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Simultaneous histories, path sums, and measurements for noncommuting variables
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We analyze von Neumann-like quantum measurements in terms of simultaneous virtual paths constructed for
two noncommuting variables. The approach is applied to measurements of operator functions of conjugate
variables and to the joint measurements of such variables. The limits of applicability of the restricted phase
space path integral are studied. We demonstrate that, for a simple joint measurement, using entangled meter
states allows one to manipulate the order in which the measurements are conducted. The effects of “weaken-
ing” a measurement by choosing unsharp meter states are also discussed.
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I. INTRODUCTION

There have been several attempts to use the Feynman path
integral �1–3� as a basis for a general approach to the quan-
tum measurement theory �see, for example, �4–7�, and refer-
ences therein�. In particular, in �7�, the path integral was used
to propose a solution to the tunneling time problem �8�,
which is essentially the one of defining the duration � a quan-
tum particle spends in a specified region of space �, e.g.,
inside the barrier. One difficulty one encounters in analyzing
the problem by conventional methods is that � is related to a
time interval T during which a particle moves across the
region, rather than to one particular instant. It was shown in
�7� that, although such a quantity is not represented in a
conventional way by a Hermitian operator, the probability
amplitude to have a value � can be obtained by restricting the
Feynman path integral to the paths spending this duration in
�. Having defined the “traversal time wave function” in such
a way, one also obtains a recipe for measuring this quantity.
One of the corresponding measuring devices �the Larmor
clock� is a version of a conventional von Neumann meter �9�,
with the distinction that while a von Neumann meter acts
over a short period of time, the Larmor clock monitors the
particle throughout the time interval T and does not project
the particle’s initial state on any orthogonal basis �7�. The
desire to see whether a more general approach, similar to the
one just described, can be applied to describe the measure-
ments of quantities other than the traversal time was the mo-
tivation for Ref. �10� and also the present work. In �10� we
have shown that, for a given variable A, one can define paths
representing the virtual records of A in the same way a Feyn-
man path represents a possible virtual record of the particle’s
position. As with the Feynman trajectories, an unrestricted
sum over such paths yields the propagator, i.e., the transition
amplitude between the initial and final states of the system.
More importantly for the present discussion of quantum
measurements, it was also shown that a path sum restricted
to the paths giving a particular value f to a functional
�F�A�dt� yields the probability amplitude to obtain the
pointer reading f for a system coupled to a von Neumann-
like meter similar to the Larmor clock �7�. Thus, the path
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summation approach was shown to be helpful in both iden-
tifying the quantity measured in a finite time measurement
�11� and providing a simple mathematical tool for analyzing
various aspects of such a measurement, such as its accuracy
and strength �12�.

With the calculation of measurements probabilities re-
duced to summing individual amplitudes over classes of vir-
tual paths, one might be tempted to formulate a measurement
theory without mentioning either the operators or the Hilbert
space. This, however, is not possible. One aspect not dis-
cussed in Ref. �10� is the existence of physical quantities
whose operators do not commute with that of A, which is the

main subject of the present paper. The noncommutation of Â

and B̂ results in that the paths constructed for the quantity A
are not convenient elements for building the measurement
amplitudes involving B, and vice versa. For example, the
Feynman paths are well suited to analyze the traversal time,
but not the momentum measurements �13�. Although the
measurement amplitudes for B can always be expressed in
terms of the paths constructed specifically for this quantity,

this does not provide a solution for the case when both Â and

B̂ are measured at the same time �14,15�. For such a joint
measurement it is natural to attempt obtaining simultaneous
virtual records for both A and B. The best known example of
such histories are the phase space paths �3�, which simulta-
neously trace the virtual values of the particle’s position and
momentum. An unrestricted sum over these paths gives the
well-known phase space path integral for the Feynman
propagator, and a particular type of restriction was used, for
example, in �16� to describe continuous quantum measure-
ments. In this paper, we analyze the way to construct simul-
taneous paths for a general pair of noncommuting variables

Â and B̂ and the possibility �or the lack of it� to use such
paths to construct the probability amplitudes for simulta-

neous measurements of Â and B̂ as well as for various func-
tions of these quantities. The rest of paper is organized as
follows. In Sec. II, we briefly discuss the path decomposition
of the measurement amplitude for single variable A. In Sec.
III, we extend the approach to noncommuting variables A

and B, demonstrate nonuniqueness of the simultaneous path
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decomposition, and relate it to the operator ordering prob-
lem. In Sec. IV, we give path analysis of a simultaneous
measurement of the position x and momentum p, similar to
that analyzed by Arthurs and Kelly �14� and discuss the case
of two meters prepared initially in an entangled state. Section
V contains a phase space path analysis of measurements of a
linear combination of x and p. Our conclusions are presented
in Sec. VI.

II. PATH DECOMPOSITION FOR A SINGLE VARIABLE A

Consider a quantum system in a Hilbert space of an arbi-
trary dimension, prepared in an initial state ��0�, which at
t=0 is coupled to a von Neumann-like meter with pointer
position f ��=1�

i�t���t�f�� = �Ĥ − i��t�Â� f����t�f�� , �1�

���t = 0�f�� = G�f���0� . �2�

The duration and strength of the coupling, which involves
the product of the pointer’s momentum with the measured
variable A, is controlled by the switching function ��t�. At
some time t the meter, whose initial wave function in the
position representation is G�f�, is read, i.e., its position is
accurately determined and used to extract the information
about the observed system. In the following, we will refer to
���t � f�� as the measurement state. If a system is postselected
�12� in a known state ��1� the measurement amplitude, i.e.,
the conditional probability amplitude to find the meter read-
ing f , is given by

A�f ,�0,�1� = ��1���t�f�� �3�

and distribution of the meter’s reading is given by the stan-
dard formula

��f ,�0,�1� 	
�A�f ,�0,�1��2


 �A�f�,�0,�1��2df�

. �4�

If there is no control of the system’s state after the measure-
ment, the probability to find the pointer at f is proportional to
the norm of the measurement state

��f ,�0� 	
���t�f����t�f��


 �G�f��2df

. �5�

A well-known �and, indeed, defining� property of the von
Neumann meter �9� is that when a strong coupling is applied
over a short period of time, during which it overrides the

system’s own Hamiltonian Ĥ, e.g.,

��t� = lim
T→0

T−1�0T�t� , �6�

�ab�z� 	 1 for a � z � b, and 0 otherwise, �7�

the resultant measurement state is

���t�f�� = � �ak��0�G�f − ak��ak� , �8�

k

052115
where ak and �ak� are the eigenvalues and eigenfunctions of

the measured operator Â, respectively,

Â�ak� = ak�ak� . �9�

For a sufficiently narrow G�f�, the final position of the

pointer coincides with one of the eigenvalues of Â and Eq.
�8� is often used to identify the scalar product �ak ��0� with
the probability amplitude that the variable A has a value ak a
given moment in time.

