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Considerable effort has been devoted to deriving the Born rule �i.e., that ���x��2dx is the probability of
finding a system, described by �, between x and x+dx� in quantum mechanics. Here we show that the Born
rule is not solely quantum mechanical; rather, it arises naturally in the Hilbert-space formulation of classical
mechanics as well. These results provide insights into the nature of the Born rule, and impact on its under-
standing in the framework of quantum mechanics.
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I. INTRODUCTION

The Born rule �1� postulates a connection between deter-
ministic quantum mechanics in a Hilbert-space formalism
with probabilistic predictions of measurement outcomes. It is
typically stated �2� as follows �without considering degenera-
cies�: if an observable Ô, with eigenstates ��Oi�� and spec-
trum �Oi�, is measured on a system described by the state
vector ���, the probability for the measurement to yield the
value Oi is given by 	
Oi ���	2. Alternatively, in the density
matrix formulation used below, this rule states that the prob-
ability is Tr����Oi

�, where ��= ���
�� and �Oi
= �Oi�
Oi�. Most

familiar is the textbook example that the probability of ob-
serving a system that is in a state � in the coordinate range x
to x+dx is given by 	
x ���	2dx. Born’s rule appears as a
fundamental postulate in quantum mechanics and is thus far
in agreement with experiment. Hence, there is intense inter-
est in providing an underlying motivation for, or derivation
of, this rule.

Gleason’s theorem �3�, for example, provides a formal
motivation of the Born rule, but it is a purely mathematical
result about vectors in Hilbert spaces and does not provide
insight into the physics of this postulate. For this reason there
have been several attempts to provide a physical derivation
of the Born rule. For example, Deutsch showed the possibil-
ity of deriving the Born rule from “the nonprobabilistic axi-
oms of quantum theory” and “the nonprobabilistic part of
classical decision theory” �4�. Deutsch’s approach was criti-
cized by Barnum et al. �5� but was recently reinforced by
Saunders �6�. Hanson �7� and Wallace �8� analyzed the con-
nection between possible derivations of the Born rule and
Everett’s many-worlds interpretation of quantum mechanics.
Zurek recently proposed a significantly new approach, the
so-called envariance approach �9�, for deriving the Born rule
from within quantum mechanics. This approach, totally dif-
ferent from Deutsch’s method, was recently analyzed in de-
tail by Schlosshauer and Fine �2� and by Zurek �10�. Zurek’s
envariance approach has also been analyzed and modified by
Barnum �11�. All these studies have attracted considerable
interest in deriving Born’s rule by making some basic as-
sumptions about quantum probabilities or expectation values
of observables.

The Born rule is not expected to violate any future experi-
ments. In this sense, even a strict derivation of the Born rule

will not help predict any experimentally new physics. How-
ever, understanding the origin of the Born rule is important
for isolating this postulate from other concepts in quantum
mechanics and for understanding what is truly unique in
quantum mechanics as compared with the classical physics.
For example, based on the above-mentioned efforts to derive
the Born rule �2,4,6,9–11�, it seems now clear that the physi-
cal origin of Born’s rule is unrelated to the details �e.g., wave
function collapse� of quantum measurement processes.

The main purpose of this work is to show that Born’s rule
is not solely quantum mechanical and that it arises naturally
in the Hilbert space formulation of classical mechanics. As
such, the Born rule connecting probabilities with eigenvalues
and eigenfunctions is not as “quantum” as it sounds. Indeed,
quantum-classical correspondence, which played no role in
Born’s original considerations �1,12�, can then be arguably
regarded as an interesting motivation for the Born rule in
quantum mechanics. Similarly, exposing the Born rule in
classical mechanics should stimulate new routes to under-
standing the physical origin of this rule in quantum mechan-
ics. In particular, new and interesting questions can be asked
in connection with the previous derivations of the Born rule.

To demonstrate that the Born rule exists in both quantum
and classical mechanics we �1� recall that both quantum and
classical mechanics can be formulated in the Hilbert space of
density operators �13–18�, that the quantum and classical
systems are represented by vectors � and �c, respectively, in
that Hilbert space, and that � and �c can be expanded in
eigenstates of a set of commuting quantum and classical su-
peroperators, respectively; �2� show that the quantum-
mechanical Born rule can be expressed in terms of the ex-
pansion coefficient of a given density associated with
eigendistributions of a set of superoperators in the Hilbert
space of density matrix; and �3� show that the classical in-
terpretation of the phase-space representation of �c as a prob-
ability density allows the extraction of Born’s rule in classi-
cal mechanics, and gives exactly the same structure as the
quantum-mechanical Born rule.

