correlations of the S spins. In
this contribution we restrict ourselves to the low field, high
temperature approach resulting in

�B =
1

2
I2 − �Sz �2�

which is valid for ��1. Since no initial I-spin polarizations
or correlations are assumed these have to be created through
the hyperfine interaction with the electron spins as will be
shown in the following leading to an initial density matrix
after preparation as

�P =
1

2N+1 IN+1 − �Sz � �I, �3�

where �I represents a highly correlated state of the N I-spin
qubits and where IN+1 is the �N+1�� �N+1� identity matrix.
All experiments start with a Py�� /2� pulse applied to the

Boltzmann density matrix followed by some free evolution
for time �S under the hyperfine Hamiltonian HSI which leads
to the initial density matrix

�ini =
1

2N+1 IN+1 − �
1

2
�	N

�−�S+ + 	N
�+�S−� , �4�

where we use the shorthand notation

	N
�±� = �

j=1

N

e±i�SajIzj . �5�

This reduces for qubits �I=1/2� to

	N
�±� = �

j=1

N

�cjI2 ± 2isjIzj� , �6�

where we have used the abbreviations cj =cos��aj /2� and sj

=sin��aj /2� and I2 for the 2�2 identity matrix.
The sequence leading to �ini is complemented by another

� /2 pulse which transfers the x ,y components of the S-spin
to z. After an appropriate waiting time all leftover transverse
components have decayed by destructive interference. This
leads in general to the operator part �prep=�ISz of the density
matrix after preparation where here and in the following the
product is a tensor product and �I depends on the applied
preparation sequence and its duration �S. See Appendix A for
further details. In the following section we discuss a number
of different basic preparation sequences. More elaborate se-
quences are possible and have been tested but are beyond the
scope of this contribution.

B. Algorithms and readout

The initial preparation sequence is followed by the qubit
algorithms including preparation steps, quantum algorithms,
and a readout step as is sketched in Fig. 2. This leads in
general to a change of the initial density matrix expressed by
the tilde in �̃I:

�̃IS = �̃ISz. �7�

In order to transform �̃IS to an observable S-spin state a
detection sequence, represented by the unitary transforma-
tion UD

�S�, is applied solely to the S-spins followed by an
electron spin echo sequence. This scenario leads to the fol-
lowing sequence of transformation:

	�D� = UD
�S�

¯ UI ¯ UP
�S�	Sz� = UD

�S��̃I	Sz� , �8�

where �D represents the density matrix at detection time.
Only the diagonal part of the density matrix �D is considered
for detection, that is, enough waiting time is included before
the final electron spin echo sequence is applied to allow for
the decay of all transverse components.

The general expression for the signal at detection time can
be expressed as

FIG. 2. Sequence of events in an S-bus system with initial
preparation �UP

�S�� and detection �UD
�S�� sequences applied to the bus

spin S. Quantum algorithms are performed by the locally addressed
I-spins. The unitary transformations UI applied to the I-spins are
embedded between appropriate state preparation and detection se-
quences. Final detection is performed by a remote echo detection
�RED� sequence at the S-spins.
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SD =
�Sz	�D�
�Sz	Sz�

=
�QD

�S�	UI	QP
�S��

�Sz	Sz�
, �9�

where we have used in the second part the abbreviations
QD

�S�=UD
�S�SzUD

�S�† and QP
�S�=UP

�S�SzUP
�S�†. Often we will use

UD
�S�=UP

�S� which leads to QD
�S�=QP

�S�.
Note that there are two sets of N qubits, namely, those

corresponding to electron spin states mS= ±1/2. We there-
fore split the density matrix �D according to Eq. �8� into

�D = �I�̃I
1

2
� I2

2
+ Sz� − �I

21

2
� I2

2
− Sz� , �10�

where we have assumed that qubit algorithms are performed
only in the mS= +1/2 subsystem. This leads to the detection
signal

SD =
Tr
Sz�D�
Tr
Sz

2�
=

1

2
�TrI
�I�̃I�

2N +
TrI
�I

2�
2N � , �11�

where the first part contains the signal expression of the
quantum algorithm �note the tilde� and the second part is an
offset term not affected by the quantum algorithm. In the
following sections we will focus on the first part.

III. PREPARATION OF LONG QUBIT REGISTERS

Starting from zero I-spin correlations the S-bus topology
allows one to introduce spin-spin correlations among the
I-spins by applying specific unitary transformations only to
the S-spin. Different simple pulse sequences will be dis-
cussed in the following which create specific I-spin correla-
tions.