It is easy to show that while a von Neumann meter “mea-

sures” the eigenvalues of an operator Â, the more general
procedure �1� measures the value of a particular functional
on the system’s virtual paths �10�. We note first that any
solution of Eq. �1� can be written as a convolution �10�

���t�f�� =
 G�f − f���	�t�f���df�, �10�

where �	�t � f�� is the measurement state for to the case when
the initial pointer position is known exactly, i.e., �	�0 � f��
=
�f� ��0�. Using Eqs. �1� and �10�, we can write the Fourier
transform ���t ���� �to simplify the notations we will use the
same letter to denote the function and its Fourier transform
with respect to f , e.g., G��� stands for the Fourier transform
of G�f��,

���t�f�� = �2��−1
 d� exp�i�f����t���� , �11�

as

���t���� = G���exp�− i

0

t

�H + ���t��Â�dt���0� .

�12�

Next we divide the interval �0, t� into N subintervals,

j � t � �j + 1�,  	
t

N

and assume that the initial meter’s wave function G�f� is
peaked around f =0 with a half width �f , so that the factor
G��� effectively limits the range of � in Eq. �11� to −1/�f
���1/�f . Thus, in the limit N→� the exponential in Eq.
�12� can be written as

�
j=1

N

�
kj

exp�− iĤ�j���akj
�exp�− i���j�akj

��akj
� , �13�

where we have used the well-known result �2�

exp�Â + B̂�
N

= exp� Â

N
�exp� B̂

N
� + O� 1

N2� �14�

to factorize the exponential containing Ĥ and Â and used the
spectral decomposition for the latter. Inserting Eq. �13� into
Eq. �11� and carrying out integration over � yields
-2
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���t�f�� =
 df�G�f − f���
�a�




�� f − 

0

t

��t��a�t��dt���	�t��a��� , �15�

where we have introduced a path a�t��, which at each 0

� t�� t takes its value from the spectrum of the operator Â,
as a limit of the set of discrete values �ak1

,ak2
, . . .akN

� for
N→�. A functional Z�a� on such a path is defined by the
limit of its discretised form Z�ak1

,ak2
, . . .akN

� as N→�. In
particular, in Eq. �15� the measurement substate �	�t � �a��� is
given by

���t��a��� 	 lim
N→�

��
j=1

N

exp�− iĤ��akj
��akj

���0� �16�

and the integral in the argument of the 
 function is under-
stood as the limit of its Riemann sum,



0

t

��t��a�t��dt 	 lim
N→�

�
j=1

N

��j�akj
. �17�

Finally, for a functional Z�a� the sum over paths is defined as

�
�a�

Z�a� 	 lim
N→�

�
k1,k2. . .kN

Z�ak1
,ak2

, . . . ,akN
� . �18�

Equation �15� illustrates the nature of the von Neumann-like
measurement �1�. Instead of a �virtual� value of a variable A
at a given time t�, one is encouraged to think of a virtual
record �path� traced by A throughout a time interval �0, t�
with �	�t � �a�t����� yielding the result of evolution of the sys-
tem’s initial state ��0� along this particular path. A von
Neumann-like meter with a switching function ��t� measures
the value of the functional F�a�	�0

t ��t��a�t��dt� by destroy-
ing coherence between the classes of paths corresponding to
different values of F. Introducing a quantum uncertainty �f
in the initial pointer position results in separating the paths
into “fuzzy” classes, such that in the class labeled by the
value f the actual value of the functional F lies within the
range f −�f �F�a�� f +�f .

III. PROPERTIES OF THE MEASUREMENT SUBSTATES:
FEYNMAN PATHS AND SOME EXAMPLES

Certain properties of the measurement substates
�	�t � �a�t����� should be mentioned here. Two substates cor-
responding to two different values of f are, in general, not
orthogonal. This is seen from the way they were constructed,
as the number of substates usually exceeds that of the eigen-

states of the measured operator Â.
The paths are such that at each time their values must

coincide with one of the eigenvalues of the operator Â, so
that an impulsive von Neumann measurement can be seen as
distinguishing between the paths “passing” through different

eigenvalues of Â at a given time. An unrestricted coherent
sum of the substates over all paths yields Schroedinger state

of the system at the time t,
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�
�a�

�	�t��a��� = exp�− iĤt���0� , �19�

The number of eigenvalues may vary from two, for a
two-level system, to an infinite continuum for a particle
whose coordinate varies between −� and �. For the latter,

the choice, Â= x̂ makes the path sum in �19� the Feynman
path integral �1�. In particular, the Feynman propagator �1�
between the space-time points �x0 ,0� and �x1 , t� is obtained
by projecting the measurement substate onto the final state
�x1� and summing over all coordinate histories �Feynman
paths� ��x��x1 �	�t � �x��� for a particle preselected in the state
��0�= �x0�.

The “eigenpaths” �a�t��� can be immersed into a larger set
���t��� of all functions taking, at all times, arbitrary real val-
ues by introducing the 
 functional, 
���
	 limN→�� j=1

N 
���j��, to write

���t������ = �
�a�


�� − a����t��a��� .

It can then be shown that the substates ��t � ����� satisfy the
functional “recorder” equation

i�t���t������ = � Ĥ − iÂ



��t�
����t������ . �20�

A detailed analysis of this equation and its relation to von
Neumann-like measurements can be found in �10�.

The substates ���t � �a��� can also be used to construct
measurement amplitudes for other �possibly time-dependent�
variables whose operators commute with Â at all times. The
general expression for such an operator is given by the spec-
tral representation

F�Â,t� = �
k

�ak�F�ak,t��ak� , �21�

where F�z , t� is some real function. Replacing in Eq. �1�
−i��t�Â by −iF�Â , t� and repeating the steps leading to Eq.
�15�, we obtain

���t�f�� =
 df�G�f − f���
�a�


� f − 

0

t

F�a,t��dt���	�t��a��� ,

�22�

which shows that a path sum restricted to give a definite
value to a functional

F�a� = 

0

t

F�a,t��dt� �23�

corresponds to a measurement of the variable represented by

an operator function F�Â , t�. Finally, Eqs. �1� and �15� are
easily generalized to the case where several �M� meters con-
duct simultaneous measurements of different commuting

functions of Â. In this case the measurement amplitude for

the coupling −i�i=1
M Fm�Â , t��dt� is obtained as a restricted

path sum over classes of paths giving definite values to the
t
functionals �0Fm�a , t��dt�, m=1,2 , . . . ,M �10�.
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Previous work, which motivated development of the gen-
eral approach presented in Sec. II and III, is worth a brief
discussion. Its initial objective was to propose a solution to
the tunneling or the traversal time problem �for a compre-
hensive review of the effort and some references, see �7��.
The problem is, essentially, that of determining the duration
� a quantum particle spends in a given region of space �. By
its very nature, � is defined for a given time interval �0, t�
during which the particle moves. Classically, � can be mea-
sured by equipping the particle with a Larmor clock, a mag-
netic moment that precesses when inside a constant magnetic
field contained within �. Quantally, such a clock performs
not an instantaneous von Neumann measurement, but rather
a more general von Neumann-like measurement described in
the beginning of Sec. II. Thus, a traversal time measurement
is not associated with a conventional orthogonal expansion
of the Schroedinger state of the observed particle, which ex-
plains much of the controversy surrounding the subject. It is,
however, readily analyzed by the method of Sec. II. Indeed,
the particle’s operator, which occurs in the coupling between
the magnetic moment and the field, is the projector onto �,