These results suggest that the quantum-mechanical Born
rule not only applies to cases of large quantum numbers, but
also has a well-defined purely classical limit. Hence, inde-
pendent of other subtle elements of the quantum theory, the
inherent consistency with the classical Born rule for the mac-
roscopic world imposes an important condition on any
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eigenvalue-eigenfunction-based probability rule in quantum
mechanics.

II. THE QUANTUM-MECHANICAL BORN RULE
IN DENSITY MATRIX FORMALISM

Consider first quantum mechanics in the Hilbert space of

the density matrix �16,17�. Given an operator Ô� K̂N for a
system of N degrees of freedom, we first consider the �clas-
sically� integrable case where there exist N independent and

commuting observables K̂i, i=1, . . . ,N. Another extreme, the
chaotic case, will be discussed in Sec. IV. For convenience

we also assume that the K̂i, i=1,2 , . . . ,N, have a discrete
spectrum, but the central result below applies to cases with a
continuous spectrum as well. The complete set of commuting
superoperators in the quantum Hilbert space can be con-
structed as

1

�
�K̂i,�,

1

2
�K̂i,�+ �i = 1,2, . . . ,N� , �1�

where � , � denotes the commutator and � , �+ denotes the

anticommutator, i.e., �Â , B̂�= ÂB̂− B̂Â, �Â , B̂�+= ÂB̂+ B̂Â. The
simultaneous eigendensities of the complete set of superop-
erators are denoted ��,�. That is,

1

2
�K̂i,��,��+ = �i��,�,

1

�
�K̂i,��,�� = �i��,�, �2�

where ����1 ,�2 , . . . ,�N� is the collection of eigenvalues

associated with 1
2 �K̂i , �+, and ����1 ,�2 , . . . ,�N� is the col-

lection of eigenvalues associated with 1
� �K̂i , �.

The state of the quantum system is described by an arbi-
trary density matrix � in the Hilbert space under consider-
ation, and can be expanded in terms of the basis states ��,� as

� = �
�,�

D�,���,�, �3�

where the sum is over all eigendensities. The sum should be
understood as an integral if the spectrum is continuous.
Clearly, the expansion coefficients in Eq. �3� are given by

D�,� = Tr����,�
† � . �4�

Equations �3� and �4�, i.e., the expansion of � in terms of the
eigendensities ��,�, are central to the analysis later below.

Consider now the quantum probability PQ�K�� of finding

the quantum observables K̂i with eigenvalues Ki�, i
=1,2 , . . . ,N, given that the system is in state �. We show
here that the Born rule is then equivalent to the statement
that PQ�K�� must be proportional to the expansion coeffi-
cient DK�,0 of the given density � associated with the com-

mon eigendistribution �K�,0 of superoperators 1
2 �K̂i , �+ with

eigenvalues Ki� and of superoperators 1
� �K̂i , � with eigen-

value zero. To see this, consider first a quantum density for a

pure quantum state, e.g., �= ���
�� �the extension to mixed
states is straightforward�. Then the Born rule gives that

PQ�K�� = �
��K���2 = Tr��K��
K�����
��� = Tr��K��
K���� ,

�5�

where �K�� is a common and normalized eigenfunction of

operators K̂i, i=1,2 , . . . ,N. However,

1

2
�K̂i, �K��
K���+ = Ki��K��
K��; �K̂i, �K��
K��� = 0, �6�

so that �K��
K�� is seen to be the common eigendistribution

of superoperators 1
2 �K̂i , �+ with eigenvalues Ki� and of super-

operators 1
� �K̂i , � with eigenvalue zero. That is,

�K��
K�� = �K�,0. �7�

Equations �4�, �5�, and �7�, then lead to

PQ�K�� = DK�,0. �8�

Equation �8� is a general restatement of the quantum-
mechanical Born rule based on the Hilbert-space structure of
the density matrix.

Note that the multidimensional result of Eq. �5� has care-
fully accounted for possible degeneracies associated with
KN� . That is, the total probability of observing KN� would be
obtained by summing PQ�K�� with all possible Ki�, i
=1,2 , . . . , �N−1�, a necessary procedure not explicitly stated
in Born’s rule.