A. The yy sequence

This sequence consists of two consecutive Py
�S��� /2�

pulses applied to the electron spin separated by a time �S.
The pair of pulses is typically applied in the stimulated echo
sequence and has been proposed by Mims for his pulsed
ENDOR version �Mims ENDOR� �17�. This leads according
to Eqs. �3� and �A3� to the following density matrix for the
yy-preparation sequence:

QP
�yy� =

1

2N+1 IN+1 − �Sz � �yy �12�

with I-spin density matrix

�yy = Re��
j=1

N

�cjI2 + isj2Izj�� �13�

for N qubits �I=1/2� and where cj =cos��Saj /2� and sj

=sin��Saj /2�. When the product is expanded the high order
nuclear spin operator products, i.e., qubit correlations show
up as will be shown below. Note that these correlations build
up �with no irradiation performed at the I-spins� during the
preparation sequence of duration �S which is for the system
discussed here typically on the order of 20–100 ns depend-
ing on the strength of the hyperfine interaction.

The high degree of nuclear spin correlations becomes im-
mediately apparent when expanding the product in Eq. �13�
for the special case of N=4 which leads to

�yy = c1c2c3c4I4 − 22�Iz1Iz2s1s2c3c4 + Iz1Iz3s1s3c2c4

+ Iz1Iz4s1s4c2c3 + Iz2Iz3s2s3c1c4 + Iz2Iz4s2s4c1c3

+ Iz3Iz4s3s4c1c2� + 24�Iz1Iz2Iz3Iz4s1s2s3s4� , �14�

where I4 is the identity matrix appropriate for the number of
qubits here and which will be in general a 2N�2N identity
matrix. The number of elements with k fold products of spin
operators are given by the binomial coefficient

�N

k
� =

N!

�k�!�N − k�!
. �15�

Accordingly we expect for N=4 a total number of
� 4

2
�=6 two spin correlations and � 4

4
�=1 four spin correlation.

Note that �yy can be expressed as a sum of only even prod-
ucts of spin operators up to the maximum N. The prefactors
are given by the sine and cosine functions of �Saj /2. They
can be tuned by choosing the appropriate value of the pulse
separation �S for a given set of hyperfine parameters aj.

B. The yx sequence

If we replace the second y-pulse in the two pulse se-
quence of the previous section by an x pulse, we obtain the
preparation operator

QP
�yx� =

1

2N+1 IN+1 − �Sz � �yx �16�

with

�yx = − Im��
j=1

N

�cjI2 + isj2Izj�� . �17�

As in the case of the yy sequence we obtain the nuclear
spin correlations produced after the yx sequence by expand-
ing the product in Eq. �17� for N=4 as

�yx = − 2�Iz1s1c2c3c4 + Iz2s2c1c3c4 + Iz3s3c1c2c4 + Iz4s4c1c2c3�

+ 23�Iz1Iz2Iz3s1s2s3c4 + Iz1Iz2Iz4s1s2s4c3

+ Iz1Iz3Iz4s1s3s4c2 + Iz2Iz3Iz4s2s3s4c1� . �18�

Note that �yx can be expressed as a sum of odd order prod-
ucts of spin operators up to the maximum of N for odd N and
of �N−1�-fold products for even N.

C. The y�4 sequence

If we phase shift the second y-pulse in the Mims sequence
by −� /4 we obtain the preparation operator

QP
�y�4� =

1

2
I0 − �Sz � �y�4 �19�

with
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�y�4 =
1 + i

2�2
�
j=1

N

�cjI2 + isj2Izj� +
1 − i

2�2
�
j=1

N

�cjI2 − isj2Izj�

�20�

which can be reformulated in terms of the previous density
matrices as

�y�4 =
1
�2

��yy + �yx� . �21�

Note that this sequence combines the even and odd num-
bered correlations of nuclear spins of the yy and yx se-
quences. Similar results can be obtained if the second pulse
in the yy sequence is replaced by a � /4x pulse followed
immediately by a � /4y pulse. This avoids unconventional
phase shifting but leads to different prefactors for odd and
even correlated qubit expressions.

As an example we expand the case of N=3 which results
in

�y�4 =
1
�2

�c1c2c3I3 − 2�Iz1s1c2c3 + Iz2s2c1c3 + Iz3s3c1c2�

+ 22�Iz1Iz2s1s2c3 + Iz1Iz3s1s3c2 + Iz2Iz3s2s3c1�

− 23Iz1Iz2Iz3s1s2s3� . �22�

We note that for cj =sj =1/�2 Eq. �22� leads to �y�4=2�111
where �111 is a three qubit pure state. This is true, however,
only for the subspace of qubits.

