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We consider n identically prepared qubits and study the asymptotic properties of the joint state ��n. We
show that for all individual states, � situated in a local neighborhood of size 1/�n of a fixed state �0, the joint
state converges to a displaced thermal equilibrium state of a quantum harmonic oscillator. The precise meaning
of the convergence is that there exists physical transformations Tn �trace preserving quantum channels� which
map the qubits states asymptotically close to their corresponding oscillator state, uniformly over all states in the
local neighborhood. A few consequences of the main result are derived. We show that the optimal joint
measurement in the Bayesian setup is also optimal within the point-wise approach. Moreover, this measure-
ment converges to the heterodyne measurement which is the optimal joint measurement of position and
momentum for the quantum oscillator. A problem of local state discrimination is solved using local asymptotic
normality.
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I. INTRODUCTION

The quantum measurement theory brings together the
quantum world of wave functions and incompatible observ-
ables with the classical world of random phenomena studied
in probability and statistics. These fields have come ever
closer due to the technological advances making it possible
to perform measurements on individual quantum systems.
Indeed, the engineering of a novel quantum state is typically
accompanied by a verification procedure through which the
state, or some aspect of it, is reconstructed from measure-
ment data �1�.

An important example of such a technique is that of quan-
tum homodyne tomography in quantum optics �2�. This al-
lows the estimation with arbitrary precision of the whole
density matrix �3–6� of a monochromatic beam of light by
repeatedly measuring a sufficiently large number of identi-
cally prepared beams �1,7,8�.

In contrast to this “semiclassical” situation in which one
fixed measurement is performed repeatedly on independent
systems, the state estimation problem becomes more “quan-
tum” if one is allowed to consider joint measurements on n
identically prepared systems with the joint state ��n. It is
known �9� that in the case of unknown mixed states �, joint
measurements perform strictly better than separate measure-
ments, in the sense that the asymptotical convergence rate of
the optimal estimator �̂n to � goes in both cases as C /�n with
a strictly smaller constant C in the case of joint measure-
ments.

Let us look at this problem in more detail: We dispose of
a number of n copies of an unknown state � and the task is to
estimate � as well as possible. The first step is to specify a
cost function d��̂n ,�� which quantifies the deviation of the
estimator �̂n from the true state. Then, one tries to devise a
measurement and an estimator which minimize the mean
cost or risk in statistics jargon:

R��, �̂n� ª �d��̂n�X�,��� ,

with the average taken over the measurement results X. Since
this quantity still depends on the unknown state, one may

choose a Bayesian approach and try to optimize the average
risk with respect to some prior distribution � over the states

Rn,� =� R��, �̂n���d�� .

Results of this type have been obtained in both the pure state
case �10–17� and the mixed state case �18–24�. However,
most of these papers use methods of group theory which
depend upon the symmetry of the prior distribution and the
form of the cost function, and thus cannot be extended to
arbitrary priors.

In the point-wise approach �9,25–29�, one tries to mini-
mize R�� , �̂n� for each fixed �. We can argue that even for a
completely unknown state, as n becomes large, the problem
ceases to be global and becomes a local one as the error in
estimating the state parameters is of the order 1 /�n. For this
reason, it makes sense to parametrize the state as �ª����
with � belonging to some set in Rk and to replace the original
cost with its quadratic approximation at �:

d��, �̂n� = �� − �̂n�TG����� − �̂n� ,

where G is a k�k positive real symmetric weight matrix.
Although seemingly different, the two approaches can be

compared �30� and, in fact, for large n the prior distribution
� of the Bayesian approach should become increasingly ir-
relevant and the optimal Bayesian estimator should be close
to the maximum likelihood estimator. An instance of this
asymptotic equivalence is proven in subsection VII A.

In this paper, we change the perspective and, instead of
trying to devise optimal measurements and estimators for a
particular statistical problem, we concentrate our attention on
the family of joint states �����n which is the primary “car-
rier” of statistical information about �. As suggested by the
locality argument sketched above, we consider a neighbor-
hood of size 1/�n around a fixed but arbitrary parameter �0,
whose points can be written as �=�0+u /�n with
u�Rk—the “local parameter”—obtained by zooming into
the smaller and smaller balls by a factor of �n. Briefly, the
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principle of local asymptotic normality says that for large n,
the local family

�n
u
ª ���0 + u/�n��n, 	u	 � C ,

converges to a family of displaced Gaussian states �u of a
quantum system consisting of a number of coupled quantum
and classical harmonic oscillators.

The term local asymptotic normality comes from math-
ematical statistics �31�, where the following result holds. We
are given independent variables X1 , . . . ,Xn�X drawn from
the same probability distribution P�0+u/�n over X depending
upon the unknown parameter u�Rk. Then, the statistical
information contained in our data is asymptotically identical
with the information contained in a single normally distrib-
uted Y �Rk with mean u and variance I��0�−1, the inverse
Fisher information matrix. This means that for any statistical
problem, we can replace the original data, X1 , . . . ,Xn�X, by
the simpler Gaussian one, Y, with the same asymptotic re-
sults!

For the sake of clarity, let us consider the case of qubits
with states parametrized by their Bloch vectors ��r��=1/2�1
+r���� where ��= ��x ,�y ,�z� are the Pauli matrices. Define
now the two-dimensional family of identical spin states ob-

tained by rotating the Bloch vector r0
�= �0,0 ,2�−1� around

an axis in the x-y plane

�n
u = 
U� u

�n
��� 0

0 1 − �
�U� u

�n
�*�n

, u � R2, �1.1�

with unitary U�v�ªexp�i�vx�x+vy�y�� and 1/2��	1.
Consider now a quantum harmonic oscillator with posi-

tion and momentum operators Q and P on L2�R� satisfying
the commutation relations �Q , P�= i1. We denote by ��n� ,n

0� the eigenbasis of the number operator, and define the
thermal equilibrium state

�0 = �1 − p��
k=0

�

pk�k��k� ,

where p= �1−�� /�. We translate the state �0 by using the
displacement operators D�z�=exp�za*− z̄a� with z�C,
which map the ground state �0� into the coherent state �z�:

�u
ª D��2� − 1�u��0D��2� − 1�u�*, �1.2�

where �uª−uy + iux.
Theorem�1.1�. Let �n

u be the family of states �1.1� on the
Hilbert space �C2��n and �u the family �1.2� of displaced
thermal equilibrium states of a quantum oscillator. Then, for
each n, there exist quantum channels (trace preserving com-
pletely positive maps)

Tn:M„�C2��n
… → T„L2�R�… ,

Sn:T„L2�R�… → M„�C2��n
… , �1.3�

with T�L2�R�� the trace-class operators, such that

lim
n→�

sup
u�I2

	�u − Tn��n
u�	1 = 0,

lim
n→�

sup
u�I2

	�n
u − Sn��u�	1 = 0. �1.4�

for an arbitrary bounded interval I�R.
Let us make a few comments on the significance of the

above result.
�i� The “convergence” �1.4� of the qubit states holds in

a strong way �uniformly in u� with direct statistical and
physical interpretation. Indeed, the channels Tn and Sn rep-
resent physical transformations which are analogues of ran-
domizations of classical data �31�. The meaning of Eq. �1.4�
is that the two quantum models are asymptotically equivalent
from a statistical point of view.

�ii� Indeed, for any measurement M on L2�R�, we can
construct the measurement M �Tn on the spin states by first
mapping them to the oscillator space and then performing M.
Then, the optimal solution of any statistical problem con-
cerning the states �n

u can be obtained by solving the same
problem for �u and pulling back the optimal measurement M
as above. We illustrate this in Sec. VII for the estimation
problem and for hypothesis testing.

�iii� The proposed technique may be useful for appli-
cations in the domain of coherent spin states �32� and
squeezed spin states �33�. Indeed, it has been known since
Dyson �34� that n spin-1 /2 particles prepared in the spin-up
state �↑ ��n behave asymptotically as the ground state of a
quantum oscillator when considering the fluctuations of
properly normalized total spin components in the directions
orthogonal to z. Our Theorem extends this to spin directions
making an “angle” u /�n with the z axis, as well as to mixed
states, and gives a quantitative expression to heuristic pic-
tures common in the physics literature �see Sec. III�. We
believe that a similar approach can be followed in the case of
spin squeezed states and continuous time measurements with
feedback control �35�.