�̂��x�, with eigenvalues 1 and 0 for the states localized inside
and outside �, respectively. The projector commutes with
the particle’s position x̂, and, with the help of Eq. �22�, one
can analyze the problems using the eigenpaths of the latter,
i.e., the Feynman paths �1�.The functional in Eq. �23� be-
comes the “stopwatch” expression for the net time a given
Feynman path spends inside the region,

F�x� = 

0

t

���x�dt�,

and the quantum Larmor clock is readily seen as a natural
generalization of the classical one. Where classical mechan-
ics provides a unique duration �, quantum mechanics offers a
range of durations, each assigned a probability amplitude
equal to the net Feynman weight exp�iS�x�t��� for all paths
spending exactly � in the region. Accordingly, there is a
range of precession angles for the magnetic moment, which
acts as a filter destroying the coherence between the classes
of paths. In practice, the magnetic moment, or a spin, may
have only a finite number of components �17� j and a dis-
crete set of rotation angles. The path integral analysis still
applies and the clock becomes a von Neumann-like meter of
Sec. II in the limit j→� �see, for example, Eq. �15� of Ref.
�17��.

A similar Feynman path approach can be applied to any
variable that commutes with the position x̂, F�x̂�. The value
of a functional �0

t F�x�dt� can be measured by a Larmor clock
interacting with the magnetic field whose strength B varies
with x as F�x� �cf. F�x�=���x� for the traversal time just
discussed�. With the choice

F = T−1

0

t

A�x�dt ,

the precession angle of the clock �which runs until t=T�
yields the time average of the variable A�x�. For example, a
measurement of the particle’s position, A�x�=x, requires a
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field B�x. Classically, if the instantaneous position is of
interest, one may choose T→0 and apply a very large field
over a short time, so that the particle will not move while the
impulsive measurement continues. Then the angle, by which
the clock is rotated �positive if x�0, negative if x�0 and
zero for x=0� would indicate the current distance from the
origin x=0. In all other cases, the clock would register the
position averaged over the duration of the measurement. A
path integral analysis of a quantum measurement of parti-
cle’s position is given in Ref. �18�. Its outcome crucially
depends on the initial state in which the meter is prepared. If
this state is chosen to be Gaussian, an impulsive measure-
ment makes the particle pass through a Gaussian slit �18�,
first discussed in �1�. If a measurement takes a finite time, the
meter coupled to a linearly changing magnetic field separates
Feynman paths into noninterfering classes labeled by the
value of the mean position. In the case of position, a meter
with a finite number of spin components can be analyzed just
as in the case of the traversal time, as was done in Sec. VI of
Ref. �18�.

On should also bear in mind that time extended measure-
ments of the traversal time or the mean position share one
basic property with the impulsive von Neumann measure-
ment, which, after all, is their special case. Namely, an accu-
rate measurement perturbs the particle’s motion. In the im-
pulsive case, this perturbation takes the form of a sudden
conversion of the particle’s pure state into a mixture and its
eventual collapse �the origin and nature of this collapse is
beyond the scope of the present work�. In a finite time mea-
surement, the meter acts on the particle until the measure-
ment is completed and the particle ends up in a mixture of
states obtained by the evolution restricted to a particular
class of Feynman paths. �For an attempt to minimize this
perturbation by using a “kicked,” rather than continuous Lar-
mor clock see �19�.� An accurate meter can destroy a subtle
interference phenomenon, such as tunneling, by making the
particle “go over the barrier.” If so, does one really measure
the tunneling time? On one hand, tunneling occurs when all
Feynman paths and, therefore, all �’s interfere destructively
to produce an exponentially small transition probability.
Thus, all information about the amount of time the particle
spends in the barrier is lost to interference, just as when the
information about the slit chosen by an electron is lost if one
chooses to observe an interference pattern in a two-slit ex-
periment �1�. On the other hand, to compute the probabilities
for obtaining a particular value of � one uses the set of paths
and probability amplitudes defined for a particle in the ab-
sence of a meter. However, in assigning the probabilities, one
already assumes that the coherence between the classes of
paths is destroyed. A suitable physical agent for effecting this
decoherence is a Larmor clock whose interaction with the
particle and tunneling. The situation is now similar to the
two-slit experiment in which the passage of electron via a
particular slit is observed at the cost of destroying the inter-
ference pattern. An attempt to minimize the perturbation in-
curred by the meter leads to the so-called weak measure-
ments �12�, which are known to produce anomalous results
and would not satisfy anyone expecting a well-defined
classical-like duration of tunneling �7�.

The fact that converting interfering amplitudes into exclu-

sive ones is synonymous with subjecting the system to an
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external interaction is the basic feature of all quantum mea-
surements and cannot be bypassed without departing from
the basic principles of the conventional quantum mechanics.
Feynman �20� pointed out that the two-slit experiment con-
tains, in a nutshell, the essence of the quantum theory and
warned against attempts to rationalize electron’s behavior.
We would simply note that the path integral approach allows
one to extend the notion of a quantum measurement beyond
expanding the state of the measured system in some orthogo-
nal basis. Such an extension retains, although presented in a
slightly different form, all conceptual problems of a standard
impulsive von Neumann measurement �9�. Our discussion of
the relation between restricted path sums and von Neumann-
like measurements would end here were it not for the exis-
tence of variables that do not commute with the chosen op-

erator Â �e.g., the momentum p̂, which does not commute

with the position x̂ �13��. Each such variable, B̂, requires a
different set of paths to represent its measurement amplitude.
This presents a problem if one wishes to discuss simulta-
neous measurements of such quantities in the language of
path sums. In Sec. IV we will analyze the possibility of con-
structing simultaneous histories for two noncommuting vari-
ables and their relation to von Neumann-like measurements.

