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The question how to quantize a classical system where an angle � is one of the basic canonical variables has
been controversial since the early days of quantum mechanics. The problem is that the angle is a multivalued
or discontinuous variable on the corresponding phase space. The remedy is to replace � by the smooth periodic
functions cos � and sin �. In the case of the canonical pair �� , p��, where p� is the orbital angular momentum
�OAM�, the phase space S�,p�

= ���R mod 2� , p��R� has the global topological structure S1�R of a cyl-
inder on which the Poisson brackets of the three functions cos � , sin �, and p� obey the Lie algebra of the
Euclidean group E�2� in the plane. This property provides the basis for the quantization of the system in terms
of irreducible unitary representations of the group E�2� or of its covering groups. A crucial point is that, due to
the fact that the subgroup SO�2��S1 is multiply connected, these representations allow for fractional OAM
l= � �n+�� ,n�Z ,�� �0,1�. Such ��0 have already been observed in cases like the Aharonov-Bohm and
fractional quantum Hall effects, and they correspond to the quasimomenta of Bloch waves in ideal crystals. The
proposal of the present paper is to look for fractional OAM in connection with the quantum optics of Laguerre-
Gaussian laser modes in external magnetic fields. The quantum theory of the phase space S�,p�

in terms of
unitary representations of E�2� allows for two types of “coherent” states, the properties of which are discussed
in detail: nonholomorphic minimal-uncertainty states and holomorphic ones associated with Bargmann-Segal
Hilbert spaces.
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I. INTRODUCTION AND OVERVIEW

The problem of quantizing a phase space where an angle
��R mod 2� is one of the canonical variables has been a
controversial issue since the founding days of quantum me-
chanics �for a brief historical account see the Introduction of
Ref. �1��. The basic reason for the problems is that an angle
variable of that type is not a smooth periodic function on the
associated phase space �for details see Appendix A�.

There are two typical �generic� examples where the unit
circle S1, parametrized by the angle ��R mod 2�, repre-
sents the configuration space, whereas the canonically con-
jugate momentum variable p� is either a positive real number
p��0—i.e., p��R+—or a real number—i.e., p��R.

The “classical” representative of a phase space with the
global topological structure S1�R+ is the angle–action-
variable description of the harmonic oscillator: The transfor-
mation

q��,I� = �2I/m� cos �, � � �0,2��, I � 0, �1�

p��,I� = − �2m�I sin � �2�

is locally canonical; i.e., it has the property

dq Ù dp = d� Ù dI �3�

and it transforms the Hamilton function

H =
1

2m
p2 +

1

2
m�2q2 �4�

into the simple form H=�I.
The phase space

S�,I = ���,I�;� � R mod 2�,I � R+� �5�

has the global topological structure of a cone with the tip
deleted �1�. The cone may be parameterized by the three
functions

h0��,I� = I � 0, h1��,I� = I cos �, h2��,I� = − I sin � ,

h0
2 − h1

2 − h2
2 = 0. �6�

These functions obey the Lie algebra so�1,2� of the “proper
orthochronous Lorentz group” SO↑�1,2� with respect to the
Poisson brackets on S�,I: namely,

�f1, f2��,I 	 ��f1�If2 − �If1��f2, f j = f j��,I� . �7�

For the functions �6� we have

�h0,h1��,I = − h2, �h0,h2��,I = h1, �h1,h2��,I = h0. �8�

This Lie algebra structure on the classical phase space S�,I
serves as the basis for the quantization of the system.

In the quantum theory the corresponding self-adjoint Lie
algebra generators K0, K1, and K2 of certain irreducible
unitary representations of the group SO↑�1,2� constitute the
algebraic basis for the more composite quantum observables
of the quantized system like the functions h0, h1, and h2 do
for the classical one. What is especially remarkable is the
following.*Electronic address: Hans.Kastrup@desy.de
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Obviously it follows from the relations �1�, �2�, and �6�
that the variables q and p may be expressed �nonlinearly� by
the functions h0, h1, and h2. Similarly, the self-adjoint opera-
tors Q and P may be expressed as functions of the operators
K0, K1 and K2. Thus, one can replace the basis �Q , P ,1� of
the fundamental Weyl-Heisenberg algebra by the basis
�K1 ,K2 ,K0� of the Lie algebra of the group SO↑�1,2� or one
of its �infinitely many� covering groups �for details see Ref.
�1��.

Important for the new approach is that the unsuitable vari-
able ��R mod 2� is replaced by the continuous and smooth
periodic functions cos � and sin � as basic canonical vari-
ables. This was first suggested in 1963 independently by the
physicist Louisell �2� and the mathematician Mackey �3�.
This makes very good sense, because any “decent” function
periodic in � may be expanded in a Fourier series where the
terms with cos n� and sin n� can be expressed as powers of
cos � and sin �.

The details of the quantization of the phase space S�,I
with its global topological structure S1�R+ in terms of irre-
ducible unitary representations of the group SO↑�1,2� and
possible associated applications of the somewhat unusual
quantum framework, especially in quantum optics, have been
discussed elaborately in �1�.