The next section gives an introduction to the statistical
ideas motivating our work. In Sec. III, we give a heuristic
picture of our main result based on the total spin vector rep-
resentation of spin coherent states familiar in the physics
literature.

The proof of Theorem 1.1 extends over the Secs. IV–VI,
and uses methods of group theory and some ideas from
�29,36–38�.

Section VII describes a few applications of our main re-
sult. In subsection VII A, we compute the local asymptotic
minimax risk for the statistical problem of qubit state esti-
mation. An estimation scheme which achieves this risk as-
ymptotically is optimal in the point-wise approach. We show
that this figure of merit coincides with the risk of the hetero-
dyne measurement, and that it is achieved by the optimal
Bayesian measurement for the SU�2�-invariant prior �24,29�.
This proves the asymptotic equivalence of the Bayesian and
point-wise approaches.

In subsection VII B, we continue the investigation of the
optimal Bayesian measurement, and show that it converges
locally to the heterodyne measurement on the oscillator
which is a optimal joint measurement of position and mo-
mentum �39�.

Another application is the problem discriminating be-
tween two states �n

±u which asymptotically converge to each
other at rate of 1 /�n. In this case, the optimal measurement
for the parameter u is not optimal for the testing problem,
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showing in particular that the quantum Fisher information in
general does not encode all statistical information.

II. LOCAL ASYMPTOTIC NORMALITY IN STATISTICS
AND ITS EXTENSION TO QUANTUM MECHANICS

In this section, we introduce some statistical ideas which
provide the motivation for deriving the main result.

Quantum statistical problems can be seen as a game be-
tween a statistician, or physicist in our case, and Nature. The
latter tries to codify some information by preparing a quan-
tum system in a state which depends on some parameter u
unknown to the former. The physicist tries to guess the value
of the parameter by devising measurements and estimators
which work well for all choices of parameters that Nature
may make. In a Bayesian setup, Nature may build her strat-
egy by randomly choosing a state with some prior distribu-
tion. In order to solve the problem, the physicist is allowed to
use the laws of quantum physics as well as those of classical
stochastics and statistical inference. In particular, he may
transform the quantum state by applying an arbitrary quan-
tum channel T and obtain a new family T��u�. In general,
such a transformation goes with a loss of information so one
should have a good reason to do it, but there are nontrivial
situations when no such loss occurs �40�; that is when there
exists a channel S which reverses the effect of T restricted to
the states of interest S�T��u��=�u. If this is the case, we
consider the two families of states �u and T��u� as statisti-
cally equivalent.

In statistics, such transformations are called randomiza-
tions, and a useful particular example is a statistic, which is
just a function of the data we want to analyze. When this
statistic contains all information about the unknown param-
eter, we say that it is sufficient; because knowing the value of
this statistic alone suffices, and given this information the
rest of the data is useless. For example, if X1 , . . .Xn� �0,1�
are results of independent coin tosses with a biased coin,

then X̄=1/n�iXi is a sufficient statistic and may be used for
any statistical decision without loss of efficiency.

Quantum randomizations through quantum channels al-
low us to compare seemingly different families of states, and
thus opens the possibility of solving a particular problem by
casting it in a more familiar setting. The example of this
paper is that of state estimation for n identical copies of a
state which can be cast asymptotically into the problem of
estimating the center of a quantum Gaussian which has a
rather simple solution �39�. The term “asymptotically” means
that for large n we can find quantum channels Tn, Sn, which
almost map the families of states into each other as in Eq.
�1.4�.

The second main idea that we want to introduce is that of
local asymptotic normality. Back in the coin toss example,

we have that X̄ is a good estimator of the probability � of
obtaining a 1, and by the Central Limit Theorem the error

X̄−� asymptotically has a Gaussian distribution

�n�X̄ − �� � N„0,1/��1 − ��… ,

in particular the mean error is ��X̄−��2�=1/ �n��1−���.
Now, if for each n the unknown parameter � is restricted to

a local neighborhood of a fixed �0 of size 1/�n, one might
expect an improvement in the error because we know more
about the parameter and we can use that information to built
better estimators. However, this is not entirely true. Indeed, if
we write �=�0+u /�n then the estimator of the local param-
eter u is

ûn = �n�X̄ − �0� � N�u,1/�0�1 − �0�� ,

which says that the problem of estimating � in the local
parameter model is as difficult as the original problem, i.e.,
the variance of the estimator is the same. The reason for this
is that the additional information about the location of the
parameter is nothing new as we could guess that directly
from the data with very high probability. Thus, without
changing the difficulty of the original problem, we can look
at it locally and then we see that it transforms into that of
estimating the center of a Gaussian with fixed variance
N�u ,1 /�0�1−�0��, which is a classical statistical problem.

In general, we can formulate the following principle:
Given X1 , . . . ,Xn�X independent with distribution P�0+u/�n

depending smoothly on the unknown parameter u�Rk, then
asymptotically this model is statistically equivalent �there ex-
ist explicit randomizations in both directions� with that of a
single draw Y �Rk from the Gaussian distribution
N�u , I��0�−1� with fixed variance equal to the inverse of the
Fisher information matrix �31�.

In the quantum case, we replace the randomizations by
quantum channels and the Gaussian limit model by its quan-
tum equivalent which in the simplest case is a family of
displaced thermal states of a quantum oscillator �see Theo-
rem 1.1�, but in general is a Gaussian state on a number of
coupled quantum and classical oscillators, with canonical
variables satisfying general commutation relations �41�.

A simple extension of Theorem 1.1 is obtained by adding
an additional local parameter t�R for the density matrix
eigenvalues such that �=�0+ t /�n. This leads to a Gaussian
limit model in which we are given a quantum oscillator is in
state �u and additionally, a classical Gaussian variable with
distribution N�t ,1 /�0�1−�0��. The meaning of this
quantum-classical coupling is the following: Asymptotically
the problem of estimating the eigenvalues decouples from
that of estimating the direction of the Bloch vector and be-
comes a classical statistical problem �identical with the coin
toss discussed above�, while that of estimating the direction
remains quantum and converges to the estimation of a
Gaussian state of a quantum oscillator. We note that this
decoupling has been also observed in �24,29�.

III. BIG BALL PICTURE OF COHERENT SPIN STATES

In this section, we give a heuristic argument for why
Theorem �1.1� holds which will guide our intuition in later
computations.

It is customary to represent the state of a two-dimensional
quantum system by a vector r� in the Bloch sphere such that
the corresponding density matrix is
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� =
1

2
�1 + r���� =

1

2
�1 + rx�x + ry�y + rz�z� ,

where �i represent the Pauli matrices and satisfy the commu-
tation relations ��i ,� j�=2iijk�k. In particular if r�
= �0,0 , ±1� then the state is given by the spin-up �↑ � and,
respectively, spin-down �↓ � basis vectors of C2, and the z
component of the spin �z takes value ±1. As for the x and y
spin components, each one may take the values ±1 with
equal probabilities, such that on average ��x�= ��y�=0 but
the variances are ��x

2�= ��y
2�=1. Moreover, �x and �y do not

commute and thus cannot be measured simultaneously.
What happens with the Bloch sphere picture when we

have more spins? Consider for the beginning n identical
spins prepared in a coherent spin-up state �↑ ��n, then we can
think of the whole as a single-spin system and define the
global observables Li

�n�=�k=1
n �i

�k� for i�x ,y ,z, where �i
�k� is

the spin component in the direction i of the k’s spin. Intu-
itively, we can represent the joint state by a vector of length
n pointing to the north pole of a large sphere as shown in
Fig. 1. However, due to the quantum character of the spin
observables, the x and y components cannot be equal to zero,
and it is more instructive to think in terms of a vector whose
tip lies on a small blob of the size of the uncertainties in x
and y, sitting on the top of the sphere. Exactly how large is
this blob? By using the Central Limit Theorem, we conclude
that in the limit n→� the distribution of the “fluctuation
operator”

Sx
�n�

ª

1
�2n

Lx
�n� =

1
�2n

�
k=1

n

�x
�k�,

converges to a N�0,1 /2� Gaussian, that is �Sx�=0 and �Sx
2�

�1/2, and similarly for the component Sy
�n�. The width of the

blob is thus of the order of �n in both the x and y directions.
Now, the two fluctuations do not commute with each

other

�Sx
�n�,Sy

�n�� =
i

n
Lz

�n� � i1 , �3.1�

which is the well-known commutation relation for canonical
variables of the quantum oscillator. In fact, the quantum ex-
tension of the Central Limit Theorem �36� makes this more
precise

lim
n→�

�n��↑��
k=1

p

Sik
�n��↑���n = ��,�

k=1

p

Xik
��, " ik � �x,y� ,

where XxªQ and XyªP satisfy �Q , P�= i1 and � is the
ground state of the oscillator.