IV. SIGNAL DETECTION

If the detection sequence equals the preparation sequence
the relevant detected signal can according to Eq. �11� in gen-
eral be expressed as

SD =
1

2NTr
�I�̃I� , �23�

where �̃I=UI�IUI
† corresponds to the transformation of �I by

the quantum algorithm UI. Equation �23� covers the signal
response due to any type of quantum algorithm applied to the
nuclear spins. All qubit algorithms are set up in such a way
that at the detection point only diagonal states are present
which allows to express the outcome by a scaling factor
−1
Sj 
1 in front of every Izj operators which has been
addressed. This basically involves replacing every sj param-
eter in �i by sj→sjSj. Special cases involving reordering
qubits need to be treated separately.

In Appendix A the general case of long qubit registers of
size N is discussed, where only a subset of n qubits takes part
in the quantum algorithm. Applying Eq. �23� to these long
registers leads for the different preparation sequences to the
following detection signals:

Syy =
1

2
��

j=1

n

�cj
2 + sj

2Sj� + MN−n�
j=1

n

�cj
2 − sj

2Sj�� , �24a�

Syx =
1

2
��

j=1

n

�cj
2 + sj

2Sj� − MN−n�
j=1

n

�cj
2 − sj

2Sj�� , �24b�

Sy�4 =
1

2�
j=1

n

�cj
2 + sj

2Sj� , �24c�

where

MN−n = �
k=n+1

N

�ck
2 − sk

2� . �25�

with M0=1 for �n=N�. In the following we will also often
use the parameters

Pn
�±� =

1

2
�1 ± MN−n� . �26�

V. TOMOGRAPHY OF I-SPIN CORRELATIONS

Before we proceed to the implementation of the Deutsch
algorithm within the S-bus concept, we treat the preparation
of pseudopure initial states and their tomography by pulsed
electron nuclear double resonance �ENDOR� and multiple
quantum ENDOR �MQE�. This technique was first intro-
duced in ENDOR in order to measure proton-proton nuclear
spin correlations �18�. See also the earlier work on hetero
nuclear multiple quantum NMR �19–22� and a more recent
contribution �23�.

A. Selective nuclear spin excitations

In order to address the nuclear spins individually we need
to have a system with well separated hyperfine lines. Our
working horse which will be discussed in more detail in a
separate contribution is CaF2:Ce3+ which provides us with a
qubyte plus one 19F nuclear spins 1/2 as can be seen from
the ENDOR spectrum shown in Fig. 3 �24,25�. This spec-
trum was obtained by applying a single �-pulse with varying
frequency over the full spectral width. All experiments re-
ported in this contribution were performed at the X band
�9.5 GHz� at around 10 K. Here and in the following we
express, except when noted otherwise, the effect of a selec-

FIG. 3. ENDOR spectrum of the qubyte plus one system
CaF2:Ce with all 2 ·9=18 hyperfine lines of the nine 19F resolved.
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tive � j-pulse applied to a spin Ij by the scaling of its z com-
ponent resulting in Izj→cos � jIzj =SjIzj. For detection we as-
sume that transient x ,y components of the magnetization
have decayed after the pulse. In other words a prefactor Sj

1 is attached to all addressed spins Ij in the density matrix.
The maximum effect is achieved for a � pulse.

The general ENDOR signal can be defined by applying
Eqs. �24a� and �26� with n=1:

Syy = cj
2P1

�+� + sj
2P1

�−�. �27�

If we define the ENDOR signal as the difference between
the signal with no irradiation applied at spin Ij �Sj =1� and
with irradiation represented by an arbitrary value of Sj obey-
ing the condition −1
Sj 
1 we obtain

SENDOR = �1 − Sj�sj
2P1

�−�. �28�

The maximum ENDOR effect is achieved with a �-pulse
which inverts the nuclear spin �Sj =−1� leading to

SENDOR
�max� = sin��

aj

2
�2�1 − �

k�j

N

cos��ak�� . �29�

We note that the ENDOR signal intensity of an individual
line depends on all the residual hyperfine interactions. How-
ever, small hyperfine interactions which obey the relation
�ak�1 do not contribute significantly. This can be controlled
by the appropriate choice of �S �hyperfine filter��see center
part of Fig. 3�.

B. Multiple quantum ENDOR tomography

The ENDOR spectrum provides no information on the
nuclear spin correlations. In order to determine these we use
multiple quantum ENDOR �MQE� �18�. The corresponding
sequence is shown in Fig. 4.

It utilizes the selective phase encoding of each individual
spin Ij with individual phase � j. This allows one to separate
different multiple-quantum coherences as was shown by
Drobny et al. �19� and Bodenhausen et al. �26� in NMR. To
be more concrete we consider the simple case of two qubits,
i.e., we select two ENDOR lines out of the set of lines. A
typical example of the results to be expected for two qubits is
shown in Fig. 4 �bottom�. We note that the four lines relate to
so-called 0Q �zero-quantum�, 1Q �one-quantum�, and 2Q
�two-quantum� lines which will be explained in the follow-
ing section.