The characteristic mechanical example representing a
phase space with the global topology S1�R �a cylinder� is a
bead moving frictionlessly on a circular wire with radius r0
in a horizontal plane. The position of the bead on the wire is
given by an angle ��R mod 2�, but its angular momentum
p� may have any value p��R, positive or negative, depend-
ing on whether the bead moves anticlockwise or clockwise.
The Hamilton function is

H =
p�

2

2mr0
2 . �9�

Whereas the angular momentum p� is a constant of motion
the value of which depends on the initial conditions, the
angle � has the equation of motion

�̇ 	 � =
�H

�p�

=
p�

mr0
2 , �10�

with the solution

��t� = �t + �0. �11�

The last relation indicates a property of the simple system
which plays an important role in our discussion of its quan-
tum theory below: The position of the bead on the wire can
always be described by a certain value �� �0,2��. But if not
stopped, the bead will pass that position—e.g., �0—many
times: namely, n=�t0 / �2�� times if it passes the “point” �0

after t0�0 seconds again. Thus, if one looks at the history of
the motion, the circle is being “unwrapped” �arbitrary� many
times onto a real line R, here represented by the time coor-
dinate t. Mathematically speaking, the real line is the “uni-
versal” covering space of the circle. If the bead circles
around twice, it runs through a twofold covering; if it circles
q times, it provides a q-fold covering.

The existence of those covering spaces, especially the
universal one, can have important consequences for the
quantum theory of the system: namely, the possibility of hav-
ing “fractional” or “quasi orbital angular momenta” �quasi-
OAM�, similar to those in the Bohm-Aharonov effect, the
fractional quantum Hall effect, and similar to the quasimo-
menta associated with Bloch waves in an ideal periodic crys-
tal. It may play a corresponding important role in the case of
the OAM of photons in a cylindrical laser beam �references
are given below�.

The basic functions

h̃1��,p�� = cos �, h̃2��,p�� = sin � , h̃3��,p�� = p� �12�

on the phase space

S�,p�
= �s = ��,p��;� � R mod 2�,p� � R� �13�

generate the Lie algebra e�2� of the Euclidean group E�2� in
the plane:

�h̃3, h̃1��,p�
= h̃2, �h̃3, h̃2��,p�

= − h̃1, �h̃1, h̃2��,p�
= 0.

�14�

If we characterize the points of a plane by a complex number
z=x+ iy=rei�, then the action of the three-parameter Euclid-
ean transformation group on that plane is given by the action
of the two subgroups �for more details see Appendix B�

rotations R�	�: z → ei	z, 	 � �0,2�� , �15�

translations T2�t�: z → z + t, t = a + ib, a,b � R .

�16�

Like in the case of the phase space �5� with its Lie algebra
structure �8� and its quantization in terms of irreducible uni-
tary representations of the group SO↑�1,2� or its covering
groups, the phase space �13� can be quantized in terms of
irreducible unitary representations of the Euclidean group
E�2� or its covering groups �for references, see below�.

In any such irreducible unitary representation the corre-
sponding self-adjoint generators L, X1, and X2 of rotations
and translations form the Lie algebra

1

�
�L,X1� = iX2,

1

�
�L,X2� = − iX1, �X1,X2� = 0. �17�

The �Casimir� operator

R2 = X1
2 + X2

2 �18�

commutes with all generators of the Lie algebra �17� and
thus has the eigenvalue r2 in an irreducible unitary represen-
tation. Notice that the Lie algebra �17� is invariant under the
substitution Xj→
Xj, j=1,2, 
�0, so that for R2�0 we
can define the self-adjoint cosine and sine operators

C =
X1

�R2
, S =

X2

�R2
, C2 + S2 = 1, �19�

which obey
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1

�
�L,C� = iS,

1

�
�L,S� = − iC, �C,S� = 0. �20�

�Generally the self-adjoint generators of translations are de-
noted by Pj because they play the physical role of linear
momenta, but here their role is different and that is indicated
by the notation Xj.�

One of the crucial differences between the quantizations
of the phase spaces �5� and �13� is that for the former the
self-adjoint quantum observable K0, which corresponds to
the positive action variable I, has to be a positive definite
operator—which it is for the positive discrete series of irre-
ducible unitary representations of SO↑�1,2�—whereas in any
irreducible unitary representation of E�2� or any of its cov-
ering groups the generator L of the rotations has arbitrarily
large positive and negative eigenvalues.