The above description is not new in physics and goes
back to Dyson’s theory of spin-wave interaction �34�. More
recently squeezed spin states �33� for which the variances
�Sx

2� and �Sy
2� of spin variables are different, have been found

to have important applications in various fields, such as mag-
netometry �35�, and entanglement between many particles
�42�. The connection with such applications will be dis-
cussed in more detail in Sec. VII.

We now rotate all spins by the same small angle for each
particle, as shown in Fig. 2. As we will see, it makes sense to
scale the angle by the factor of 1 /�n, i.e., to consider

�n
u = 
exp� i

�n
�ux�x + uy�y���↑��n

, u � R2.

Indeed, for such angles, the z component of the vector
will change by a small quantity of the order �n�n so the
commutation relations �3.1� remain the same, while the
uncertainty blob will just shift its center such that the
new averages of the renormalized spin components are
�Sx

�n���−�2uy and �Sy
�n����2ux. All in all, the spins state

converges to the coherent state ��u� of the oscillator, where
�u= �−uy + iux��C and, in general,

FIG. 1. �Color online� Quasiclassical representation of n spin-up
qubits. FIG. 2. �Color online� Rotated coherent state of n qubits.
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��� ª exp�− ���2/2��
j=0

�
�j

�j!
�j� ,

with �j� representing the j’s energy level.
We consider now the case of qubits in an individual

mixed state � � ↑ ��↑�+ �1−�� � ↓ ��↓� with �1/2��1. Then,
the “length” of Lz is n�2�−1�, but the size of the blob is the
same �see Fig. 3�. However, the commutation relations of Sx
and Sy do not reproduce those of the harmonic oscillator, and
we need to renormalize the spin as

Sx
�n�

ª

1
�2�2� − 1�n

Lx, Sy
�n�

ª

1
�2�2� − 1�n

Ly .

The limit state will be a Gaussian state of the quantum os-
cillator with variance �Q2�= �P2�= 1

2�2�−1� �
1
2 , that is a ther-

mal equilibrium state

�0 = �1 − p��
k=0

�

pk�k��k�, p =
1 − �

�
.

Finally, the rotation by exp� i
�n

�ux�x+uy�y�� produces a dis-
placement of the thermal state such that �Q�=−�2�2�
−1�uy and �P�=�2�2�−1�ux.

IV. LOCAL ASYMPTOTIC NORMALITY FOR MIXED
QUBIT STATES

We now give a rigorous formulation of the heuristics pre-
sented in the previous section. Let

�0 = �� 0

0 1 − �
� �4.1�

be a density matrix on C2 with ��1/2, representing a mix-
ture of spin-up and spin-down states, and for every u
= �ux ,uy��R2 consider the state �u=U�u��0U�u�*, where

U�u� ª exp�i�ux�x + uy�y�� = � cos�u� − e−i�sin�u�
ei�sin�u� cos�u�

� ,

with �=Arg�−uy + iux�. We are interested in the asymptotic
behavior as n→� of the family

Fn ª ��n
u = ��u/�n��n,u � I2� , �4.2�

where I= �−a ,a� is a fixed finite interval.
The main result is that Fn is asymptotically normal,

meaning that it converges as n→� to a limit family Gn
ª ��u ,u� I2� of Gaussian states of a quantum oscillator with
creation and annihilation operators satisfying �a ,a*�=1. Let

�0
ª �1 − p��

k=0

�

pk�k��k� , �4.3�

be a thermal equilibrium state with �k� denoting the ks’ en-
ergy level of the oscillator and p= 1−�

� �1. For every u� I2,
define

�u
ª D��2� − 1�u���0�D�− �2� − 1�u� , �4.4�

where D�z�ªexp�za*−z*a� is the displacement operator,
mapping the vacuum vector �0� to the coherent vector �z� and
�u= �−uy + iux�.

The exact formulation of the convergence is given in
Theorem 1.1. Thus, the state �n

u of the n qubits which de-
pends on the unknown parameter u can be manipulated by
applying a quantum channel Tn such that its image converges
to the Gaussian state �u, uniformly in u� I2. Conversely, by
using the channel Sn, the state �u can be mapped to a joint
state of n qubits which is converges to �n

u uniformly in u
� I2. By Stinespring’s theorem, we know that the channels
are of the form

T��� = TrK�V�V*� ,

S��� = TrK��W�W*� ,

where the partial traces are taken over some ancillary Hilbert
spaces K, K� and

V:�C2��n → L2�R� � K ,

W:L2�R� → �C2��n
� K�,

are isometries �V*V=1 and W*W=1�.
Our task is now to identify the isometries Vn and Wn

implementing the channels Tn and respectively Sn satisfying
Eq. �1.4�. The first step toward identifying these Vn is to use
group representations methods so as to partially �block� di-
agonalize all the �n

u simultaneously.

A. Block decomposition

In this subsection, we show that the states �n
u have a

block-diagonal form given by the decomposition of the space
�C2��n into irreducible representations of the relevant sym-
metry groups. The main point is that for large n the weights
of the different blocks concentrate around the representation
with total spin jn=n��−1/2�.

FIG. 3. �Color online� Quasiclassical representation of n qubit
mixed states.
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The space �C2��n carries a unitary representation �n of the
one-spin symmetry group SU�2� with �n�u�=u�n for any u
�SU�2�, and a unitary representation of the symmetric
group S�n� given by the permutation of factors

�n���:v1 � ¯ � vn � v�−1�1� � ¯ � v�−1�n�, � � S�n� .

As ��n�u� ,�n����=0 for all u�SU�2� ,��S�n�, we have the
decomposition

�C2��n = �
j=0,1/2

n/2

H j � Hn
j , �4.5�

where the direct sum runs over all positive �half�-integers j
up to n /2, and for each fixed j, H j �C2j+1 is a irreducible
representation of SU�2� with total angular momentum J2

= j�j+1�, and Hn
j �Cnj is the irreducible representation of the

symmetric group S�n� with nj = �n/2−j
n �− �n/2−j−1

n �. In particular,
the density matrix �n

u is invariant under permutations, and
can be decomposed as a mixture of “block” density matrices

�n
u = �

j=0,1/2

n/2

pn�j�� j,n
u

�
1

nj
, �4.6�

with probability distribution pn�j� given by �24�:

pn�j� ª
nj

2� − 1
�1 − ��

n
2

−j�
n
2

+j+1�1 − p2j+1� , �4.7�

where pª 1−�
� . A key observation is that for large n and in

the relevant range of j’s, pn�j� is essentially a binomial dis-
tribution

Bn,��k� ª �n

k
��k�1 − ��n−k, k = 0, . . . ,n .