III. THE BORN RULE IN CLASSICAL MECHANICS

Consider now classical mechanics. The mechanics has nu-
merous equivalent formulations, such as Newton’s laws, the
Lagrangian and Hamiltonian formulations, Hamilton-Jacobi
theory, etc. The less familiar Hilbert-space formulation of
classical mechanics used below was first established by
Koopman �13� and subsequently appreciated by, for ex-
ample, Prigogine �14�, Zwanzig �15�, and us �17,18� in some
theoretical considerations. This being the case, the above
eigenvalue-eigenfunction structure is not unique to quantum
mechanics, a fact that may not be well appreciated and that is
exploited below.

It is convenient to introduce the classical picture in the
phase-space representation, although abstract Hilbert-space
formulations may be used as well. Consider then the same
case as above. Let the classical limit of the Wigner-Weyl

representation of K̂i be Ki�p ,q�, where �p ,q� are
momentum- and coordinate-space variables. The complete
set of commuting superoperators on the classical Hilbert
space is then �17�

i�Kj�p,q�,�, Kj�p,q�, j = 1,2, . . . ,N , �9�

where Kj�p ,q� are multiplicative operators and � , � denotes
the classical Poisson bracket. The simultaneous eigendensi-
ties of this complete set of classical operators, denoted
��c,�c

c �p ,q�, satisfy

Kj�p,q���c,�c
c �p,q� = � j

c��c,�c
c �p,q� ,
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i�Kj�p,q�,��c,�c
c �p,q�� = � j

c��c,�c
c �p,q� , �10�

where the notation �c, �c, � j
c, and � j

c is introduced in parallel
with the quantum case. An arbitrary classical probability
density �c�p ,q� can be expanded as

�c�p,q� = �
�c,�c

D�c,�c
c

��c,�c
c �p,q� , �11�

where

D�c,�c
c = dp dq �c�p,q����c,�c

c* �p,q�� � Tr��c��c,�c
c† � ,

�12�

and where the sum in Eq. �11� is over all eigendensities.
Consider now, within this formalism, the probability of

finding K �with K��K1 ,K2 , . . . ,KN�� between K� and K�
+dK�. To proceed we make a canonical transformation be-
tween representations �p ,q� and �K ,Q�, where K are the
new momentum variables, and Q��Q1 ,Q2 , . . . ,QN� denotes
the new position variables conjugate to K. The Q can be
obtained by regarding p as a function of q and K, defining
the generating function S�q ,K�=�q0

q p�q� ,K� ·dq�, and then
noting that Qi=�S /�Ki �19�. In this representation the classi-
cal eigendensities ��c,�c

c take a rather simple form,

��c,�c
c �p,q� Þ RK�,��K,Q� =

1

�2��N/2��K� − K�exp�i� · Q�

�13�

with eigenvalues �20� �i
c=Ki and �i

c=�i, for i=1,2 , . . . ,N.
The set of eigendistributions RK�,� are complete and or-
thogonal, i.e.,

 dK d� RK,�
* �K�,Q��RK,��K�,Q��

= ��K� − K����Q� − Q�� ,

 dK dQ RK�,��
* �K,Q�RK�,���K,Q�

= ���� − �����K� − K�� . �14�

The RK�,� are “improper states,” insofar as they contain �
functions. However, this is consistent with the fact that they
are eigendistributions of classical superoperators that have
continuous spectra. If desired, a rigged Hilbert space �21�
can be used to include these states more formally.

Given a classical probability density �c�p ,q� that de-
scribes the state of the system, we can convert to the K ,Q
representation to obtain �c��K ,Q���c�p�K ,Q� ,q�K ,Q��.
The probability Pc�K�� of finding the observables between
K� and K�+dK is evidently given by

Pc�K�� = � dK dQ ��K� − K��c��K,Q��dK . �15�

This result has an enlightening interpretation in the Hilbert
space formulation of classical mechanics, as can be seen by

independently obtaining Eq. �15� using this approach. To do
so, we first expand the given density in terms of the basis
states RK�,�. That is,

�c��K,Q� = dK�d� DK�,�
c RK�,��K,Q� , �16�

where the expansion coefficients are given by the overlap
integrals

DK�,�
c = dK dQ �c��K,Q�RK�,�

* �K,Q� . �17�

Because classical probabilities in K that do not refer to Q are
obtained by integrating over Q, we obtain