In order to keep track of the physical dimensions in the
following, it is convenient to introduce the following quan-
tities:

unit of length: �0 =� �

m�
, r = ��0. �21�

We shall also make frequent use of the dimensionless num-
ber


 = �−2 =
�

m�r2 , �22�

where in general we shall identify the eigenvalue r2 of the
Casimir operator R2 with the radius squared r0

2 appearing
in Eq. �9�. The limit 
→0 characterizes the classical limit
�→0. �As to physical dimensions, in the applications below
the group parameters a and b of Eq. �16� will have the di-
mension of an action, just like p�. For 
=1 in Eq. �22� we
have ��=O�eV� if m
me and r=10−10 m.�

The irreducible unitary representations of the Euclidean
group E�2� and its covering groups may all be implemented
in a Hilbert space L2�S1 ,d� /2�� of functions ���� with the
scalar product

��2,�1� = �
0

2� d�

2�
�2

*����1��� . �23�

The irreducible unitary representations are in general charac-
terized by two real numbers: namely, by the pair �4� �see also
the literature quoted in Appendix B�

��,��, � � 0, � � �0,1� . �24�

The representations themselves are given by

�U�,��	������ = e−i�	���� − 	�mod 2�� , �25�

�U�,��t = a + ib������ = e−�i/����a cos �+b sin ������ . �26�

The parameter � differentiates between the irreducible uni-
tary representations of the different covering groups.

For the irreducible unitary representations of the group
E�2� itself we have �=0. If � equals a rational number p /q,
with p ,q�N and no common divisor, then we have a repre-
sentation of a q-fold covering of E�2� �see below�, and if � is

an irrational number, we have a representation of the univer-

sal covering group Ẽ�2�.
If we define the self-adjoint generators of the one-

dimensional subgroups corresponding to the parameters 	
and t=a+ ib by

U��,���	� = e−�i/��L�	, U��,���t� = e−�i/���0���X1a+X2b�,

�27�

we obtain

1

�
L� 	 L̃� =

1

i
�� + �, X1 = r cos �, X2 = r sin � .

�28�

The Hilbert space L2�S1 ,d� /2�� with the scalar product
�23� has the orthonormal basis

en��� = ein�, n � Z . �29�

The functions �29� are eigenfunctions of the OAM operator
L� :

L�en = � �n + ��en, n � Z . �30�

What appears surprising is the fact that the OAM operator
can have noninteger eigenvalues. This is typical for the rota-
tion group SO�2� �or U�1�� which has the nontrivial topo-
logical structure of the circle S1 and the additive group R
of the real numbers as its universal covering group SO�2�˜.

With the integers Z as an Abelian subgroup of R we may
write

SO�2� � S1 � SO�2�˜/�2�Z� = R/�2�Z� , �31�

which is just another way of writing ��R mod 2�.
As the group Z is Abelian, all its irreducible unitary rep-

resentations are one dimensional:

Z → �e−i2�n�,n � Z�, � � �0,1� . �32�

The numbers � characterize the different representations of
Z. This is the deeper reason for the appearance of the addi-
tional parameter � in the transformation formula �25� and in
the eigenvalue equation �30�. The mathematical background
is very thoroughly discussed in Ref. �4�.

A further essential mathematical remark is that the first
homotopy group �1 of S1 coincides with Z, too. This shows
the nontrivial topological structure of the circle S1 which is
not simply path connected.

Different � lead to different spectra of L� and therefore
such operators are not unitarily equivalent.

In the discussion above we have assumed that the differ-
ent irreducible unitary representations corresponding to dif-
ferent � are all realized in the same Hilbert space with the
basis �29�. By making the unitary transformations

en��� = ein� → en,���� = ei��en��� = ei�n+��� " n � Z ,

�33�

we can define a separate Hilbert space L2�S1 ,d� /2� ,�� for
each �. In these Hilbert spaces the generators �28� now have
the common form
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1

�
L� 	 L̃� =

1

i
��, X1 = r cos �, X2 = r sin �; �34�

i.e., now the operators are independent of �, the dependence
of which is shifted to the basis �33�. The basis functions
�33�—and any function ���� expanded with respect to
them—obey the boundary condition

en,��� + 2�� = ei2��en,����, ��� + 2�� = ei2������ ,

� � L2�S1,d�/2�,�� . �35�

The spectrum �30� of L� does not change, of course, due to
the unitarity of the transformation. An additional mathemati-
cal interpretation of the phase angle � in terms of self-adjoint
extensions of a symmetric operator is briefly discussed in
Appendix A.

Consider now the case �= p /q, p ,q�N, and divisor free,
mentioned above. Then

��� + q2�� = ���� . �36�

This property characterizes the unitary representation of a
q-fold covering of SO�2�.

A value ��0 can have significant physical consequences.
�i� The Hamilton operator �discussed in Refs. �5,6��

H� =
L�

2

2mr2 =
1

2

 � ��1

i
�� + �
2

�37�

has the eigenfunctions �29� and the eigenvalues

En,� =
1

2

 � ��n + ��2, n � Z . �38�

The ground-state energy is given by

En=0,� =
1

2

 � ��2 or En=−1,� =

1

2

 � ��1 − ��2, �39�

depending on whether �� �0,1 /2� or �� �1/2 ,1�. For
�=1/2 the ground state is degenerate.

Alternatively one may describe the system in terms of the
operators �34� and the eigenfunctions �33�. All the physical
consequences are the same, because of the unitary equiva-
lence of the two descriptions.

�ii� The expression

L� = � �1

i
�� + �
 �40�

equals the “covariant derivative”

�

i
�� + qÂ�, Â� =

�

2�
, �41�

associated with the component A�= Â� /r of the vector poten-
tial �in cylindrical coordinates� surrounding the thin line of a
magnetic flux � which causes the Aharonov-Bohm effect for
particles of charge q �7�.