IV. SIMULTANEOUS HISTORIES AND MEASUREMENTS
FOR NONCOMMUTING VARIABLES

Consider next two variables A and B whose operators do

not commute, �Â , B̂��0. The presence of two, quantities
rather than just one, makes the path analysis of measure-

ments involving both Â and B̂ more complicated. Following
the considerations of Sec. III, we begin with a simultaneous
von Neumann-like measurement of two operators �the opera-
tor functions are understood as in Eq. �21��

Ĉi = Fi1�Â,t� + Fi2�B̂,t�, i = 1,2 �24�

so that the Schroedinger equation describing the system
coupled to two meters becomes �f 	�f1 , f2��

i�t���t�f�� = �Ĥ − iĈ1� f1
− iĈ2� f2

����t�f�� , �25�

���t = 0�f�� = G�f���0� . �26�

As in Eqs. �11� and �12�, the wave function can be obtained
as a Fourier transform ��= ��1 ,�2�, �f =�1f1+�2f2�,

���t�f�� = �2��−1
 d�G���exp�i�f�

�exp�− i

0

t

�H + �1Ĉ1 + �2Ĉ2�dt���0� . �27�

Slicing again the time interval �0, t� into N segments
of length , we encounter exponential terms of the form

exp�− iĤ�j� + �1�F11�Â, j� + F12�B̂, j��

ˆ ˆ
+ �2�F21�A, j� + F22�B, j���
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which, for →0, may be factorized by applying the relation
�14� twice

exp�− iĤ�j��exp�− i��1F11�Â, j� + �2F21�Â, j���

�exp�− i��1F12�B̂, j� + �2F22�B̂, j��� . �28�

Note that the choice of the order of the terms in Eq. �28� is
not uniquely prescribed as we could, for example, inter-
change any of the two exponentials. We will proceed for now
with the ordering defined by Eq. �28� because it leads, for
example, to the well-known phase space path integral �2,3�
when A and B are the particle’s coordinate an momentum.
We will discuss other possibilities at the end of this section.
With the order chosen, inserting the spectral representation
of the last two exponentials into Eq. �28� and performing
integration over d� in Eq. �27� yields a restricted path sum

��1���t�f�� =
 df�G�f − f��

��
�ab�


� f1 − 

0

t

�F11�a,t�� + F12�b,t���dt�
�
� f2 − 


0

t

�F21�a,t�� + F22�b,t���dt�
���1�	�t��a,b��� , �29�

where the substates �	�t � �a ,b��� are given by

���t��a,b��� 	 lim
N→�

��
j=1

N

exp�− iĤ�j���akj
���akj

�bnj
��bnj

�
���0� , �30�

and the path sum ��a,b� denotes, as before, the limit
limN→��k1,. . .,kN,n1,. . .,nN

.
It is instructive to compare the quantum result �29� and

�30� with its classical counterpart. Consider for this purpose
a classical system coupled to two classical meters with the
positions �f1 , f2� and the momenta ��1 ,�2� respectively, so
that the total Hamiltonian is

H�p,x� + �1C1�p,x� + �2C2�p,x� ,

where Ci�p ,x� are the classical variables corresponding to
the operators �24�. It is readily seen that the momenta of both
meters are conserved. Setting �1=�2=0 as well as f1�0�
= f2�0�=0 and integrating the pointer’s equations of motion
yields

f1�t� = 

0

t

�F11�A,t�� + F12�B,t���dt�,

f2�t� = 

0

t

�F21�A,t�� + F22�B,t���dt�,

Ȧ = �A,H� ,

Ḃ = �B,H� ,

where �Z ,H� denotes the Poisson’s bracket �21�. Thus, in the

classical case, there is only one simultaneous path
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�A�t� ,B�t�� and the only possible pointer positions are those
coinciding with the values of the functionals �0

t �F11�A , t��
+F12�B , t���dt� and �0

t �F21�A , t��+F22�B , t���dt�. In the
quantum case, there is a variety of paths giving various val-
ues to the two functionals. As a result, the probability ampli-
tude to find the meter readings f1 and f2 is found as the sum
of the individual path amplitudes ��1 �	�t � �a ,b��� over the
paths that give these values to these functionals. This simple
analysis of the work of von Neumann-like meters is one of
the central results of this paper.

The path decomposition �29� is similar to that in Eq. �15�
with the difference that it involves two-component paths
�a�t�� ,b�t��� whose first and second components take the val-

ues from the spectra of the operators Â and B̂, respectively. A
coherent sum over the values of one variable reduces �29� to
the single variable path decomposition �16� for the other,
e.g.,

�
�b�

���t��a,b��� = ���t��a��� . �31�

Choosing A and B to be the coordinate p and momentum x,
respectively, of a non relativistic particle with the classical
Hamiltonian

H�p,x� = p2/2m + V�x� ,

we obtain the phase space path integral �2,3�. Indeed, using

�p�x� = �x�p�* = �2��−1/2exp�ipx�

and noting that lim→0�p �exp�−i�p̂2 /2m+V�x̂��� �x�
�exp�−i�p2 /2m+V�x����p �x�, we rewrite Eq. �30� as

���t��x,p��� = lim
N→�

�2��1/2−Nexp�− Ĥ��pN��x1��0�

� exp�i�
j=1

N−1 � pjxj+1 − pj
2

2m − V�xj+1�� − i�
j=1

N

pjxj .

�32�

For a particle starting in a state �x�� and then postselected in
some �x��, the amplitude for a path becomes

A��p,x�,x�,x�� 	 �x����t��x,p���

= exp�− i

0

t

�pẋ − H�p,x��dt� �33�

and summing Eq. �33� over all paths connecting x� and x�,
yields the standard phase space path integral for the propa-
gator �2,3�

K�x�,x�,t� =
 DpDx exp�− i

0

t

�pẋ − H�p,x��dt� .

Note that the fact that the commutator of the position and
momentum operators is a number rather than an operator,
allowed us to write the substate �30� in a more compact form
�32�. We will further explore this property in the following
sections.

The convenience of Eqs. �29� and �30� is that they can be

used in at least two different ways. �i� The choice F12=F21
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=0 corresponds to two von Neumann-like measurements of

the variables F11�Â , t� and F22�B̂ , t� for which the accurate
measurement amplitude can now be obtained as a sum over
of paths giving definite values to the functionals

F1�a� = 

0

t

F11�a,t��dt�

and

F2�b� = 

0

t

F22�b,t��dt�.

Depending on the choice of F11 and F22, the two measure-
ments can occur consecutively, partially overlap in time, or
coincide. The latter case was studied in the famous work by
Arthurs and Kelly �14� and we will return to the joint mea-
surements in Sec. V. �ii� The choice F21=F22=0 corresponds
to a single von Neumann-like measurement of the sum of the

variables F11�Â , t� and F12�B̂ , t�. One can, of course, treat
this sum as a new variable, calculate its spectrum and eigen-
paths, and construct the measurement amplitude as described
in Sec. II. We are, however, interested in using for this pur-

pose the simultaneous path for the operators Â and B̂ defined
in Eq. �30�. With the help of Eq. �30�, the measurement am-
plitude can now be obtained by summing over the classes of
path giving a definite value to the functional

F�a,b� = 

0

t

�F11�a,t�� + F22�b,t���dt�,

which involves both components of a path

���t�f�� = �
�ab�


� f − 

0

t

�F11�a,t��

+ F22�b,t���dt��	�t��a,b�� . �34�

It is important to note here that the simultaneous path expan-
sion �29� cannot be extended to quantities that involve prod-
ucts, rather than sums of the variables A and B. The difficulty
arises because the same classical product, e.g., A2B2, may
have different Hermitian operator realizations in the quantum

case, for example, �Â2B̂2+ B̂2Â2� /2, ÂB̂2Â, etc. Now, the
right-hand side of Eq. �29� involves the substates
�	�t � �a ,b���, which were defined previously without any ref-
erence to a particular ordering of the operator product to be
measured. Neither can this information be contained in the