1. Two qubit MQE

The initial density matrix can be expressed according to
Eq. �A18� as

�I
�2� =

1

22 p0I2 +
1

2
p1Iz1 +

1

2
p2Iz2 + p12Iz1Iz2, �30�

where the p1, p2, and p12 variables depend on the hyperfine
interactions and the pulse spacing �S of the preparation se-
quence. We will see later how these variables can be tuned to
p1= p2= p12=1 which would convert �y

�2� into the pseudopure
density matrix �00 of a two qubit system.

After application of the two-pulse MQE sequence
Pxj�−� /2 ,� j�Pxj�� /2 ,0� to spins j� 
1,2� and where the
phase � j is defined in the rotating frame with reference to the
x direction the density matrix is converted to

�̃I
�2� =

1

2
p1 cos �1Iz1 +

1

2
p2 cos �2Iz2 + p12 cos �1 cos �2Iz1Iz2

�31�

after all transient components have decayed. This leads to the
MQE signal

SD = Tr
�I
�2��̃I

�2�� =
1

4
�p0

2 + p1
2 cos �1 + p2

2 cos �2

+ p12
2 cos �1 cos �2� �32�

which can be represented as a phase interferogram. Phase
shifting of the pulse sequence can be performed in incre-
ments according to � j =2�f jt which introduces a virtual time
t �19,26�. After Fourier transformation �FT� this results in a
spectrum with the four frequencies and amplitudes as given
in Table I.

FIG. 4. Top: Pulse sequence for performing MQE experiments.
Bottom: Typical MQE spectrum obtained for a two qubit system
�see text�.

TABLE I. The four frequencies and amplitudes �except for a
constant factor� of a two spin MQE spectrum.

Freq. f1− f2 f1 f2 f1+ f2

Ampl.
1

2
p12

2 p1
2 p2

2 1

2
p12

2
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In summary phase interferometry can be used to distin-
guish the different nuclear spin correlations and determine
their contribution to the density matrix �density matrix to-
mography�. We will show in Sec. VI that the same sequences
can also be used to tune the prefactors and prepare
pseudopure density matrices.

2. Multiple qubit MQE

In the previous section we have treated the most simple
case of two spins as an introductory example. This is, how-
ever, unrealistic because there are usually many more nuclei
coupled to an electron spin. We extend therefore the scenario
to the realistic case where many nuclei 
N� are coupled to an
electron spin but only a subset of 
n� nuclei is addressed.
Here we apply the generalizations derived in Appendix A
and Eq. �24�.

When replacing Sj by cos � j we obtain

SMQE =
1

2 �
j�
n�

�cj
2 + cos � jsj

2� +
1

2
MN−n �

j�
n�
�cj

2 − cos � jsj
2� .

�33�

Individual variation of the local phase factors leads after
Fourier transform to the MQE spectrum. From this the cor-
relation factors can be determined as was discussed for the
two qubit case in the previous section.

Applying this to two qubit case leads to

SMQE = c1
2c2

2P2
�+� + �cos �1s1

2c2
2 + cos �2s2

2c1
2�P2

�−�

+ cos �1 cos �2s1
2s2

2P2
�+�. �34�

Comparing Eq. �32� with Eq. �34� allows us to identify the
square of the prefactors of the two qubit density matrix with
the correlation parameters as shown Table II except for an
overall factor of 22.

The extension to more qubits is straightforward and will
be discussed in a separate contribution �see also Ref.
�25,27��. Note that MQE spectra are only observed if corre-
lations between the different qubits exist. This is not the case
for qubits belonging to different ms±1/2 subsets. In this case
only single quantum lines are visible in the MQE spectrum.

3. Nonselective MQE

If a large number of qubits are correlated the number of
lines in the MQE spectrum increases exponentially. In order
to demonstrate that a rather high degree of nuclear spin cor-
relations can indeed be obtained by the standard
yy-preparation sequence we present in Fig. 5 the nonselec-
tive MQE spectrum of the central part of the ENDOR spec-
trum �distant nuclei� by applying strong electron � /2 pulses
and using the same phase incrementing frequency f for all
nulei.

The scenario for detecting high spin correlations as dem-
onstrated for two spins in the previous sections can readily
be extended to an arbitrary number of spins. The number of
spectral lines increases, of course, exponentially. Here we
demonstrate that a high degree of correlation can in fact be
obtained as is demonstrated in Fig. 5 which displays the
MQE spectrum with identical phase frequencies and excita-
tion in the center part of the ENDOR spectrum �distant nu-
clei�. Since the number of correlated spins depends on the
�aj product, it is obvious that longer preparation times
should increase the number of correlated spins. Naturally the
amplitude of higher correlations falls off rapidly as given by
the binomial coefficient according to Eq. �15� �see also Refs.
�21,22��. Krojanski and Suter have recently demonstrated
that long qubit registers show peculiar decoherence times
depending on the degree of correlations �28�.