In this case we have

� =
q

2��
� �42�

and the Hamiltonian �37� takes the form

H =
1

2

 � ��1

i
�� +

q

2��
�
2

. �43�

For single electrons we have q=−e0.
The observable phase shift �� responsible for the change

in the interference pattern caused by the presence of the mag-
netic flux � is

�� = 2�� =
q

�
� . �44�

The change of the interference pattern ceases for �=1, which
defines a flux quantum �0�q�=h /q �or h / �q�� associated with
a charge q. Here q=−2e0 yields the fundamental flux quan-
tum �0=h / �2e0� of superconductivity.

The interpretation of the Aharonov-Bohm effect in terms
of unitary representations of the universal covering group
of SO�2� �or E�2�� has been discussed—at least in
principle—by a number of authors �8–13�, most explicitly
first by Martin �9�.

�iii� The relations �41� and �44� reflecting the Aharonov-
Bohm effect were the stimulating example for the flourishing
of the concept “anyons” and their “fractional” statistics
�14,15� from 1982 on �see the reviews �16–23��: If one con-
siders the particle with charge q �spin s� and the magnetic
flux � which influences it as a new �fictitious� composite
entity with “charge” �=2��=q� confined to a plane perpen-
dicular to the straight flux line, then this object can be
viewed as having an angular momentum ��n+��. Assume
that one has two identical such objects localized at different
positions. If � is the polar angle of the vector x�2−x�1 connect-
ing the two objects, the wave function ��1,2 ;�� of the rela-
tive motion should be symmetric if the two objects are
bosons ��=0� and antisymmetric for fermions ��=1/2�. In-
terchange of the two is implemented by the substitution �
→�+�. So the correct behavior of the wave functions for
bosons and fermions is guaranteed by the property

��2,1;� + �� = ei2����1,2;�� . �45�

For ��0,1 /2 the last equation defines a new kind of statis-
tics and the associated objects are called “anyons” and the
corresponding statistics “fractional.” As to the associated
braid group symmetry �replacing the usual permutation
group� see the reviews quoted above. There is strong evi-
dence that anyons play a crucial role in the description of the
fractional quantum Hall effect �see reviews�. There the pa-
rameter �= p /q represents the filling factor � of the Landau
levels which becomes fractional due to certain collective
mechanisms.

�iv� There is still another very interesting physical inter-
pretation of the real numbers �: The situation here is com-
pletely analogous to that for Bloch wave functions of an
ideal crystal �24,25�.

Assume an infinitely long one-dimensional ideal crystal
with lattice constant a�0. Then it follows from group theory
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that the wave function �k�x� of a particle moving in such a
lattice under the influence of a periodic potential V�x+a�
=V�x� has the general form

�k�x� = eikxuk�x�, uk�x + a� = uk�x� . �46�

The “reduced” or “crystal” wave vector k lies in the interval
�0,2� /a� �or �−� /a ,� /a��, called the “first Brillouin zone”
of the reciprocal lattice. The quantity �k is usually called the
“quasimomentum” of the particle. The wave function �46�
has the property

�k�x + a� = eika�k�x� , �47�

which is to be compared with the relations �35�. The period-
icity in a of the function uk�x� in Eq. �46� corresponds to the
periodicity in 2� of the en���. If we ignore for a moment that
x has the dimension of a length and put a=2�, we can
“identify” � with k and the interval �0,1� from Eq. �24�
becomes the “first Brillouin” zone of our orbital angular mo-
mentum problem.

It is obvious from the long experience in solid-state phys-
ics that a boundary condition ��x+a�=��x� would be com-
pletely inappropriate, because it would mean k=0. Therefore
one should be similarly careful with the use of the “quasi-
OAM” �= ��. The analogies between the fractional OAM
and quasimomenta of Bloch waves were first pointed out by
Schulman �8,26� �as to Zak’s related work see Ref. �44� be-
low�.

�v� Finally there is the related so-called “�-vacuum” struc-
ture of QCD associated with an additional U�1� symmetry
and its �fractional� representations �see the reviews �27–29��.
The relationship between this feature and Bloch waves has
been pointed out by Jackiw �30�.

It is to be stressed that nontrivial quasi-OAM � can only
be attributed to orbital angular momenta associated with cov-
ering groups of the group SO�2�—i.e., to systems with cy-
lindrical symmetries. They appear also in systems with sym-
metries where the group SO�2� is a maximal compact
subgroup—e.g., for SO↑�1,2� or its inhomogeneous generali-
zation ISO↑�1,2� �Poincaré group in one time and two space
dimensions�. They are not possible for the spatial rotation
group SO�3�, the universal covering group of which is the
double covering SU�2� that allows only for integer and half-
integer angular momenta.