-function restriction term. Thus, it is not clear to which of
the two realizations, �p̂2x̂2+ x̂2p̂2� /2 or x̂p̂2x̂, would corre-
spond, for example, the restricted phase space path integral

�x1�	��t�f�� =
 DpDx
� f − 

0

t

p2x2dt��
�exp�


0

t

�pẋ − H�p,x��dt� . �35�
-6
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A close inspection �see Appendix A� shows that it corre-
sponds to neither. In fact, the evolution of the substate
�	��t � f�� is nonunitary and cannot, therefore, be related to
any measurement procedure. Without such a relation the
probability ��x1 �	��t � f���2 has no obvious meaning and the
restricted path integral remains a purely mathematical con-
struct. Note that a problem, similar to the one just described,
arises whenever path integrals are used to impose operator
ordering �2�. The form of the measurement subsets employed
in Eq. �35� was fixed when by our arbitrary choice of the
order of the three terms in Eq. �28�. As shown in Appendix
A, valid path decompositions for various realizations for the
operators containing products of powers of the particle’s co-
ordinate and momentum can be obtained by using alternative
definitions of the substates in �	�t � �a ,b��� in Eq. �30� and
the paths themselves, at the cost of losing the simplicity and
elegance of the conventional phase space path integral �33�.
These realizations correspond to different resolutions of the

exponential operator exp�−iĤ− i�p̂− i�x̂�, which are pos-
sible because the factorization formula �14� only states that

for →0 the exponential exp��Â+ B̂+ Ĉ+ . . . �� can be fac-
torized but does not prescribe a unique way for doing so. The
equation of motion obeyed by a restricted path sum of a
particular type usually depends on the choice of such factor-
ization. As a result, it is always possible to choose a suitable
path sum to describe the measurement of a particular opera-
tor realization of a quantity involving products of the two
variables. One does not, however, find a unique recipe to suit
all cases and caution should be exercised when using path
integrals similar to �35�. Restricted phase space path inte-
grals were used, for example, in �16�, but we are not aware
of any detailed analysis of the limits of their applicability. In
Sec. V, we provide examples of our approach by considering
in further detail measurements of the particle’s position and
momentum.

V. SIMULTANEOUS MEASUREMENTS
OF TWO CONJUGATE VARIABLES:

CHANGING THE ORDER BY ENTANGLEMENT

We continue by considering a system with a zero Hamil-
tonian

Ĥ 	 0. �36�

The approximation �36�, which is often used �12,14�, as-
sumes that the measurement�s� are sufficiently fast for the
effects of the Hamiltonian to be neglected while the system
interacts with the meter�s�. In fact, our analysis can be ap-
plied to any two operators whose commutator is a purely
imaginary C number

�Â,B̂� 	 ÂB̂ − B̂Â = C = i�C� . �37�

Applying the Baker-Campbell-Hausdorf formula, we have
the exact result

exp�aÂ + bB̂� = exp�aÂ�exp�bB̂�exp�− abC/2� , �38�

which holds for arbitrary constants a and b and which we

will use to verify the derivation of Sec. IV. Consider next
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two von Neumann-like meters, measuring Â and B̂, respec-
tively, whose switching functions � j�t�, j=1,2, may or may
not overlap in time. As has been shown in Sec. II, such a
measurement makes distinguishable the classes of simulta-
neous paths labelled by the values f1 and f2 of the function-
als �0

t �1�t��a�t��dt� and �0
t �2�t��b�t��dt�. The corresponding

measurement state can be written as the Fourier integral

���t�f�� = �2��−2
 d�exp�i�f�G���

�exp�2�1�2C�
j=1

N

�1�j��2�j��
���

j=1

N

exp�− i�1�1�j�Â�

�exp�− i�2�2�j�B̂���0� , �39�

where, as before, G is the initial state of the two meters, and
we have used Eq. �38� to factorize the exponential

exp�−i��1�1�j�Â+�2�2�j�B̂�� and separate the terms that
contain the commutator C. It is readily seen that the contri-
bution of these terms can be neglected, as assumed while
deriving Eq. �29�, since the first exponent in Eq. �39� tends to
�1�2�0

t �1�t���2�t��dt� and vanishes as →0. Thus, we ob-
tain Eq. �29� with the substates �	�t � �a ,b���
=� j=1

N �ajk��ajk �bjl��bjl�, which have a particularly simple

form since Ĥ	0.

If Â is measured before B̂, i.e., if the first meter is
switched on and off before the second meter is enacted, all

exponentials containing Â occur before those containing B̂ in
the product of Eq. �39�. If, on the other hand, the actions of
the two meters overlap in time, the two kinds of exponentials
are enmeshed. It follows from Eq. �38� that

exp�aÂ�exp�bB̂� = exp�bB̂�exp�aÂ�exp�abC� , �40�

and we can use this relation to rearrange the operator

exponentials in such a way that all those containing Â are

to the right of those containing B̂, as if the measure-

ment of Â preceded that of B̂. The price of such a rear-
rangement is the reappearance of the commutator term,
which, this time, cannot be neglected. Indeed, moving to

the right the first exponential exp�−i�1�1�k�Â� sandwiched

between similar terms containing B̂ produces the factor
exp�−i�1�2 �C ��1�k��2�k�2�, moving the second one pro-
duces two similar factors, and so on. The net result is

���t�f�� = �2��−2
 d� exp�i�f�G���exp�− i�1�2�C�I�t��

�exp�− i�1B̂�exp�− i�1Â���0� , �41�

where for →0 the factor I�t� does not vanish but becomes
the double integral
-7
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I�t� � 

0

t

dt�

0

t�
dt��1�t���2�t�� , �42�

and we have assumed



0

t

�i�t��dt� = 1, i = 1,2.

For example, the switching functions �i can be chosen as
rectangular “windows,” shifted relative to each other,

�1�t� = T−1�T,2T�t�, �2�t� = T−1��,�+T�t� , �43�

as shown in Fig. 1�a� and we choose t�3T. Now for �=0 the

measurement of B̂ occurs before that of Â, for �=2T Â is

measured before B̂, and choosing �=T yields a simultaneous
joint measurement of the two operators, similar to that stud-
ied by Arthurs and Kelly �14�. In all other cases, the two
measurements partially overlap in time. With this choice of
the switching function, the integral �42� becomes �see Fig.
1�b��

I��t� = 1 − �2/2T for 0 � � � T �44�

and

�2 − �/T�2/2 for T � � � 2T .