VI. PSEUDOPURE DENSITY MATRICES

Although the preparation sequence already creates a high
degree of nuclear spin correlations the prefactors in front of
the different spin products depend, however, on the sine and
cosine functions of different �aj /2 products and it cannot be
expected that all pj will fulfill the pseudopure state require-
ment 	pj	=1 in Eq. �A18�. One can choose appropriate �S
values to come close to a pure or pseudo pure initial density
matrix, but some final adjustment will in general still be
required. This can be achieved by modifying each spin com-
ponent Izj by a prefactor Sj→cos � j precisely in the same
way as used for the MQE procedure with the difference that
now fixed phase angles � j are used and are adjusted to
achieve a pure or pseudopure initial density matrix. This ba-
sically implies that in Eq. �33� each cos � j is replaced by
cos � j cos � j if in addition MQE tomography is wanted.

This procedure is applied in the next sections to the case
of two and three qubits. We have also extended this to longer
qubit registers.

A. The two qubit case

By adjusting the parameters cos � j appropriately all
pseudopure density matrices of the two qubit system have

TABLE II. The four frequencies and amplitudes �except for a
constant factor� of a two spin MQE spectrum.

p0 p1 p2 p12

c1
2c2

2P2
�+� s1

2c2
2P2

�−� s2
2c1

2P2
�−� s1

2s2
2P2

�+�

FIG. 5. MQE spectrum with the same phase incrementation fre-
quency applied to nuclei in the center of the ENDOR spectrum
�distant nuclei�. The large pulse separation �S=1.36 s allows for
the buildup of high order spin correlations. Up to twenty are seen.
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been obtained as is shown in Fig. 6. The initial density ma-
trix is measured by MQE as described in Sec. V B by using
the pulse sequence shown in Fig. 4. The two-pulse scaling
sequence at the I-spin transitions is applied prior to the MQE
sequence. There is a delay between these two pulse se-
quences of about 200 s to let off-diagonal components de-
cay. The parameters 	pj	 of the initial density matrix are de-
termined by setting � j =0; Sj =1 from the amplitudes of the
MQE spectrum as outlined in Sec. V B. In the next step
values of Sj are chosen according to Eq. �30� such that all
pj =1 except for an overall constant factor. Note that the final
MQE spectrum does not look like the pure state because of
�I� �̃I due to the two-pulse ESR detection sequence.

B. Three qubit density matrix

The preparation of three qubit pseudo-pure states is an
extension of the procedure outlined in the case of two qubits
by applying the corresponding pulse sequences selectively to
the three qubits I1, I2, and I3. Extensions to an arbitrary num-
ber of qubits is conceptually straightforward, however, ex-
perimentally more demanding.

In Fig. 7 we present the MQE spectrum of the as prepared
density matrix �top� to be compared with the �000 state �bot-
tom�. Note that only minor adjustments were required be-
cause the as prepared density matrix was already very near
�000. The following phase incrementation frequencies were
applied: f1=0.81 MHz, f2=1.03 MHz, and f1=1.16 MHz.
This results in spectral lines at frequencies 0Q: 	f j − fk	; 1Q:
f j and 	f j + fk− fq	; 2Q: 	f j + fk	; 3Q: f1+ f2+ f3.

VII. CONTROLLED NOT OPERATION

The controlled NOT operation �CNOT� is one the of univer-
sal quantum gates which is the basis for many quantum al-
gorithms. Its implementation within the S-bus system re-
quires a spin-spin interaction between the control and target
qubit. Here we use the direct and indirect dipole-dipole in-
teraction between the nuclear spins.

If we express the interaction Hamiltonian of the two qu-
bits as H12=DIz1Iz2 the free evolution period given by the

unitary transformation U12�t�=exp�−itH12� is complemented
by the appropriate initial and final pulses �INEPT sequence
�29� plus z rotations� to implement the CNOT gate. Our S-bus
implementation is shown in Fig. 8. We note that the expected
sinusoidal evolution with frequency D12/2 is only observed
if a yy preparation and a yx detection sequence is used. Al-
ternatively one could apply a y�4 sequence both for prepa-
ration and detection. The CNOT operation is achieved by
choosing the special value of �=� /D12. This has been veri-
fied by density matrix tomography.

VIII. TWO QUBIT DEUTSCH ALGORITHM

According to the general scheme of the S-bus sequence
the unitary transformations corresponding to quantum algo-
rithms are embedded between the preparation and the detec-
tion sequence followed by the electron spin echo monitor
sequence. They consist of arbitrary complex pulse sequences
applied to spins Ij with j� 
1, . . . ,N� out of the manifold N.