The following remark is important.
Fractional OAM � violate T and P invariance, except for

�=0 �bosons� and �=1/2 �fermions� in the following sense:
Classically we may write p�=xpy −ypx. This implies that we
have the transformations

time reversal T: p� → − p�, �48�

space reflection P�x → − x,y → y�: p� → − p�. �49�

The quantum-mechanical version of the transformation T
here is simply implemented by complex conjugation of the
wave function:

T: en,���� = ei�n+��� → en,�
* ��� = e−i�n+���. �50�

For the space reflection P we get

P: �n + �� → − �n + �� , �51�

so that the product P �T leaves the wave function en,����
invariant. But the transformations �50� and �51� cannot be
implemented separately within a given representation �25�,
because now we have, instead of Eqs. �35�,

en,�
* �� + 2�� = e−i2��en,�

* ���, �*�� + 2�� = e−i2���*��� .

�52�

These complex conjugate functions may be associated with a
representation U��,����	�, where

T or P: � → �� = 1 − � . �53�

So only for �=0,1 /2 can we implement T and P within the
same irreducible unitary representation. Otherwise these
symmetries are violated.

This property suggests that fractional OAM should be
possible in T- or P-violating systems. Such systems are re-

alized if an external magnetic field B� is applied which vio-

lates T invariance �B� changes sign under T�. Examples can
be seen above: The Bohm-Aharonov effect �42� and the frac-
tional quantum Hall effect are both associated with external
magnetic fields.

Another T-invariance-breaking experimental possibility is
to impose an appropriate external OAM L�

ext by rotating the
system.

I now come to an important point of the present paper: the
possibility of fractional OAM in quantum optics.

Since 1992 �31� there has been an increasing number of
papers dealing with theory and experiments �see the reviews
�32–35� and some more recent papers �36�� concerning the
orbital angular momenta of photons in so-called “Laguerre-
Gaussian” laser modes, cylinder symmetrical laser beams the
�classical� amplitudes of which contain the azimuthal angle-
and OAM-dependent factors

r�l̃�eil̃�, l̃ � Z , �54�

where r is the radial variable of the cylinder coordinates.
Whereas the spin of the photon provides only a two-

dimensional state space for the study of quantum infor-
mation problems, questions of entanglement, etc., its OAM
provides—at least in principle—one which can have an arbi-
trarily high dimension. If implementable, this would lead to a
wealth of new theoretical, experimental, and even techno-
logical possibilities.

The prominent question in the present context is, how-
ever, whether one can find fractional OAM of the photon and
separating their properties from those of the photon spin �a
problem still under discussion�. In order to obtain such
quasi-OAM one probably needs a T-violating environment
such as an external magnetic field or an external OAM. So
one has to look for an “OAM Faraday effect” �37–41�, simi-
lar magneto-optical phenomena, or mechanical-optical ef-
fects.

One sees from Eq. �54� how the laser beam amplitudes
get modified in the neighborhood of the central beam axis if

the integer l̃ is replaced by a noninteger l̃+�. Pictures of the
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intensity distributions of certain Laguerre-Gaussian laser
modes in planes transversal to the central axis of the beam
can be found in Ref. �36�.

Experimental generation of fractional OAM has recently
been discussed in Ref. �42�.

One question is whether one should expect a continuous,
a rational, or a discontinuous � in such optical experiment.
Again, the Bohm-Aharonov, the fractional quantum Hall ef-
fect, and the Bloch waves, respectively, indicate the direction
into which to look: the Bohm-Aharonov effect has a continu-
ous �, essentially given by the value of the external flux �.
The system consists of moving free charged particles with no
collective interactions. In the case of the fractional quantum
Hall effect with its rational �= p /q the collective dynamics
for the electron creates some sort of quantum fluid and there-
fore the situation is qualitatively different. In the case of
Bloch waves the quasimomentum �k of a “free” electron can
be affected by complicated interactions with the ions of the
lattice, leading to energy gaps, etc., but also by the influence
of external magnetic fields �24,25�.

The first two examples suggest that one probably should
expect a continuous � in the quantum optical setups used up
to now �see references given above� plus an external mag-
netic field. But at very low temperatures, with an appropriate
medium causing the magneto-optical “fractionizing,” the
situation may be different and turn “rational.”

In order to have a proper theoretical description of all
quantum aspects involved one needs a satisfactory quantiza-
tion of the phase space �13�. It is the purpose of the present
paper to draw attention—especially that of the quantum op-
tics community—to the existing group-theoretical quantiza-
tion of the phase space �13� in terms of the Euclidean group
E�2� and �or� its covering groups, the associated coherent
states, and their uncertainty relations, etc. I shall draw on
previous work by other authors, but my emphasis is on the
physical possibility of fractional orbital angular momenta.

Section II explains und summarizes the group theoretical
quantization of the phase space �13�.

Section III discusses a class of coherent states derivable
from a minimal uncertainty requirement. These coherent
states form a complete set, but are not holomorphic in the
pair �� , p��.

Coherent states holomorphic in �� , p�� may be generated
in two ways.