Indeed, we can rewrite pn�j� as

pn�j� ª Bn,��n/2 + j� � K�j,n,�� , �4.8�

where the factor K�j ,n ,�� is given by

K�j,n,�� ª �1 − p2j+1�
n + �2�j − jn� + 1�/�2� − 1�

n + �j − jn + 1�/�
,

and jnªn��−1/2�. As Bn,� is the distribution of the sum of
n independent Bernoulli variables with individual distribu-
tion �1−� ,�� over �0,1�, we can use the Central Limit
Theorem to conclude that its mass concentrates around the
average �n with a width of order �n, in other words of any
0��1/2 we have

lim
n→�

�
p=−n1/2+

n1/2+

Bn,���n + p� = 1. �4.9�

Let us denote by Jn, the set of values j of the total angu-
lar momentum of n qubits which lie in the interval
�jn−n1/2+ , jn+n1/2+�. Then, for large n, the factor K�j ,n ,��
is close to 1 uniformly over j�Jn,, and from formulas �4.8�
and �4.9� we conclude that pn�j� concentrates asymptotically
in an interval of order n1/2+ around jn:

lim
n→�

pn�Jn,� = 1. �4.10�

This justifies the big ball picture used in the previous section.

B. Irreducible representations of SU„2…

Here, we remind the reader of some details about the
irreducible representation � j of SU�2� on H j. Let �x ,�y ,�z

be the Pauli matrices and denote Jj,lª� j��l� for l=x ,y ,z the
generators of rotations in the irreducible representation � j,
such that the corresponding unitaries are Uj�u�
ªexp�i�uxJj,x+uyJj,y��. There exists an orthonormal basis
��j ,m� ,m=−j , . . . , j� of H j such that

Jj,z�j,m� = m�j,m� .

Moreover, with Jj,±ªJj,x± iJj,y, we have

Jj,+�j,m� = �j − m�j + m + 1�j,m + 1� ,

Jj,−�j,m� = �j − m + 1�j + m�j,m − 1� .

With these notations and p= 1−�
� as before, the state � j,n

0 can
be written as �29�

� j,n
0 = cj�p� �

m=−j

j

pj−m�j,m��j,m� ,

where the normalizing factor is cj�p�= �1− p� / �1− p2j+1�. The
rotated block states can be obtained by applying the unitary
transformation

� j,n
u = Uj�u/�n�� j,n

0 Uj�u/�n�*,

with Uj�u� as above. Finally, we define the vectors

�j,w� ª Uj�w��j, j� �4.11�

which will be used in later computations, and notice that
their coordinates, with respect to the �j ,m� basis, are given
by �29�:

�j,m�j,w� =�� 2j

j + m
�� j−m�1 − ���2�

j+m
2 . �4.12�

where �=ei�w sin �w� with �w=Arg�−wy + iwx�.

V. CONSTRUCTION OF THE CHANNELS Tn

For each irreducible representation space H j, we define
the isometry Vj :H j→L2�R� by

Vj:�j,m� � �j − m� , �5.1�

where ��n� ,n
0� represents the energy eigenbasis of the
quantum oscillator with eigenfunctions �n�x�
=Hn�x�e−x2/2 /���2nn!�L2�R�. Using the decomposition
�4.5�, we put together the different blocks we construct for
each n�N the “global” isometry

Vn ª �
j=0,1/2

n/2

Vj � 1: �
j=0,1/2

n/2

H j � Cnj → L2�R� � Kn,

where Knª� j=0,1/2
n/2 Cnj. By tracing over Kn, we obtain the

channel Tn���ªTrKn
�Vn�Vn

*� mapping a joint state of n spins
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into a state of the quantum oscillator. This channel satisfies
the convergence condition �1.4� as shown by the estimate

	Tn��n
u� − �u	1 = � �

j=0,1/2

n/2

pn�j�Vj�n,j
u Vj

* − �u�
1

	 �
j=0,1/2

n/2

pn�j�	Vj�n,j
u Vj

* − �u	1

	2 �
j�Jn,

pn�j� + sup
u�I2

max
j�Jn,

	Vj� j,n
u Vj

* − �u	1,

where the first term on the right side converges to 0 by
�4.10�, and for the second one we apply the following Propo-
sition �5.1� which is the major technical contrubition of this
paper.

Proposition (5.1). The following uniform convergence
holds

lim
n→�

sup
u�I2

max
j�Jn,

	Vj� j,n
u Vj

* − �u	1 = 0,

where Jn, is the set defined above in Eq. �4.10�.
The proof of the Proposition requires a few ingredients

which, in our opinion, are important on their own and we
formulate them apart and refer to relevant papers for the
proofs.

Theorem�5.2�. �36� Let a ,b�M�Cd�, satisfying Tr�a�
=Tr�b�=0 and define

L�a,b� = exp�ia�exp�ib� − exp�ia + ib�exp�1

2
�a,b�� .

On �C2��n, we define the fluctuation operator

Fn�a� =
1
�n

� ai,

where ai=1 � ¯ � a � ¯ � 1 with a acting on the i’s posi-
tion of the tensor product. Notice that exp�iFn�a��
=exp�ia /�n��n and �n�Fn�a� ,Fn�b��=Fn��a ,b��. Then,

lim
n→�

	L�Fn�a�,Fn�b��	 = 0.

The convergence is uniform over 	a	, 	b 	 �C for some con-
stant C.

This Theorem is a key ingredient of the quantum Central
Limit Theorem �36�, and it is not surprising that it plays an
important role in our quantum local asymptotic normality
result which is an extension of the latter. We apply the Theo-
rem to two unitaries of the form U�u /�n��n=exp�i�ux�x

+uy�y�� /�n��n. We thus get information on the effect of the
Uj�u /�n� on the highest weight vectors �j , j� of an irreduc-
ible representation.

Corollary (5.3). For any unitary U and state �, let

Ad�U����ªU�U* and consider the rotated states

��u,v, j,n� ª Ad
Uj� u
�n

�Uj� v
�n

���j j��j j�� ,

��u + v, j,n� ª Ad
Uj�u + v
�n

���j j��j j�� .

Then, the following uniform convergence holds

lim
n→�

sup
u,v�I2

sup
j�Jn,

	��u,v, j,n� − ��u + v, j,n�	1 = 0.

Proof. By applying Theorem �5.2� to U�u /�n��n and
U�v /�n��n, the first term of L�Fn�a�� is

U1 = U� u
�n

��n

U� v
�n

��n

,

and the second is

U2 = U�u + v
�n

��n

exp�Fn��u,v��
2�n

�
with

�u,v� ª �ux�x + uy�y,vx�x + vy�y� = 2�uxvy − uyvx��z.

The norm one distance between these two operators is going
to 0 as n is going to infinity, uniformly on �u ,v�� I2. We
may apply these operators on any pure state of �C2��n, in
particular on �j , j��j , j� for any j�Jn, after block diagonal-
ization and preserve the uniform limit

	Ad�U1���j j��j j�� − Ad�U2���j j��j j��	 →
n→�

0. �5.2�

Now, the action of exp� Fn��u,v��

2�n
� on �j , j��j , j� is simply iden-

tity because �j j� is an eignevector of Jj,z. Thus,

Ad�U2���j j��j j�� = ��u + v, j,n� .

Together with Eq. �5.2�, this ends the proof.
The following Lemma is a slight strengthening of a theo-

rem by Hayashi and Matsumoto �29�.
Lemma (5.4). The uniform convergence holds

lim
n→�

sup
u�I2

sup
j�Jn,

�VjUj� u
�n

��j j� − ��2� − 1�u�� = 0,

where �z� denotes a coherent state of the oscillator, and �u
ª �−uy + iux�. Moreover, for any sequence jn→�, we have

lim
n→�

	Vjn
� jn

0 Vjn
* − �0	1 = 0. �5.3�

The convergence holds uniformly over all sequences jn such
that jn /n�c for some fixed constant c�0, so, in particular
for jn�Jn,.

Proof. We first prove the easier relation �5.3�. As both
density matrices are diagonal, we get
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	Vjn
� jn

0 Vjn
* − �0	1 =

�1 − p�p2jn+1

1 − p2jn+1 �
k=0

2jn

pk − �1 − p� �
k=2jn+1

�

pk

	
p2jn+1

1 − p2jn+1 + p2jn+1 → 0,

as n→�.
As for the first relation, let us denote �u , j ,n�

ªVjUj� u
�n

� � j , j�, then by Eqs. �4.12� and �5.1�, we have

�k�u, j,n� =��2j

k
��sin��u�/�n�ei��k�cos��u�/�n��2j−k.