Let us assume next that we have an experimental setup to
perform a sequential measurements of the two variables with

Â always measured first, i.e., �=2T and the two uncorrelated
pointers prepared initially in a product state G1�f1�G2�f2�, so

FIG. 1. �a� Rectangular switching functions for the two meters
as given in Eq. �43� and �b� the region of integration in Eq. �42� for
the switching functions shown in �a�.
that in Eq. �41�
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G��� = G1��1�G2��2� . �45�

It is readily seen now that preparing the two meters in a
correlated entangled state,

G��� = G1��1�G2��2�exp�− i�1�2�C�I�� �46�

or, equivalently,

G�f� =
 G1�f1 − f1��G2�f2 − f2��exp� if1�f2�

�C�I�
�dfdf�, �47�

allows us to obtain the results corresponding to the measure-
ments performed with uncorrelated meters in any temporal
order, even though, in reality, the system is always coupled
first to the first and after that to the second pointer. This
interesting possibility to “manipulate the order of the mea-
surements” by entanglement arises from the fact that for the
conjugate variables the commutator of exponential operators
produces an additional number factor in the Fourier trans-
form �39�, which can then be absorbed in the initial meter
state. Note that the meter state �46� is broad if the states
G1�f1� and G2�f2� are sharp, thus giving large uncertainties
in the initial positions of the two pointers.

We conclude this section by giving the expression for the
distribution of the results of a similar measurement of the

position, Â	 x̂, and momentum, B̂	 p̂, �t�3T�

��f1, f2� 	
���t�f1, f2����t�f1, f2��


 df���t�f1, f2����t�f1, f2��
, �48�

conducted by two uncorrelated Gaussian meters,

G�f� = exp�− f1
2

�1
2 �exp�− f2

2

�2
2 � , �49�

on a particle, initially prepared in a Gaussian state

�x��0� = exp�− x2

�x2� . �50�

It is given by the product of two Gaussian functions �details
of the derivation are given in Appendix B�

��f1, f2,�0� = 2�−1� �D − 1�2

�1
2 +

�2
2

4
+

1

�x2�1/2

��D2

�2
2 +

�122

4
+

�x2

4
�1/2

�exp�− f1
2

2
�D2

�2
2 +

�1
2

4
+

�x2

4
��

�exp�− f2
2

2
� �D − 1�2

�1
2 +

�2
2/4 + 1

�x2 �
�51�

where D���	 I� given by Eq. �44� so that for D=0 the coor-
dinate is measured first, while for D=1 it is the momentum.
The choice D=1/2, and the special “balanced” choice of the
accuracies of the two meters �1=1/�2, corresponds to the

simultaneous measurement of the two quantities, as analyzed

-8
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by Arthurs and Kelly �14�. Note that in this special case the
probability ��f1 , f2�� can be written as square of the modulus
of a single probability amplitude �see Eq. �8� of Ref. �14��.
However, in general, Eq. �48� must be used.

VI. SUM OF TWO CONJUGATE VARIABLE:
WEAK MEASUREMENTS

Next we consider a von Neumann-like measurement of an

operator Ŝ which is a linear combination of the particle’s
position and momentum

Ŝ = ax̂ + bp̂ , �52�

where we will put the constants a and b, required to insure

that Ŝ has correct units, to unity, a=b=1. Again, a classical
analogy is helpful. A classical meter coupled to a particle
with the Hamiltonian

H�p,x� + ���1�t�p + �2�t�x� �53�

measures the values of p+x provided both x and p do not
change appreciably during the measurement and ��i�t�dt=1,
i=1,2,

f = 

0

t

��1�t��p�t�� + �2�t��x�t���dt� � p�0� + x�0� .

�54�

Since a classical measurement does not perturb the particle,
the switching functions �1,2�t� can be chosen, for example,
so that the pointer measures the momentum first, then the
coupling is turned off and the same pointer is coupled to the
position x. Alternatively, this order can be reversed or, what
may seem more natural, the pointer can be coupled it both to
x and p at the same time, using �1�t�=�2�t�. It is easy to
check that all this choices give the same result: the pointer’s
position will be correlated with the value p+x after the mea-
surement has taken place.

Quantally, it is not so. A meter which is coupled to mea-
sure the momentum first, would perturb the particle’s posi-
tion, and therefore, the result of the measurement. Thus, dif-
ferent couplings would, in principle, give different results.
As in Sec. V, we will neglect the system’s own Hamiltonian
during the period it is coupled to a single meter designed to
measure p̂+ x̂ so that

i�t���t�f�� = − i� f��1�t�x̂ + �2�t�p̂����t�f�� �55�

with the switching functions �i defined as in Sec. V. Note
that the meter measures the value of x+ p in such a way that
the individual values of x and p remain indeterminate. Pro-
ceeding as in Sec. V, we write the measurement state as

���t�f�� = �2��−1
 d� exp�i�f�G���exp�− i�2�C�I�t��

�exp�− i�p̂�exp�− i�x̂���0� , �56�

where, as before, G��� is the Fourier transform of the initial
meter state, and we have rearranged the operators so that
052115
those containing x̂ occur first. The information about their
original ordering is contained in the overlap of the switching
functions I�t� defined earlier in Eq. �42�. Consider now the
measurement amplitude for the particle prepared in a posi-
tion state �X� and postselected after the measurement in a
momentum state �P�, A�f , P ,X�	�P ���t � f�� with the rect-
angular switching functions given in Eq. �43�. From Eq. �56�,
we have

A�f ,P,X� = �2��−3/2exp�− iPX� 
 d�G���

�exp�− i�2I��exp�i��f − �P + X��� , �57�

where I��t� is given by Eq. �44�. If the pointer is first coupled
to the particle’s coordinate, �=2T, I�=0 and the second
Gaussian term in Eq. �56� disappears. The integral can be
carried out to give the initial pointer state shifted by the
value P+X,

APX�f� = �2��−1/2exp�− iPX�G�f − �P + X�� �58�

so that, for a system preselected with a known position and
postselected with a known momentum, our measurement is
sharp and yields the sum of the two. Note that this is
achieved by choosing a particular order in which the cou-
plings are enacted. The possibility to obtain such a result, or
the lack of it, was discussed by Aharonov et al. in �22�, who
concluded that to have the values P, X and P+X in the in-
terim one may decrease the strength of the coupling by
choosing the initial meter state to be very broad in the posi-
tion space. We conclude this section by giving a simple il-
lustration to their result. Suppose the pointer is coupled to
measure both x and p at the same time, I�=1/2, so that we
have an additional term exp�−i�2 /2� in the integral �56�. As
in Sec. V, the fact that the commutator of x̂ and p̂ is a num-
ber, allows us to cancel it by modifying the Fourier transform
of the initial meter state

G���� = G���exp� i�2

2
� . �59�

With such an initial state, and the two couplings occurring
simultaneously, the result of the measurement will be just
Eq. �57�. However, if the original initial state was, say, a
narrow Gaussian

G�f� = �2��−1
 G���exp�i�f�d� = exp�− f2

�2 � ,

the modified initial state will have the form

G��f� = ����2 + 2i��1/2exp�−
f2

�2 + 4/�2 − i
2f2

�4 + 4
�

�60�

and will, therefore, be broad, which can also be seen from
the fact that multiplying Fourier transforms in Eq. �59� leads
to a convolution in the f variable. In this way, we have ob-
tained the result P+X for a system starting in �X� and finish-
ing in �P� at the cost of making the initial position of the
-9
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pointer highly uncertain, i.e., by conducting, as suggested in
�22�, a particular type of a weak measurement.