Section IV: Applying a mapping, introduced in mathemat-
ics by Weil �43� and in physics independently by Zak �44� in
connection with Bloch waves, one can “periodize” the real
part q /�0 of the complex number z=q /�0+ i�0p /� ��0: see
Eq. �21�� occurring in the usual Schrödinger-Glauber coher-
ent states. This procedure leads automatically to the intro-
duction of the fraction �. Thus, starting from well-known
coherent states one can construct corresponding ones for the
group E�2� and its covering groups.

This may even lead to a possible experimental generation
of the new coherent states, if one could construct such “pe-
riodizers” for the standard coherent states experimentally.

Section IV B discusses expectation values and fluctua-
tions of the basic observables C , S, and L with respect to
these holomorphic coherent states.

Section V: The same coherent states may be generated by
a certain complexifiction of the group SO�2� introduced for

compact groups by Hall �45� �more references will be given
below�. In this approach the coherent states can be generated
as eigenstates of a certain annihilation operator B �a nonlin-
ear function of the generators of E�2�� with complex eigen-

values e−iz ,z=�+ il̃ ,��R mod 2� , l̃�R.
The commutation relation B†B=qBB†, q=e−2
, may be

rewritten as aa†−qa†a=q−N. That is, the operators B and B†

generate a q-deformed Born-Dirac-Heisenberg-Jordan alge-
bra which, perhaps, may be tested in quantum optics, too.

Section VI discusses the time evolution of both types of
coherent states with respect to the Hamiltonian �37�.

Appendix A summarizes the problems associated with a
conventional quantization of the canonical variable “angle.”
Appendix B sketches its quantization �together with the ca-
nonically conjugate p�� in terms of unitary representations of
the group E�2�. Appendix C contains some properties of Ja-
cobi’s � functions needed in the main text.

II. EUCLIDEAN GROUP E„2… AS THE CANONICAL
GROUP OF THE PHASE SPACE S�,p�

That the phase space �13� has something to do with the
Euclidean group E�2� can already be seen from the Lie alge-
bra �14� of that group generated by the basic observables
�12�. For the Euclidean group E�2� to be the so-called “ca-
nonical group” of the phase space �13� it should fulfill a
number of properties �see Refs. �4,46�, Appendix A of Ref.
�1�, and Appendix B of the present paper�.

The group action

s 	 ��,p�� → s� 	 ���,p��� = g	,t���,p���, t = a + ib ,

�55�

�i� should be symplectic,

d�� Ù dp�� = d� Ù dp�. �56�

�ii� It should be “transitive”; i.e., given any two points
si�S�,p�

, i=1,2, then there exists a transformation g	,t�¯�
which maps one point onto the other.

�iii� It should be effective �or almost effective�; i.e., if a
transformation g	,t�¯� leaves all points s�S�,p�

invariant,
then g

¯

is the identity element �	=0,a=0,b=0� �or g
¯

is
an element of a discrete Abelian subgroup �Z of the center Z
of the universal covering group Ẽ�2��.

�iv� The one-parameter transformation subgroups induced
by group elements

g
 = e−A
, 
 � R, A � Lie algebra e�2� , �57�

generate vector fields Ă�s� on S�,p�
: If f�s� is a smooth func-

tion, then g
 generates

�Ăf��s� = lim

→0

1



�f�e−A
s� − f�s�� . �58�

Such vector fields generally have the form

a���,p���� + ap�
��,p���p�

. �59�

But as the transformations �57� are symplectic, the vector
fields �58� induced by them are locally Hamiltonian; i.e.,

H. A. KASTRUP PHYSICAL REVIEW A 73, 052104 �2006�

052104-6



there exists a function f�� , p�� such that locally

a� = − �p�
f , ap�

= ��f . �60�

The three vector fields X̆1, X̆2, and L̆ induced by the three
one-parameter subgroups of E�2� associated with the param-
eters a ,b, and 	 obey the Lie algebra e�2�,

�L̆,X̆1� = X̆2, �L̆,X̆2� = − X̆1, �X̆1,X̆2� = 0. �61�

�v� Crucial is finally that the three Hamiltonian functions
f i, i=1,2 ,3, corresponding to the three induced vector fields

X̆1, X̆2, and L̆ be globally defined on S�,p�
and obey the

Poisson bracket Lie algebra e�2�:

�f3, f1��,p�
= f2, �f3, f2��,p�

= − f1, �f1, f2��,p�
= 0.

�62�

All the above required properties �i�–�v� are fulfilled by
the following transformation law �see Ref. �47� and Appen-
dix B�:

g	,t���,p��� = ���,p��� = ��� + 	�mod 2�,p�

+ a sin�� + 	� − b cos�� + 	�� .

�63�

According to Eq. �58� the vector fields X̆1, X̆2, and L̆ can be
read off the Taylor expansion of

f�� − 	,p� − a sin�� − 	� + b cos�� − 	�� �64�

with respect to a, b, and 	:

X̆1 = − sin � �p�
, X̆2 = cos � �p�

, L̆ = − ��. �65�

The associated global Hamiltonian functions according to
Eqs. �60� are

f1��,p�� = cos �, f2��,p�� = sin �, f3��,p�� = p�,

�66�

which are just the basic classical observables �12� we started
from.