Now, the following asymptotical relations hold uniformly
over j�Jn,:

sin� �u�
�n
�k

= � �u�
�n
�k

�1 + O��u�2n−1�� ,

cos� �u�
�n
�2j−k

= exp�−
�2� − 1��u�2

2
��1 + O��u�2n−�� ,

�2j

k
� =

��2� − 1�n�k

k!
�1 + O�n−�� ,

and thus the coefficients converge uniformly to those of the
corresponding coherent states as n→�

�k�u, j,n� → exp�−
�2� − 1��u�2

2
� �ei��u��2� − 1�k

�k!
.

Proof of Proposition (5.1). The main idea is to notice that
�0 is a thermal equilibrium state of the oscillator and can be
generated as a mixture of coherent states with centered
Gaussian distribution over the displacements:

�0 =
1

�2�s2 � e−�z�2/2s2
�z��z�d2z . �5.4�

The easiest way to see this is to think of the oscillator states
in terms of their Wigner functions. Indeed, the Wigner func-
tion of a coherent state is

Wz�q,p� = exp�− �q − �2Re z�2 − �p − �2Im z�2� ,

and thus the state given by Eq. �5.4� has a Wigner function
which is the convolution of two centered Gaussians, again a
centered Gaussian with a variance equal to the sum of their

variances 2s2+1/2, which is equal to the variance of �0 for
s2
ªp / �2�1− p��. Similarly,

�u =
1

2�s2 � e−�z − �2� − 1�u�2/2s2
��z��z��d2z . �5.5�

Let us first remark that

	Vjn
� jn

u Vjn
* − �u	1 	 	� jn

u − Vjn
* �uVjn

	1 + 	�u − Pjn
�uPjn

	1,

where Pjn
=Vjn

Vjn
* is the projection onto the image of Vjn

, and

lim
n→�

sup
jn�Jn,

sup
u�I2

	�u − Pjn
�uPjn

	1 = 0,

because jn→� uniformly and Pjn
converges to the identity in

strong operator topology �a tightness property�. Thus, it is
enough to show that

lim
n→�

sup
jn�Jn,

sup
u�I2

	� jn
u − Vjn

* �uVjn
	1 = 0.

Now

	� jn
u − Vjn

* �uVjn
	1

= �Ad
Ujn� u
�n

��� jn
0 � − Vjn

* �uVjn�
1

		� jn
0 − Vjn

* �0Vjn
	1

+ �Ad
Ujn� u
�n

��Vjn
* �0Vjn

� − Vjn
* �uVjn�

1

.

The first term on the right side of the inequality converges to
zero by Lemma �5.4�, uniformly for any sequence �jn� such
that jn�Jn, and does not depend on u. Using Eqs. �5.4� and
�5.5�, we bound the second term by

1

s�2�
� e−�z�2/2s2

	��u,z, jn�	1d2z ,

where the operator ��u ,z , jn� is given by

��u,z, jn� ª Ad
Ujn� u
�n

��Vjn
* �z��z�Vjn

�

− Vjn
* �z + �2� − 1�u��z + �2� − 1�u�Vjn

.

We analyze the expression under the integral. Let z̃�R2 be
such that �z̃=z /�2�−1, then

�Ad
Ujn� u
�n

��Vjn
* �z��z�Vjn

� − Vjn
* �z + �2� − 1�u��z + �2� − 1�u�Vjn�

1

	�Ad
Ujn� u
�n

�Ujn� z̃
�n
���jnjn��jnjn�� − Ad
Ujn�u + z̃

�n
���jnjn��jnjn���

1
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+ �Vjn
Ad
Ujn� z̃

�n
���jnjn��jnjn��Vjn

* − �z��z��
1

+ �Vjn
Ad
Ujn�u + z̃

�n
���jnjn��jnjn��Vjn

* − �z + �2� − 1�u��z + �2� − 1�u��
1

.

By Corollary �5.3�, the first term on the right side converges
to zero uniformly in �u , jn�� I2�Jn,. By Lemma �5.4�, we
have that the last two terms converge to zero uniformly in
�u , jn�� I2�Jn,. Thus, if we denote

Fn�z� ª sup
jn�Jn,

sup
u�I2

	��u,z, jn�	1,

then 0	Fn�z�	2, limn→�Fn�z�=0 for all z�R2, and by the
Lebesgue dominated convergence theorem, we get

lim
n→�

1

s�2�
� e−�z�2/2s2

Fn�z�d2z = 0.

This implies the statement of the Proposition �5.1�.

VI. CONSTRUCTION OF THE INVERSE CHANNEL Sn

To complete our proof of asymptotic equivalence as de-
fined by Eq. �1.4�, we must now exhibit the inverse channel
Sn which maps the displaced thermal states �u of the oscil-
lator into approximations of the rotated spin states. As the
latter are block diagonal with weights pn�j� as defined in Eq.
�4.7�, it is natural to look for Sn of the form

Sn��� = �
j=0,1/2

n/2

pn�j�Sn
j ��� �

1

nj
,

where Sn
j are channels with outputs in H j. Moreover, because

Vj :H j→L2�R� is an isometry, we can choose Sn
j such that

Sn
j �Vj�Vj

*� = � , �6.1�

for all density matrices � on H j. This property does not fix
the channel completely, but it is sufficient for our purposes.
Basically, what we want is an inverse of the embedding
Vj ·Vj

* used for the direct channel, and one way to get this is
as follows: First, block diagonalize � to get Pj�Pj
+ Pj

��Pj
�, where Pj is the projection onto the image of Vj,

i.e., Pj =VjVj
*, and note that this is a trace preserving com-

pletely positive map. This block-diagonal state can be now
seen as a state on the direct sum algebra B�PjL

2�R��
� B�Pj

�L2�R�� and can be mapped to a state on B�H j� by the
channel Vj

* ·Vj � Sj
� withSj

� arbitrary on the “upper block”.
The resulting composition is the channel Sn

j satisfying prop-
erty �6.1�.

Theorem �6.1�. The following holds

lim
n→�

sup
u�I2

	Sn��u� − �n
u	1 = 0.

Proof. As both �n
u and Sn��u� are block diagonal, we may

decompose their distance as

	Sn��u� − �n
u	1 = �

j=0,1/2

n/2

pn�j�	Sn
j ��u� − � j,n

u 	1 	 �
j�Jn,

2pn�j� + �
j�Jn,

pn�j�	Sn
j ��u� − Sn

j �Vj� j,n
u Vj

*�	1

+ �
j�Jn,

pn�j�	Sn
j �Vj� j,n

u Vj
*� − � j,n

u 	1 	 2 �
j�Jn,

pn�j� + �
j�Jn,

pn�j�	�u − Vj� j,n
u Vj

*	1,

where we have used at the last line that Sn
j is a contraction

and property �6.1� of Sn
j . Now, the first sum is going to 0 by

Eq. �4.10� and the second sum is also uniformly going to 0
by use of Proposition �5.1�.

VII. APPLICATIONS

A. Optimal Bayes measurement is also asymptotically local
minimax

In this subsection, we will introduce some ideas from the

point-wise approach to state estimation. We show that the
measurement, which is known to be optimal for a uniform
prior in the Bayesian setup, is also asymptotically optimal in
the point-wise sense.

Using the jargon of mathematical statistics, we will call
the quantum statistical experiment (model) �40� a family
����M�Cd� :���� of density matrices indexed by a param-
eter belonging to a set �. The main examples of quantum
statistical experiments considered so far are that of n identi-
cal qubits
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F ª ���n:� � M�C2�� ,

the local model

Fn
I
ª ��n

u = ��u/�n��n,u � I2� ,

and its “limit” model

GI
ª ��u,u � I2� ,

where I= �−a ,a�, and �n
u and �u are defined by Eqs. �1.1� and

�1.2�. More generally, we can replace the square I2 by an
arbitrary region K in the parameter space and obtain:

GK
ª ��u,u � K � R2� .