The Deutsch-Jozsa algorithm was one of the first quantum
algorithms implemented with nuclear spins in liquid state
NMR �2,3,30–32�. In the following, we briefly summarize
the concepts of the Deutsch-Jozsa algorithm. The Deutsch-
Jozsa problem �33� considers a set of functions which map a
binary string of length N to a single bit:

f:Z2N � Z2. �35�

This requires a physical device which when given an in-
put x will produce the corresponding output f�x� of an
a priori unknown function f from the set defined in Eq. �35�.
The task consists of answering the question whether the
function f has any of the two properties: �i� it is constant or
�ii� it is balanced, meaning that applied to all possible inputs

FIG. 6. MQE of the two qubit pseudopure density matrices after
adjusting the prefactors S1 ,S2 appropriately to achieve
�00,�01,�10,�11.

FIG. 7. MQE of the three qubit initial density matrix �top� and
after adjusting the prefactors S1 ,S2 ,S3 to achieve �000. Only mini-
mal adjustments were required.
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it returns 0 exactly as often as 1. Deutsch and Jozsa have
shown that a quantum computer can solve this problem ex-
ponentially faster than a classical computer.

A. The Collins version

The original version of the algorithm required N+1 qubits
for a N-bit function and two evaluation steps. Later, Cleve,
Ekert, Macchiavello, and Mosca �CEMM� modified the
Deutsch-Jozsa �DJ� algorithm by reducing the number of
evaluations to one �34�. Collins, Kim, and Holton removed
the requirement of an ancilla qubit �35�. We used this opti-
mized version of the DJ algorithm for the work reported
here.

The block diagram for this extended version of the algo-
rithm is shown in Fig. 9. We start with the initial state 	0N
with all N qubits in state 	0. The DJ algorithm proceeds via
the application of a Hadamard transformation HN=H � H
� ¯ � H � H to put all N qubits in superposition followed
by the unitary transformation Uf representing the unknown
function f�x�. The decision on the class of the test function is

based upon the amplitude of the state 	0N in the output state

P�	0N� =
1

2N� �
k=0

2N−1

�− 1� f�k�� = �1 if f constant,

0 if f balanced.
�

�36�

Just for demonstration how this is implemented within the
S-bus concepts we present in the following the simplest ver-
sion, namely, the case N=2. In this case there are 22N=16
functions f�x� with x� 
00,01,10,11� in total. Only two of
these functions are constant and six are balanced. As repre-
sentatives of these we present in Table III one constant and
three balanced functions. The others are related by inverting
the qubits.

The functions in Table III are implemented by the four
unitary transformations Uf � 
U0000,U0101,U0011,U0110� rep-
resented by diagonal matrices where the diagonal part is
shown in Eq. �37�

U0000 = 
+ 1, + 1, + 1, + 1� = I4, �37�

U0101 = 
+ 1,− 1, + 1,− 1� = − iei�Iz2, �38�

U0011 = 
+ 1, + 1,− 1,− 1� = − iei�Iz1, �39�

U0110 = 
+ 1,− 1,− 1, + 1� = ei��Iz1+Iz2�. �40�

Note that these transformations are z rotations which we
implemented by applying the corresponding phase rotations
to the second Hadamard transformation.

B. The S-bus implementation

The two-qubit Deutsch algorithm can readily be imple-
mented by applying the following pulse sequence:

UDeutsch = Uf�x�
† Py1,y2�− �/2�Uf�x�Py1,y2��/2� . �41�

The two Hadamard transformations were replaced by � /2
pulses with inverse phase. The second pulse was phase ro-
tated corresponding to the appropriate unitary transforma-
tion.

Although it is sufficient to evaluate just the states of the
first bit in order to decide if the function is constant or bal-
anced we have in addition performed a complete density ma-
trix tomography in order to evaluate the performance of the
implementation of the two qubit Deutsch algorithm. The
MQE tomography of the density matrices after applying the
Deutsch algorithm is included in Fig. 10.

The balanced function corresponds to the identity matrix
and no change of the initial �00 state is expected. The appli-

FIG. 8. Top: Pulse sequence for the implementation of the CNOT

operation. Bottom: Evolution under the CNOT sequence for variation
of �I. Solid line: Decaying sinosoid �see text�.

FIG. 9. Block diagram of the extended version of the Deutsch-
Jozsa algorithm for N qubits.

TABLE III. Two qubit Deutsch functions.

x 00 01 10 11

f0000 0 0 0 0 constant

f0101 0 1 0 1 balanced

f0011 0 0 1 1 balanced

f0110 0 1 1 0 balanced
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cation of the three balanced functions converts the initial
density matrix �00 into the residual pure density matrices �01,
�10, and �11 as is seen in Fig. 10.