All these group-theoretical features as to the classical
phase space �13� form the basis for its consistent quantiza-
tion, completely similar to those of the Born-Dirac-
Heisenberg-Jordan-Weyl group of the usual phase space
Sq,p= ��q , p��R2� �see, e.g., Refs. �4,1��.

The main elements of the quantization scheme have al-
ready been discussed in the Introduction.

In the quantum theory the classical basic observables �12�
with their E�2� Lie algebra structure �14� become the self-
adjoint generators �20� or, explicitly, Eqs. �28�, with r=1, in
an irreducible unitary representation. At first sight the quan-
tization does not appear to be unique: according to Eqs. �25�
and �26� each irreducible unitary representation depends on
two parameters � and �.

However, the parameter � represents the freedom of hav-
ing different numerical values for Planck’s constant—see Eq.
�22�—depending on the system of units employed. One has

the same type of freedom in the conventional quantization
scheme with its Weyl-Heisenberg group and associated von
Neumann-Stone uniqueness theorem �4�.

The parameter � is new, however. In the Introduction we
have seen that it is a quantum manifestation of the fact that
the group SO�2� �or U�1�� has an infinite number of different
covering groups, each of which can be characterized by its
nontrivial center Zq generated by e2�i/q. Or, in other words,
the appearance of the parameter � is a quantum effect of the
nontrivial topology of the unit circle parametrized by the
angle �� �0,2��. I have emphasized in the Introduction that
there are a number of important physical examples which
show the consequences of such a nontrivial topology. There-
fore, there might be more consequences of that topology in
physics than we are aware of up to now.

From Eqs. �28� we obtain the explicit form of the self-
adjoint operators C, S, and L�:

1

�
L� 	 L̃� =

1

i
�� + �, C = cos �, S = sin � , �67�

in Hilbert space with the scalar product �23� and the basis
�29�.

Equivalently one may use the operators

1

�
L� 	 L̃� =

1

i
��, C = cos �, S = sin � , �68�

in a Hilbert space with the basis �33� for functions with the
boundary condition �35�.

The operators �67�—or �68�—obey the commutation rela-
tions

1

�
�L�,C� = iS,

1

�
�L�,S� = − iC, �C,S� = 0. �69�

The last commutator shows that cos � and sin � may be mea-
sured simultaneously, leading to a unique value �� �0,2��.
This is not so in the quantum theory of the phase space �5�,
where the self-adjoint operators K1 and K2 corresponding to
the basic functions h1 and h2 from Eqs. �6� with their Lie
algebra structure �8� do not commute.

In the following discussions it is convenient to work with

the “dimensionless” operator L̃ instead with L itself. It is
always possible to restore the associated � dependence in the
formulas.

If A ,B are any two of the three self-adjoint operators �67�
or �68� and � an element of their domain of definition, then
we have the general uncertainty relation �1,48–51�

��A��
2��B��

2 � ��S��A,B����2 +
1

4
���A,B����2, �70�

for the mean-square deviations

��A��
2 = ��A − �A���2��, with �A�� 	 ��,A�� , �71�

where
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S��A,B� =
1

2
�AB + BA� − �A���B��. �72�

Of special interest for applications are those states �0 for
which the relation �70� becomes an equality �so-called
“minimal uncertainty states”�. Equality holds iff

�B − �B��0
��0 = ��A − �A��0

��0, � = 
 − is � C . �73�

The real numbers 
 and s are given by


 =
�S�0

�A,B���0

��A��0

2 , s =
i

2

��A,B���0

��A��0

2 . �74�

As

��� = �
2 + s2 =
��B��0

��A��0

, �75�

the parameter ��� is a measure for the “squeezing” properties
of the state �0 with respect to the two operators A and B: it
describes the ratio of the two uncertainties ��B��0

and
��A��0

.

III. MINIMAL UNCERTAINTY STATES FOR C, S, AND L�

As a first step let us determine the functions �0 which

obey Eq. �73� for the pair A=C=cos � and B= L̃�=−i��: The
differential equation

�L̃� − � cos ���0��� = ��L̃���0
− ��C��0

��0���, � = 
 − is ,

�76�

has the solutions

�0��� = Nei��l̃0−�c0��+� sin ��, N = const, �77�

where

l̃0 = �L̃���0
, c0 = �C��0

. �78�

If sc0�0, then �0 is not periodic or quasiperiodic �see Eqs.
�35��; i.e., the solution �77� would not belong to any Hilbert

space L2�S1 ,d� /2� ,��. As the commutator �C , L̃�� does not
vanish we expect s�0, according to the second equation of
the relations �74�. So we assume

c0 	 �C��0
= 0. �79�

For

�0��� = Nei�l̃0�+� sin ��, �80�

we have

�0�� + 2�� = ei2�l̃0�0��� . �81�

We can decompose the real number l̃0 uniquely into an inte-
ger n0 and a fractional part �0:

l̃0 = n0 + �0, n0 � Z, �0 � �0,1� , �82�

so that

�0�� + 2�� = ei2��0�0��� . �83�

Thus, �0��� is a possible element of the Hilbert space
L2�S1 ,d� /2� ,�0�. It yields the probability density

��0����2 = �N�2e2s sin �. �84�

For a given s�0 the density �84� has its maximum at
�=� /2 and its minimum at �=3� /2 for �� �0,2��. For
s�0 the two are interchanged.