We shall also make use of

G ª ��u,u � R2� .

A natural choice of distance between density matrices is re-
lated to the fidelity square

F��,��2 = �Tr��������1/2��2,

which is locally quadratic in first-order approximation, i.e.,

1 − F��n
u,�n

v�2 �
1

n
	u − v	2.

As we expect that reasonable estimators are in a local neigh-
borhood of the true state, we will replace the fidelity square
by the local distance

d�u,û� = 	û − u	2,

and define the risk of a measurement-estimator pair as
RM�u , û�= �d�u , û��, keeping in mind the factor 1 /n relating
the risks expressed in local and global parameters.

Similar to the Bayesian approach, we are interested in
estimators which have small risk everywhere in the param-
eter space, and we define a worst case figure of merit called
the minimax risk.

Definition �7.1�. The minimax risk of a quantum statisti-

cal experiment E over the parameter space � for loss func-

tion d�� , �̂�, is defined as

C�E� = inf
M,�̂

sup
���

RM��, �̂� , �7.1�

where the infimum is taken over all measurement-estimator

pairs �M , �̂�, and RM�� , �̂�= �d�� , �̂��.
The minimax risk tells us how difficult the model is and

thus we expect that if two models are “close” to each other
then their minimax risks are almost equal. The “statistical
distance” between quantum experiments is defined in a natu-
ral way with direct physical interpretation, and such a prob-
lem has been already addressed in �43� for the case of a
quantum statistical experiment consisting of a finite family
of pure states.

Definition �7.2�. Let E= ����M�Cd� :���� and F= ���

�M�Cp� :���� be two quantum statistical experiments
(models) with the same parameter space �. We define the
deficiencies

��E,F� = inf
T

sup
���

	T���� − ��	1,

��F,E� = inf
S

sup
���

	�� − S����	1,

where the infimum is taken over all trace preserving chan-
nels T :M�Cd�→M�Cp� and S :M�Cp�→M�Cd�.

With this terminology, our main result states that for any
bounded interval I:

lim
n→�

max���Fn
I ,GI�,��GI,Fn

I �� = 0. �7.2�

As suggested above, the deficiency has a direct statistical
interpretation: If we want to estimate � in both statistical
experiments E and F and we choose a bounded loss function

d�� , �̂�	K, then for any measurement and estimator �̂ for F
with risk RM�� , �̂�= �d�� , �̂�� we can find a measurement N

on E whose risk is at most RM�� , �̂�+K��E ,F�. Indeed, if we
choose T such that the infimum in the definition of ��E ,F� is
achieved, we can map the state �� through the channel T and

then perform M to obtain an estimator �̃ for which

RN��, �̃� = �d��, �̃�� = �
�

d��, �̃�Tr�T����M�d�̃�� 	 �
�

d��, �̃�Tr���M�d�̃�� + 	d	�	T���� − ��	1 	 RM��, �̂� + K��E,F� .

This means that the difficulty of estimating the parameter �
in the two models is comparable within a factor ��E ,F�.
With the above definition of the minimax risk and using the
convergence �7.2�, we obtain the following lemma.

Lemma �7.3�. Let I= �−a ,a� with 0�a��, then

lim
n→�

C�Fn
I � = C�GI� .

The minimax risk for the local family Fn
I is a figure of

merit for the “local difficulty” of the global model Fn. It
converges asymptotically to the minimax risk of a family of
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thermal states. However, this quantity depends on the arbi-
trary parameter I= �−a ,a� which we would like to remove as
our last step in defining the local asymptotic minimax risk:

Cl.a.m.�Fn:n � N� ª lim
a→�

lim
n→�

C�Fn
I � = lim

a→�
C�GI� .

This quantity depends in principle on the state which is at the
center of the local neighborhood. However, by invariance
under rotations, the risk is constant for a given pair of eigen-
values of the density matrix. Now, as one might expect the
minimax risks for the restricted families of thermal states
will converge to that of the experiment with no restrictions
on the parameters. The proof of this fact is however non-
trivial.

Lemma �7.4�. Let I= �−a ,a�, then we have

lim
a→�

C�GI� = C�G� .

Moreover the heterodyne measurement saturates C�G�, and
thus C�G� is equal to the Holevo bound.

Proof. The inequality in one direction is easy. For any
estimator, supu�I2RM�u , û�	supu�R2RM�u , û�, so that C�GI�
	C�G� and the same holds for the limit. By the same rea-
soning, for any K1�K2�R2, we have C�GK1�	C�GK2�.

When calculating minimax bounds, we are interested in
the worst risk of estimators within some parameter region K,
and this worst risk is obviously higher than the Bayes risk
with respect to the probability distribution with constant den-
sity on K. We shall work on B�0,c+b� the ball of center 0
and radius �c+b�, with b�c, and denote our measurement M
with density m�û�dû. In general, M need not have a density,
but this will ease notations. Then,

sup
u�B�0,c+b�

RM�u,û�


�
B�0,c+b��R2

dudû

��c + b�2 	u − û	2Tr��um�û�� . �7.3�

We fix the following notations

f�D� = �
D

dudv	x − y	2Tr��um�v�� ,

g�D� = �
D

dudvTr��um�v�� ,

and define the domains

D1 = ��u,û��u � B�0,c + b�,û � R2� ,

D2 = ��u + k,k��u � B�0,c�,k � B�0,b�� ,

D3 = ��u,u + h��u � B�0,b − c�,h � B�0,c�� ,

D4 = ��u,u + h��u � B�0,b − c�,h � R2 \ B�0,c�� .

Notice the following relations:

D3 � D2 � D1, D4 � D1 \ D2. �7.4�

Then Eq. �7.3� can be rewritten as

sup
u�B�0,c+b�

RM�u,û� 

1

��b + c�2 f�D1� .

The following inequalities follow directly from the defini-
tions:

f�D2� 	 c2g�D2� , f�D3� 	 c2g�D3� ,

f�D4� 
 c2g�D4� , g�D4� + g�D3� = ��b − c�2.

Using these and Eq. �7.4�, we may write:

1

��c + b�2 f�D1� 

1

��c + b�2 �f�D2� + f�D4�� 

1

��c + b�2 �f�D2� + c2g�D4�� =
�b − c�2

�b + c�2� f�D2�
g�D2�

g�D2�
��b − c�2 + c2 − c2

g�D3�
��b − c�2�



�b − c�2

�b + c�2�c2 +
g�D3�

��b − c�2� f�D2�
g�D2�

− c2�� 

�b − c�2

�b + c�2

f�D2�
g�D2�

. �7.5�

We analyze now the expression f�D2� /g�D2�. By using the
definition �1.2� of the displaced thermal states �u we get that
Tr��u+km�l��=Tr��kmu�l��, where

mu�l� ª D�− �2� − 1�u�m�l�D��2� − 1�u� .

Then,

g�D2� = �
B�0,c��B�0,b�

dudkTr��u+km�k�� = Tr��̃cm̃b� ,

where we have written

�̃c = �
B�0,c�

�udu, m̃b = �
B�0,b�

mk�k�dk .

Upon writing vcª�B�0,c� 	u	2�udu, we get similarly f�D2�
=Tr�vcm̃b�. Note that by rotational symmetry vc and �̃c are
diagonal in the number operator eigenbasis, so without re-
stricting the generality, we may assume that m̃b is also diag-
onal in that basis: m̃b=�kpk �k��k�. We have then

LOCAL ASYMPTOTIC NORMALITY FOR QUBIT STATES PHYSICAL REVIEW A 73, 052108 �2006�

052108-11



f�D2�
g�D2�

=
�k�N

pk�k�vc�k�

�k�N
pk�k��̃c�k�


 inf
k�N

�k�vc�k�

�k��̃c�k�
.