IX. ENTANGLED NUCLEAR SPINS

Entangled nuclear qubit states have been created by the
standard selective Hadamard followed by the CNOT opera-
tion. The advantage for applying the S-bus concept compared
with direct nuclear spin entanglement lies in the enormous
increase in polarization mediated by the electron spin.

Consider as an example the ��−� state which would be
expressed in the S-bus concept as

�� =
1

8
I3 − �Sz � �1

4
I2 − Ix1Ix2 − Iy1Iy2 − Iz1Iz2� . �42�

Applying the Prerez-Horodecki approach �36,37� of par-
tial transpose �PT� one finds the quantum limit is reached for
��1/2. Note that �=tanh���S /2kBT� contains the electron
Larmor frequency which is about 600 times larger that the
nuclear Larmor frequency �I. Correspondingly the quantum
limit can be reached at a much higher temperature as com-
pared with direct nuclear entanglement.

X. SUMMARY AND OUTLOOK

We have introduced the S-bus concept of quantum com-
puting which capitalizes on the distributed hyperfine cou-
plings of nuclear spins �client qubits� to an electron spin �bus
qubit�. It was shown that this situation allows to prepare
highly correlated qubit registers just by applying pulse se-
quences to the bus qubit. Quantum algorithms were imple-
mented by unitary transformations on the client qubits and
the result was read out by the bus qubit. There are several
benefits of this procedure as compared with directly working
with electron spins. First of all the decoherence times of
nuclear spins in solids are appreciably longer than those of
electron spins and can be enlarged by decoupling sequences
beyond the ordinary T2 relaxation �38�. Moreover the sensi-
tivity of the qubit detection is enhanced by the indirect de-
tection method due to the larger magnetic moment of the
electron spin with the ratio of gyromagnetic moments �S /�I.
Last but not least is the �S /�I ratio responsible for the much
larger purity of the client qubit density matrix as compared
with their original Boltzmann density matrix. The quantum
critical regime can therefore be reached at a higher
temperature/magnetic field ratio. The concept can be ex-
tended to interconnected S-bus systems by designing solid
structures which allow controllable exchange coupling be-
tween different S-bus clusters.
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APPENDIX A: SUBSPACE PREPARATION
AND DETECTION

Generalizing the treatment in Sec. II we must consider
that in general there will be more qubits available than actu-
ally used in a quantum algorithm. We therefore separate the
qubits into working qubits of number n and residual qubits of
number N−n

	nN
�±� = �

k=n+1

N

e±i�akIzk �A1�

with 	N
�±�=	n

�±�	nN
�±�. This allows to treat the multiqubit reg-

isters present in the S-bus system consistently.
The preparation and detection of the qubit density matrix

includes preparing for pseudopure density matrices followed
by a quantum algorithm and a detection sequence. This is
discused in the following sections for three different prepa-
ration and detection sequences.

1. yy sequence

After a Py�� /2�-�-Py�� /2� sequence �Mims sequence
�17�� the density matrix can be expressed as

FIG. 10. Top: Pulse sequence for the implementation of the
Deutsch algorithm. Bottom: Density matrix tomography after
implementing all four functions defined in Table III.
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�yy =
1

2
�	n

�+�	nN
�+� + 	n

�−�	nN
�−�� �A2�

which translates readily into

�yy =
1

2
��

j=1

n

�cjI2 + isj2Izj��	nN
�+� +

1

2
��

j=1

n

�cjI2 − isj2Izj��	nN
�−�.

�A3�

Single qubit algorithms are set up in such a way that finally
only diagonal states are present which allows one to express
the outcome to be presented by a scaling factor −1
Sj 
1 in
front of the Izj operators. This results in the density matrix

�̃yy =
1

2
��

j=1

n

�cjI2 + isjSj2Izj��	nN
�+�

+
1

2
��

j=1

n

�cjI2 − isjSj2Izj��	nN
�−�. �A4�

If the same sequence is used for detection the resulting signal
can be expressed as

Syy =
1

2NTr
�yy�̃yy� �A5�

which leads after performing the trace operation to

Syy =
1

2
��

j=1

n

�cj
2 + sj

2Sj� + MN−n�
j=1

n

�cj
2 − sj

2Sj�� �A6�

with

MN−n =
1

2N−nTr
	nN
�+�2� = �

k=n+1

N

�ck
2 − sk

2� . �A7�

2. yx sequence

Proceeding in the same way as in the previous section we
arrive at

�yx =
i

2
�	n

�+�	nN
�+� − 	n

�−�	nN
�−�� �A8�

which translates readily into

�yx =
i

2
��

j=1

n

�cjI2 + isj2Izj��	nN
�+� −

i

2
��

j=1

n

�cjI2 − isj2Izj��	nN
�−�

�A9�

and including the scaling factor Sj to

�̃yx =
i

2
��

j=1

n

�cjI2 + isjSj2Izj��	nN
�+�

−
i

2
��

j=1

n

�cjI2 − isjSj2Izj��	nN
�−�. �A10�

Using the same sequence for detection the resulting signal is
defined as

Syx =
1

2NTr
�yx�̃yx� �A11�

which leads after performing the trace operation to

Syx =
1

2
��

j=1

n

�cj
2 + sj

2Sj� − MN−n�
j=1

n

�cj
2 − sj

2Sj�� . �A12�

It is not necessary, however, to use also a yx sequence for
detection. Any other sequence might be used instead. The
change in the expression �A12� can be readily calculated.