VII. CONCLUSIONS AND DISCUSSION

To summarize, we have shown that a quantum von
Neumann-like meter, like its classical counterpart, measures
the value of a particular functional F�path� defined on the
paths, or a path, traced by the value of the measured quantity.
Classically, only one such path exists, and the meter’s
pointer position coincides with the value of F. Quantally,
there is a variety of virtual histories, and obtaining, in an
accurate measurement, the pointer position f means that the
system’s state is as if it has evolved along only those paths
that give the value f to F�path�. The paths, like the Feynman
paths �1�, are continuous but highly irregular and may only
take values from the spectrum of the operator, which repre-
sents the measured quantity. This general picture applies also
if several noncommuting variables are being measured.
However, already for two noncommuting variables the situ-
ation is more complex. For a single variable A, the path
decomposition is obtained by factorizing each term of the

product � j=1
N exp�−iĤ− i�Â� as N→�. It is easy to see that

no matter how it is done, the final result is essentially the
same. For two noncommuting variables, one needs to factor-

ize � j=1
N exp�−iĤ− i�1Â− i�2B̂�, and this can be done in a

variety of ways. For Â= x̂ and B̂= p̂, one such way leads to
the conventional phase space path integral, which, if re-
stricted, can be used to construct measurement amplitudes

for joint measurements of Â and B̂ as well as for a sum Ĉ
=F1�x̂�+F2�p̂�. It fails, however, for a product of the posi-
tion and momentum operators. There is a simple reason for

that. Although the above operator Ĉ is uniquely defined by
its classical expression, a product allows for different opera-
tor realizations, depending on the order in which the non-
commuting x̂ and p̂ are placed. Clearly, the conventional path
integral cannot provide for all such choices. Path sums of
different kinds can be constructed so that the measurement
amplitude for a particular product can be obtained by a re-
striction. This is done at the price of changing the amplitudes
assigned to each path and, in some cases, by redefining the
paths themselves. As a result, these path sums usually lose
the simplicity and elegance of the conventional path integral.
Needless to say, any function of the position and momentum
can be treated as an operator in its own right and a path
representation can be constructed from its eigenvalues as in
Sec. II, without a recourse to simultaneous histories for its
constituent parts. However, restricted phase space integrals
have been used to describe quantum measurements �see, for
instance, �16�� and we thought it worthwhile to clarify this
matter.

Furthermore, for a single variable, a conventional projec-
tion measurement �9� at t= t0 is recovered when the func-
tional is just the value of the path at t0. Classically, the exis-
tence of a smooth classical path ensures that a
“simultaneous” measurement of the two variables can, in
fact, be conducted in any order, e.g., A can be measured just

before B or vice versa. Quantally, because of the chaotic

052115-
nature of the virtual paths, the amplitude to pass first through
a and then through b is different from that for passing
through a after b. In general, one has to consider a whole
class of measurements that partially overlap in time, as has
been done in Sec. III, where each such measurement can be
seen as distinguishing between different classes of simulta-
neous paths. It is interesting to note that for two conjugate

variables, such as x̂ and p̂ and Ĥ=0, entangling the two
meters with each other �but not with the system� allows one
to “alter the order in which the measurements occur,” with-
out changing the way in which the actual coupling occurs
between the pointers and the system.

Similarly, we note that a classical measurement of a single
quantity represented by a sum of two variables can be con-
ducted in different ways. For example, coupling the same
meter to measure first A and then B, first B and then A, or A
and B at the same time would give the same result, A+B. Not
so quantally, where three different functionals corresponding
to the three cases yield different amplitudes. For the coordi-
nate and momentum, however, we can emulate an accurate
measurement for any order by choosing an appropriate un-
sharp initial state of the meter, i.e., by making the measure-
ment “weak,” as was first suggested in �12�.

Finally, for a particular functional to be measurable, the
corresponding restricted sum should must evolve in time in a
unitary manner, so that its equation of motion can be inter-
preted as a Schroedinger equation for the system coupled to
a measuring device. It is easy to produce restricted path sums
whose evolution is nonunitary �cf. Eq. �A4��. Thus far, we
have been unable to ascribe any physical significance to such
sums or interpret them as probability amplitudes of any kind.
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APPENDIX A

Consider the equation of motion for a restricted path in-
tegral

�	��t�f�� 	 
 DpDx
� f − 

0

t

p2x2dt���	�t��p,x��� ,

�A1�

where the substates �	�t � �p ,x��� are defined in Eq. �32�. In
order to do so, we write the 
 function as a Fourier integral,
�2��−1�d� exp�i�f − i��0

t p2x2dt��, and discretize the time.
With the integral in the exponent replaced by its Riemann
sum, the Fourier transform of Eq. �A1� becomes

�	��t���� = �
j=1

N

exp�− iĤ� 
 dpjdxjexp�− i�pj
2xj

2��pj��pj�

��xj��xj��0� . �A2�

Evaluating the difference �	�	−1��	��t+ ����

− �	��t �����,
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�	� = −1�exp�− iĤ� 
 dpdx exp�− i�p2x2��p�

��p�x��x� − 1�	��t����

= �− iĤ − i�
 dp�p�p2�p�
 dx�x�x2�x���	��t����

+ O�� , �A3�

and performing the Fourier transform from � to f shows that
�	��t � f�� satisfies the Schroedinger-like equation

i�t�	��t�f� = �Ĥ − i� f p̂
2x̂2��	��t�f�� . �A4�

It is readily seen that the last term in the square bracket is
not Hermitian since the momentum and the position do not

commute. Thus, the Eq. �A4� does not describe an interaction

where

052115-
of the particle with any physical meter. Note that the order in
which the operators p̂2 and x̂2 occur in the right-hand side of
Eq. �A4� is determined by the choice made while defining
the measurement substates in Eq. �30� when we factorized
the operator exponential as �28�

exp�− i�Ĥ + �p̂ + �x̂��

� exp�− iĤ�exp�− i�p̂�exp�− i�x̂� . �A5�

However, this choice is by no means unique. A physical in-
teraction could be obtained, for example, if the product p̂2x̂2

is replaced by its Hermitian part, �p̂2x̂2�H	�p̂2x̂2+ x̂2p̂2� /2.
Repeating the steps leading to Eq. �A4� shows that the re-
stricted sum corresponding to a measurement of �p̂2x̂2�H can
be obtained by redefining the substates �	�t � �p ,x��� so that

in Eq. �28� the operator exponential exp�−i�Ĥ+�x̂+�p̂�� is

resolved as
exp�− i�Ĥ + �p̂ + �x̂�� �
exp�− iĤ��exp�− i�p̂�exp�− i�x̂� + exp�− i�x̂�exp�− i�p̂��

2
. �A6�
Equation �A6�, which is obtained by dividing the initial ex-
ponential into two equal halves and then choosing different
orders of p̂2 and x̂2, is another form, valid for a sufficiently
small . Inserting these new substates into Eq. �A1�, we ob-
tain a valid path decomposition for the measurement ampli-
tude, but the simple expression �33� for the phase assigned to
each path is lost due to the presence of two terms, rather than
just one, added within each time slice. In the same vein, we
can show that to obtain the measurement states of x̂p̂2x̂ we
require the resolution

exp�− i�Ĥ + �p̂ + �x̂��

� exp�− iĤ�exp�− i�x̂

2
�exp�− i�p̂�exp�− i�x̂

2
�

�A7�

and an even more drastic overhaul of the path sum �32� be-
cause now within each time slice the path must be specified
by two positions and momenta for each time slice. We con-
clude by giving the expression for the corresponding path
sum

�	xp2x�t�f�� =
 Dp�DpDx�Dx
� f − 

0

t

x�p2xdt��
��	�t��p�,px�,x��� , �A8�
�	�t��p�,px�,x��� 	 lim
N→�


 dxN+1�xN+1�2��−2N

�exp�i�
j
�pj��xj+1 − xj��

+ pj�xj� − xj�
− p�2

2m
− V�x����x1��0� .

�A9�

In general, these examples demonstrate that, for two non-
commuting variables, there is no unique simultaneous path
decomposition and a different ones need to be chosen when
constructing restricted path sums for various ordered prod-
ucts of these variables.

APPENDIX B

We need to estimate the integrals


 dq��q���t�f���2, �B1�

where, from Eq. �39�, we have �D	�C � �0
t dt��0

t�dt��1�t��
��2�t���

��t�f� = �2��−2
 d�G̃1��1�G̃2��2�exp�i�f − i�1�2D�

��q�exp�− �2p̂�exp�− �1x̂���0� , �B2�

and we have introduced the tildes to distinguish the Fourier
11
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transform of the meter’s initial state G̃i��i� from the state
Gi�f i� itself. Writing the two operator exponentials as


 
 dxdp exp�− i�1x − i�2p − ipx��p��x� ,

performing the integrals over d� and dp, and introducing the
new variable z	x−q yields

��t�f� =
 dxG1�f1 − q − �D + 1�z�G̃2�z�

�exp�if2z���0�q + z�� . �B3�

For G1�f1�=exp�−af1
2�, G̃2��2�=exp�−b�2

2�, and �0�x�
=exp�−cx2� Eqs. �B1� and �B3� become Gaussian integrals,
which, fortunately, need not be evaluated explicitly. Indeed,
the variable f2 enters the exponent of the integrand linearly,
in combination with the first power of z and with a purely
imaginary coefficient. Thus, its only real valued contribution
to the exponent of the integral is of the form −f /k, where
2

052115-
the coefficient k is proportional to that multiplying the sec-
ond power of z and is easily evaluated to be

k = 2�a�D + 1�2 + b + c� . �B4�

To obtain a similar coefficient k� for the term containing −f1
2

we may interchange the order of the operator exponentials in
�B2�, i.e., write exp�−i�1x̂�exp�−i�2p̂� and repeat the above
analysis projecting ���t � f�� on a momentum state �p�. A de-
tailed inspection shows that it leads to replacing the coordi-
nate width of the initial state by that in the momentum space,
c→1/4c, and, similarly, b→1/4b, a→1/4a. Also, we must
change D→D�	D−1, due to the change in the sign of the
commutator and interchange �1 with �2, which yields k�
=2�D2 /4b+1/4a+1/4c�. Thus, the normalized distribution
takes the form

��f1, f2� = ��2kk��−1/2exp�− f1
2

k�
−

f2
2

k
� , �B5�

which, after inserting the values of a ,b, and c, becomes Eq.

�48�.
�1� R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path
Integrals �McGraw-Hill, New York, 1965�.

�2� L. S. Schulman, Techniques and Applications of Path Integra-
tion �Wiley, New York, 1981�.

�3� H. Kleinert, Path Integrals in Quantum Mechanics, Statistics,
Polymer Physics and Financial Market �World Scientific, Sin-
gapore, 2004�.

�4� M. B. Mensky, Quantum Measurements and Path Integrals
�IOP, Bristol, 1993�.

�5� M. B. Mensky, Quantum Measurements and Decoherence:
Models and Phenomenology �Kluwer, Dordrecht, 2000�.

�6� N. Yamada, Phys. Rev. A 54, 182 �1996�.
�7� D. Sokolovski, in Time in Quantum Mechanics, edited by J. G.

Muga, R. Sala Mayato, and I. L. Egusquiza �Springer, New
York, 2002�.

�8� E. H. Hauge and J. A. Stoevneng, Rev. Mod. Phys. 61, 917
�1989�; C. R. Leavens and G. C. Aers, in Scanning Tunnelling
Microscopy and Related Methods, edited by R. J. Behm, N.
Garcia and H. Rohrer, NATO Advanced Study Institute, Series
E: Applied Sciences, Vol. 184 �Kluwer, Dordrecht, 1990�, pp.
59–76.

�9� J. von Neumann, Mathematical Foundations of Quantum
Mechanics �Princeton University Press, Princeton, 1955�,
pp. 183–217.
�10� D. Sokolovski and R. Sala Mayato, Phys. Rev. A 71, 042101
�2005�.

�11� A. Peres and W. K. Wootters, Phys. Rev. D 32, 1968 �1985�.
�12� Y. Aharonov and L. Vaidman, in Time in Quantum Mechanics,

edited by J. G. Muga, R. Sala Mayato and I. L. Egusquiza
�Springer, New York, 2002�, pp. 369–413.

�13� D. Sokolovski, Phys. Rev. A 59, 1003 �1999�.
�14� E. Arthurs and J. L. Kelly, Bell Syst. Tech. J. 44, 1153 �1965�.
�15� A. D. Baute, I. L. Egusquiza, J. G. Muga, and R. Sala-Mayato,

Phys. Rev. A 61, 052111 �2000�.
�16� M. B. Mensky, Phys. Lett. A 196, 159 �1994�; 231, 1 �1997�.
�17� D. Sokolovski and J. N. L. Connor, Phys. Rev. A 47, 4677

�1993�.
�18� Y. Liu and D. Sokolovski, Phys. Rev. A 63, 014102 �2000�.
�19� D. Alonso, R. S. Mayato, and J. G. Muga, Phys. Rev. A 67,

032105 �2003�.
�20� R. P. Feynman, The Character of Physical Law �MIT Press,

Cambridge, 1965�.
�21� H. Goldstein, Classical Mechanics �Addison Wesley, Reading,

MA, 1990�.
�22� Y. Aharonov, D. Z. Albert, and L. Vaidman, Phys. Rev. Lett.

60, 1351 �1988�; Y. Aharonov and L. Vaidman, Phys. Rev. A
41, 11 �1990�.
12