The infimum on the right side is achieved by the vacuum
vector. By Lemma �7.5�, this fact follows from the inequality

�k��u1�k�
�k��u2�k�



�0��u1�0�
�0��u2�0�

, 	u1	 
 	u2	 ,

which can be checked by explicit calculations.
Letting now c and b go to infinity with c=o�b� and using

Eq. �7.5�, we obtain that

lim
a→�

C�Ga� 


�
R2

�0��u�0�	u	2du

�
R2

�0��u�0�du

,

which is exactly the point-wise risk of the heterodyne mea-
surement H�du�=h�u�du whose density is

h�u� = �2� − 1�D�− �2� − 1�u��0��0�D�− �2� − 1�u� .

By symmetry, this point-wise risk does not depend on the
point, so that C�G�	RH�u , û�. And we have our second in-
equality: lima→�C�Ga�
C�G�.

Moreover, the heterodyne measurement is known to satu-
rate the Holevo bound for G= Id and the Cramér–Rao bound
for locally unbiased estimators �29,39�. We conclude that the
local minimax risk for qubits is equal to the minimax risk for
the limit Gaussian quantum experiment which is achieved by
the heterodyne measurement.

Lemma �7.5�. Let p and q be two probability densities on
�0,1� and assume that

p�x1�
p�x2�



q�x1�
q�x2�

, x1 
 x2.

Then, �x2p�x�dx
�x2q�x�dx.
Proof. It is enough to show that there exists a point x0

� �0,1� such that p�x�	q�x� for x	x0 and p�x�
q�x� for
x
x0. Now, if p�x�	q�x� then by using the assumption, we
get that p�y�	q�y� for all y	x. Similarly, if p�x�
q�x� then
p�y�	q�y� for all y
x. This implies the existence of the
crossing point x0.

By putting the last two lemmas together, we obtain the
following.

Proposition �7.6�. The local asymptotic minimax risk
Cl.a.m�Fn :n�N� for the qubit state estimation problem is
equal to the minimax risk C�G� for the corresponding quan-
tum Gaussian shift experiment which is achieved by the het-
erodyne measurement.

The natural question is now the following: Is there a se-
quence of measurement-estimator pairs for the qubits which
achieves this the risk Cl.a.m�Fn :n�N� asymptotically for all
local neighborhoods simultaneously, i.e., without prior
knowledge of the center �0 of the 1/�n ball within which the
true state lies. Intuitively, the following procedure seems
natural: Use the local asymptotic normality to transfer the

heterodyne measurement from the space of the oscillator to
that of the qubits and in this way achieve the desired
asymptotic risk. However, this requires the knowledge of the
local neighborhood on which the convergence holds. In order
to obtain this information about the state we need to “local-
ize” the state by performing a first stage of �rough� measure-
ments on a small proportion of the systems of order o�n� and
then perform the �optimal� heterodyne-type measurements
corresponding to the local neighborhood of the first stage
estimator. In order to make this argument rigurous, we need
some finer estimates on the region in which local asymptotic
normality holds and we leave this problem for a separate
work.

However, there exists another measurement which
achieves the risk Cl.a.m�Fn :n�N�, namely the optimal mea-
surement from the Bayesian point of view discussed in
�24,29�. The connection between the local and Bayesian ap-
proaches is discussed in more detail in the next subsection to
which we refer for the appropriate definitions. In particular,
the next proposition can be better understood after reading
the next subsection, but we state it here because it is a direct
consequence of the results derived in this subsection.

Let us denote by �Mn , �̂n� the measurement-estimator pair
from �24,29� which are optimal from the Bayesian point of
view.

Proposition �7.7�. The optimal measurement-estimator
pair �Mn , ûn� in the Bayesian setup is an asymptotically local
minimax estimation scheme. That is for any �

lim
n→�

nRMn
��, �̂n� = Cl.a.m�Fn:n � N� ,

where RMn
�� , �̂n� is the risk with respect to the fidelity dis-

tance.
Proof. The pointwise risk of �Mn , �̂n� is known to con-

verge to that of the heterodyne measurement �24�. The rest
follows from Lemma �7.3� and Lemma �7.4�.

B. Local asymptotic equivalence of the optimal Bayesian
measurement and the heterodyne measurement

In this subsection, we will continue our comparison of the
pointwise �local� point of view with the global one used in
the Bayesian approach. The result is that the optimal SU�2�
covariant measurement �24,29� converges locally to the op-
timal measurement for the family of displaced Gaussian
states which is a heterodyne measurement �39�. Together
with the results on the asymptotic local minimax optimality
of this measurement, this closes a circle of ideas relating the
different optimality notions and the relations between the
optimal measurements.

Let us recall what are the ingredients of the state estima-
tion problem in the Bayesian framework �24�. We choose as
cost function the fidelity squared F�� ,��2=Tr��������2 and
fix a prior distribution � over all states in C2 which is invari-
ant under the SU�2� symmetry group. Given n identical sys-
tems ��n we would like to find a measurement Mn—whose
outcome is the estimator �̂n—which maximizes
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R�,n ª� �F��̂n,��2���d�� .

By the SU�2� invariance of �, the optimal measurement can
be chosen to be SU�2� covariant, i.e.,

UMn�d��U* = Mn�U*d�U� ,
and can be described as follows. First, we use the decompo-
sition �4.5� to make a “which block” measurement and ob-
tain a result j and the conditional state � j,n as in Eq. �4.6�.
This part will provide us the eigenvalues of the estimator.
Next, we perform block wise the covariant measurement
Mj,n�ds��=mj,n�s��ds� with

mj,n�s�� ª �2j + 1�Uj�s��*�j�j�Uj�s�� � 1 j ,
whose result is a unit vector s� where U�s�� is a unitary rotat-
ing the vector state �s�� to �↑ �. The complete estimator is then
�̂n= 1

2
�1+ 2j

n s����.
We pass now to the description of the heterodyne mea-

surement for the quantum harmonic oscillator. This measure-
ment has outcomes u�R2 and is covariant with respect to
the translations induced by the displacement operators D�z�
such that H�du�=h�u�du with

h�u� ª �2� − 1�D�− �2� − 1�u��0�0�D��2� − 1�u� .

Using Theorem �1.1�, we can map H into a measurement on
the n-spin system as follows: First we perform the which
block step as in the case of the SU�2�-covariant measure-
ments. Then we map � j,n into an oscillator state using the
isometry Vj �see Eq. �5.1��, and subsequently we perform H.
The result u will define our estimator for the local state, i.e.,

�̂n = U� u
�n

��
1

2
+

j

n
0

0
1

2
−

j

n
�U� u

�n
�*

. �7.6�

We denote by Hn the resulting measurement with values in
the states on C2.

The next Theorem shows that in a local neighborhood of
a fixed state �0, the SU�2�-covariant measurement Mn and
the heterodyne-type measurement Hn are asymptotically
equivalent in the sense that the probability distributions
P�Mn ,�� and P�Hn ,�� are close to each other uniformly over
all local states � such that 	�−�0	1	

C
�n

for a fixed but arbi-
trary constant C��.

Theorem �7.8�. Let �0 be as in Eq. �4.1�, and let

Bn�I� = ��v/�n:v � I2�, , �I� � � ,

be a local family of states around �0. Then,

lim
n→�

sup
��Bn�I�

	P�Mn,�� − P�Hn,��	1 = 0.

Proof. Note first that both P�Mn ,�� and P�Hn ,�� are dis-
tributions over the Bloch sphere and the marginals over the
length of the Bloch vectors are identical because by con-
struction the first step of both measurements is the same.
Then,

	P�Mn,�� − P�Hn,��	1=

�
j

pn�j� � �Tr�� j,n�mj,n�s�� − hj,n�s�����ds� .

According to Eq. �4.10�, we can restrict the summation to the
interval Jn, around j=n��− 1

2
�. By Theorem �1.1�, we can

replace �whenever needed� the local states � j,n
v/�n by their lim-

its in the oscillator space �v with an asymptotically vanish-
ing error, uniformly over v� I2.