3. y�4 sequence

Proceeding in the same way as in the previous section we
arrive at

�y�4 =
1 + i

2�2
	n

�+�	nN
�+� +

1 − i

2�2
	n

�−�	nN
�−� �A13�

which translates readily into

�y�4 =
1 + i

2�2
�
j=1

n

�cjI2 + isj2Izj�	nN
�+�

+
1 − i

2�2
�
j=1

n

�cjI2 − isj2Izj�	nN
�−� �A14�

and including the scaling factor Sj to

�̃y�4 =
1 + i

2�2
�
j=1

n

�cjI2 + isjSj2Izj�	nN
�+�

+
1 − i

2�2
��

j=1

n

�cjI2 − isjSj2Izj��	nN
�−�. �A15�

With the same sequence for detection the observed signal is
defined as

Sy�4 =
1

2NTr
�y�4�̃y�4� �A16�

and one obtains after performing the trace operation

Sy�4 =
1

2�
j=1

n

�cj
2 + sj

2Sj� . �A17�

4. Total density matrices

In summary the density matrices derived in the previous
sections can in general be expressed as

�I =
1

2N p0I0 +
1

2N−1�
j

N

pjIzj

+
1

2N−2 �
j�k

pjkIzjIzk + ¯ + p1,. . .,N�
j

N

Izj , �A18�

where the parameters pq, etc., depend on products of the
parameter cj and sj. Comparing with Eqs. �14�, �18�, and �22�
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we find the following relation between the pq and the cj and
sj products

pq = 2N �
j�
q�

sj �
k�
N−q�

ck, �A19�

where q labels the set of sj products. Note that pure states
correspond to all 	pq	 equal and in particular equal to one.
This is achieved in the special case sj =ck=1/�2. The detec-
tion signal involving �I according to Eq. �A18� can be ex-
pressed as Tr��I�̃I� and leads to

SD =
1

2N�p0
2 + �

j

N

Sjpj
2 + �

j�k

SjSkpjk
2 + �

j�k�q

SjSkSqpjkq
2

+ ¯ + p1,. . .,N
2 �

j

N

Sj� �A20�

and alternatively in terms of the cj and sj parameters to

SD = �
j

N

cj
2 + �

j

N

Sjsj
2�

k�j

ck
2 + �

j�k

SjSksj
2sk

2 �
q�j,k

cq
2

+ �
j�k�m

SjSkSmsj
2sk

2sm
2 �

q�j,k,m
cq

2 + ¯ + �
j

N

Sjsj
2.

�A21�

APPENDIX B: TRIPLE ENDOR

The distinction which ENDOR line belongs to which mS
= ±1/2 sublevel system is usually made by so-called Triple-

ENDOR where one ENDOR line is saturated while all other
ENDOR lines are consecutively excited. Only those ENDOR
lines which are affected by the saturation belong to the same
mS sublevel system.

Applying Eq. �24a� for n=2 results in

Syy
�2� =

1

2
�cj1

2 + Sj1sj1
2 ��cj2

2 + Sj2sj2
2 �

+
1

2
�cj1

2 − Sj1sj1
2 ��cj2

2 − Sj2sj2
2 �MN−2. �B1�

A typical TRIPLE experiment consists of saturating the line
of Ij1 �Sj1=0� and sweeping through any of the other lines of
Ij2 and changing their state by Sj2. If we define the TRIPLE
experiment in the same way as we did in the ENDOR ex-
periment as the difference between the signal with no irra-
diation at the line of Ij2 �Sj2=1� and irradiation with strength
Sj2 we obtain

STRIPLE = �1 − Sj2�cj1
2 sj2

2 P2
�−�. �B2�

In other words all those residual ENDOR lines which be-
long to the same mS sublevel system are attenuated by the
factor cj1

2 . This allows one to determine this parameter for all
ENDOR lines successively. The ratio of attenuation with re-
spect to the ENDOR line is given by

RT = cj1
2 P1

�−�

P2
�−� �B3�

which essentially corresponds to cj1
2 since in many cases

P1
�−�� P2

�−�.
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