Pc�K�� = � dQ �c��K�,Q��dK . �18�

Substituting Eq. �16� into Eq. �18� and using Eq. �13� then
yields

Pc�K�� = �2��N/2DK�,0
c dK �19�

This result is equivalent to Eq. �15�, but contains an impor-
tant message from the perspective of mechanics in Hilbert
space. That is, Eq. �19� indicates that, given a classical den-
sity �c� that describes the state, the probability of finding the
observable Kj �j=1,2 , . . . ,N� in a regime �K� ,K�+dK�, is
proportional to the overlap between the given density �c� and
the common eigendistribution RK�,0 of multiplicative opera-
tors Kj with eigenvalues Kj� and of operators i�Kj , � with
eigenvalue zero. This overlap is DK�,0

c , the expansion coeffi-
cient of �c� in terms of RK�,0. Significantly, this connection
between classical probabilities and the overlap between the
given classical-state density and a particular set of classical
eigendistributions �Eq. �19�� is the direct analog of the
quantum-mechanical Born rule in the density matrix formal-
ism �Eq. �8��. That is, Eq. �19� is the Born rule in classical
mechanics.

IV. QUANTUM VERSUS CLASSICAL BORN RULE
IN CHAOTIC CASES

Classical-quantum correspondence of Hilbert-space struc-
tures in chaotic cases is more subtle and complicated than in
integrable cases �17�. Nevertheless, results above indicate
that only a particular set of eigendensities are relevant in
understanding the quantum versus classical Born rule. In-
deed, it is straightforward to show that our previous consid-
erations also apply to cases where there do not exist �N−1�
observables that commute with KN�p ,q�. For example, con-
sider a chaotic spectrum case where KN�p ,q� does not com-
mute with any other smooth phase-space functions Z�p ,q�,
i.e., �KN�p ,q� ,Z�p ,q���0 always holds. Following Ref.
�17� we consider a function 	�p ,q� that satisfies
�	�p ,q� ,KN�p ,q��=1. Then the classical eigenfunction of
the multiplicative operator KN�p ,q� and of the operator
i�KN�p ,q� , � with eigenvalue 
 is given by ���KN�
−KN�p ,q��exp�i
	�p ,q��, where � is a normalization con-
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stant. In particular, the eigenfunction with zero eigenvalue
for the operator i�KN�p ,q� , � is ���KN� −KN�p ,q��. This
eigenfunction defines a �2N−1�-dimensional hypersurface in
phase space �whereas the eigenfunction RK�,0 in the integral
case defines an N-dimensional manifold�. The overlap be-
tween this particular eigenfunction ���KN� −KN�p ,q�� and a
given phase-space probability density �c�p ,q�, i.e.,

Pc�KN� � � � dp dq �c�p,q���KN� − KN�p,q�� , �20�

yields the probability Pc�KN� �dKN of finding KN�p ,q� lying in
the regime �KN� ,KN� +dKN�. This is again in complete analogy
to how the quantum probability PQ�KN� � of finding the eigen-
value KN� is determined, i.e., PQ�KN� � is given by the overlap
between a given quantum density ���
�� and the eigenfunc-

tion of superoperator 1
2 �K̂N , �+ with eigenvalue KN� and of

superoperator 1
� �K̂N , � with eigenvalue zero. Such a quantum

eigenfunction is simply given by �KN� �
KN� �, where �KN� � is the

eigenfunction of K̂N with eigenvalue KN� . These analyses
make it clear that even for chaotic cases, the Born rule for-
mulated in terms of eigendensities in the associated �classical
or quantum� Hilbert space exists in both quantum and clas-
sical mechanics.

V. CONCLUDING REMARKS

In summary, with the quantum-mechanical Born rule for-
mulated in the Hilbert space of density matrix, we have dem-
onstrated an analogous Born rule in classical mechanics. In

so doing we never assumed that the quantum density goes
smoothly, in the classical limit, to a classical density that
already has a clear probabilistic interpretation. Rather, we
have simply assumed that a system in either quantum or
classical mechanics is described by a density operator in Hil-
bert space, and that these density operators serve the same
descriptive purpose in both mechanics. This, plus the decom-
position of the operator in terms of eigendistributions of a set
of commuting superoperators, sufficees to show that the
Born rule applies in both quantum and classical mechanics.
Hence, the quantum-mechanical Born rule appears to be very
natural in the light of quantum-classical correspondence in
how Hilbert-space structures embody measured probabilities.
The recognition that Born’s rule is not really a unique quan-
tum element should complement, as well as impact upon,
previous attempts to derive the Born rule �2,4,6,9–11�. Fur-
ther, it motivates numerous questions, such as, can the
quantum-mechanical Born rule be derived with fewer as-
sumptions by taking advantage of the classical Born rule as a
limit? how can one reconcile derivations involving purely
quantum language with the existence of a classical Born
rule?, etc. These, and related issues, are the subject of future
work.
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