We make now the change of variable s�→u, where u
�R2 belongs to the ball �u � �2�n�, and is the smallest vec-
tor such that U� u

�n
�=U�s��.

The density of the SU�2� estimator with respect to the
measure du is

mj,n�u� ª
2j + 1

n
Uj� u

�n
�*

�j��j�Uj� u
�n

�J� u
�n

� ,

where J is the determinant of a Jacobian related with the
change of variables such that J�0�=1.

Similarly, the density of the homodyne-type estimator be-
comes

hj,n�u� ª �
k�N

Vj
*h�u + 2k�n�

u

�u��Vj�Jk,n�u�� ,

because displacements in the same direction which differ by
multiples of 2�n� lead to the same unitary on the qubits.
Here, Jk,n�u� is again the determinant of the Jacobian of the
map from the kth ring to the disk, in particular J0,n�u�=1.

The integral becomes then

�
�u�	2��n

�Tr�� j,n
v/�n�mj,n�u� − hj,n�u����du .

We bound this integral by the sum of two terms, the first
one being

�
�u�	2��n

�Tr�� j,n
v/�n�mj,n�u� − h̃j�u����du ,

where h̃j�u� is just the term with k=0 in hj,n�u�. By Lemma
�5.4�, for any fixed u, we have mj,n�u�→h�u� uniformly over
j�Jn,. Using similar estimates as in Lemma �5.4�, it can be
shown that the function under the integral is bounded by a
fixed integrable function g�u� uniformly over v� I2, and then
we can use dominated convergence to conclude that the in-
tegral converges to 0 uniformly over v� I2 and j�Jn,.

The second integral is

�
�u�	2��n

�Tr�� j,n
v/�n�h̃j�u� − hj,n�u����du ,

which is smaller than

�
�u��2��n

�Tr�� j,n
v/�nh�u���du ,

which converges uniformly to 0. This can be seen by replac-
ing the states with �v which are “confined” to a fixed region
of the size I2 in the phase space, while the terms h�u� are
Gaussians located at distance at least 2��n from the origin.
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Putting these two estimates together, we obtain the de-
sired result. �

Remark. The result in the above theorem holds more
generally for all states in a local neighborhood of �0 but for
the proof we need a slightly more general version of Theo-
rem �1.1�, where the eigenvalues of the density matrices are
not fixed but allowed to vary in a local neighborhood of
�� ,1−��. This result will be presented in a future work con-
cerning the general case of d-dimensional states.

C. Discrimination of states

Another illustration of the local asymptotic normality
Theorem is the problem of discriminating between two states
�+ and �−. When the two states are fixed, this problem has
been solved by Helstrom �44�, and if we are given n systems
in state �±

�n then the probability of error converge to 0 expo-
nentially. Here, we consider the problem of distinguishing
between two states �n

± which approach each other as n→�
with rate 	�n

+−�n
−	1� 1

�n
. In this case, the probability of error

does not go to 0 because the problem becomes more difficult
as we have more systems, and converges to the limit problem
of distinguishing between two fixed Gaussian states of a
quantum oscillator.

This problem is interesting for several reasons. First, it
shows that the convergence in Theorem �1.1� can be used for
finding asymptotically optimal procedures for various statis-
tical problems such as that of parameter estimation and hy-
pothesis testing. Second, for any fixed n, the optimal dis-
crimination is performed by a rather complicated joint
measurement and the hope is that the asymptotic problem of
discriminating between two Gaussian states may provide a
more realistic measurement which can be implemented in the
lab. Third, this example shows that a noncommuting one-
parameter families of states is not “classical” as it is some-
times argued, but should be considered as a quantum “re-
source” which cannot be transformed into a classical one
without loss of information. More explicitly, the optimal
measurement for estimating the parameter is not optimal for
other statistical problems, such as the one considered here,
and thus different statistical decision problems are accompa-
nied by mutually incompatible optimal measurements.

Let us recall the framework of quantum hypothesis testing
for two states �±: We consider two-outcomes POVM’s M
= �M− ,M+� with 0	M+	1 and M−=1−M+ such that the
probability of error when the state is �− is given by
Tr�M+�−�, and similarly for �+. As we do not know the state,
we want to minimize our worst-case probability error. Our
figure of merit �the lower, the better� is therefore:

R��+,�−� = inf
M

max�Tr��+M−�,Tr��+M−�� .

Now we are interested in the case when �±=�±un as defined
in Eq. �1.1�, and in the limit �±=�±u �recall that both �n

u and
�u depend on ��. We then have:

Theorem �7.9�. The following limit holds

lim
n→�

R��n
u,�n

−u� = R��u,�−u� .

Moreover for pure states this limit is equal to �1− �1
−e−4�u�2�1/2� /2 which is strictly smaller than 1/2−erf��u � �

which is the limit if we do not use collective measurements
on the qubits. Here we have used this convention for the
error function: erf�x�=�0

xe−t2 /��dt.
Proof. Let M be the optimal discrimination procedure

�±u. Then, we use the channel Tn to send �n
±u to states of the

oscillator and then perform the measurement M. By Theorem
�1.1�, 	�±u−Tn��n

±u�	1→0 so that Tr�Tn��n
±u�M��

→Tr��±uM��. Thus, M �Tn is asymptotically optimal for
�n

±u.
Now for pure states ��+� and ��−�, the optimal measure-

ment is well known �45,46�. It is unique on the span of these
pure states and arbitrary on the orthogonal. If we choose the
phase such that ��− ��+��0, then M+ is the projector on the
vector

��+� + ��−�

2�1 + ��−��+�
+

��+� − ��−�

2�1 − ��−��+�
,

and the associated risk is

1

2
�1 − �1 − ���+�� − ��2� .

Now in our case, in the limit experiment, �u is the coherent
state ��u�=e−�u�2/2�n �u�n /�n! �n�. So that

��u��−u� = e−�u�2�
n

�− �u�2�n

n!
= e−2�u�2,

and R��u ,�−u�= 1
2 �1−�1−e−4�u�2�.

We would like to insist here that the best measurement for
discrimination is not measuring the positive part of the posi-
tion observable Q �we assume by symmetry that ±u is on the
first coordinate�, as one might expect from the analogy with
the classical problem. Indeed, if we meausure Q then we
obtain a classical Gaussian variable with density p�x�
=e−�x−�u��2

/�� and the best guess at the sign ± has in this case
the risk 1/2−erf��u � �.

This may be a bit surprising considering that measuring Q
preserves the quantum Fisher information. The conclusion is
simply that the quantum Fisher information is not an exhaus-
tive indicator of the statistical information in a family of
states, as it may remain unchanged even when there is a clear
degradation in the inference power. This example fits in a
more general framework of a theory of quantum statistical
experiments and quantum decisions �47�.

D. Spin squeezed states and continuous time measurements

In an emblematic experiment for the field of quantum
filtering and control �35�, it is shown how spin squeezed
states can be prepared deterministically by using continuous
time measurements performed in the environment and real
time feedback on the spins. Without going in the details, the
basic idea is to describe the evolution of identically prepared
spins by passing first to the coherent state picture. There one
can easily solve the stochastic Schrödinger equation describ-
ing the evolution �quantum trajectory� of the quantum oscil-
lator conditioned on the continuous signal of the measure-
ment device. The solution is a Gaussian state whose center
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evolves stochastically while one of the quadratures gets more
and more squeezed as one obtains more information through
the measurement. Using feedback, one can then stabilize the
center of the state around a fixed point.

This description is of course approximative and holds as
long as the errors in identifying the spins with Gaussian
states are not significant. The framework developed in the
proof of Theorem �1.1� can then be used to make more pre-
cise statements about the validity of the results, including the
squeezing process.

Perhaps more interesting for quantum estimation, such
measurements may be used to perform optimal estimation of
spin states. The idea would be to first localize the state in a

small region by performing a weak measurement and then in
a second stage, one performs a heterodyne type measurement
after rotating the spins so that they point approximately in
the z direction. We believe that this type of procedure has
better chances of being implemented in practice compared
with the abstract covariant measurement of �24,29�.
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