The normalization condition

�
0

2� d�

2�
��0����2 = 1 �85�

and assuming N to be real and positive yields �52�

�0��� =
1

�I0�2s�
ei�l̃0�+� sin ��. �86�

�The modified Bessel function I0�2s� is always positive for
real s �53�.�

We have

�C��0
= 0, �S��0

=
I1�2s�
I0�2s�

, �L̃�0
��0

= l̃0. �87�

The second of the last equations follows from

�
0

2� d�

2�
sin �e2s sin � =

d

d�2s�
I0�2s� = I1�2s� . �88�

�I1�2s� is an odd function, I1�−2s�=−I1�2s�; furthermore,
�I1�2s� � / I0�2s��1 �54�.�

As

�
0

2� d�

2�
sin2 �e2s sin � =

d

d�2s�
I1�2s� = I0�2s� −

I1�2s�
2s

,

�89�

we have

�S2��0
= 1 −

I1�2s�
2sI0�2s�

, �C2��0
= 1 − �S2��0

=
I1�2s�

2sI0�2s�
�90�

and

�L̃�0

2 ��0
= l̃0

2 + ���2�C2��0
= l̃0

2 + ���2
I1�2s�

2sI0�2s�
, �91�

so that

��C��0

2 =
I1�2s�

2sI0�2s�
, �92�

��S��0

2 = 1 −
I1�2s�

2sI0�2s�
−

I1
2�2s�

I0
2�2s�

, �93�
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��L̃�0
��0

2 = ���2
I1�2s�

2sI0�2s�
. �94�

For the interpretation of the above and later formulas the
following inequality is important:

0 �
I1�2s�

2sI0�2s�
�

1

2
. �95�

It can be read off the series expansions of I1 and I0 �see Ref.
�53��. The equality holds for s=0. For �s � →� the ratio �95�
tends to 0. It follows from Eqs. �92�–�94� that

��C��0

2 + ��S��0

2 = 1 −
I1

2�2s�
I0

2�2s�
�96�

and

��L̃�0
��0

2 /��C��0

2 = ���2. �97�

For the correlation functions �72� we here have

�S�0
�C,L̃�0

���0
= 
�C2��0

= 

I1�2s�

2sI0�2s�
�98�

and

�S�0
�S,L̃�0

���0
= 0, �S�0

�C,S���0
= 0. �99�

From the first equation of Eqs. �69� we obtain

��C,L̃�0
���0

= − i�S��0
= − i

I1�2s�
I0�2s�

. �100�

Collecting the corresponding formulas we can verify that

the inequality �70� becomes an equality for A=C ,B= L̃�0
and

�=�0 of Eq. �86�:

��C��0

2 ��L̃�0
��0

2 = ���2
I1

2�2s�
4s2I0

2�2s�

= ��S�0
�C,L̃�0

���0
��2 +

1

4
���C,L̃�0

���0
�2.

�101�

Of interest are the limiting cases s→0 and s→ +� for the
parameter s: From �55�

I1�2s�
I0�2s�

→ s�1 −
s2

2

 for s → 0,

I1�2s�
I0�2s�

→ 1 −
1

4s
+ O�s−2� for s → + � , �102�

it follows that for s→0 and 
 fixed,

�S��0
→ s, ��C��0

2 →
1

2
+ O�s2�, ��S��0

2 →
1

2
+ O�s2� ,

��L̃�0
��0

2 →
1

2
���2 →

1

2

2 + O�s2� . �103�

For s→�,

�S��0
→ 1 − O�s−1�, ��C��0

2 →
1

2s
− O�s−2� ,

��S��0

2 →
1

8s2 + O�s−3�, ��L̃�0
��0

2 →
s

2
+ O�1� .

�104�

The two limiting cases �103� and �104� show rather obvi-
ously the complementarity between the “observables” C and

S on the one hand and L̃�0
on the other. In the above discus-

sion we considered the case of positive s. The case of nega-
tive s can be reduced to the positive one by observing that
I0�−s�= I0�s� and I1�−s�=−I1�s�.

Because of its quasiperiodicity �83� the function �0 may
be expanded in terms of the basis en,�0

���:

�0��� = �
n�Z

cnei��0+n��, �105�

where �56�

cn = �en,�0
,�0� =

1
�I0�2s�

�
0

2� d�

2�
ei�−�n−n0��+� sin ��

= Jn−n0
���/�I0�2s� . �106�

Here Jn�z� is the Bessel function of order n. It has the prop-
erty J−n�z�= �−1�nJn�z�, so that �c−n�2= �cn�2. Therefore the
normalization condition

�
n=−�

n=+�

�cn�2 = 1 �107�

implies the “sum rule”

�J0����2 + 2 �
n=1

n=+�

�Jn����2 = I0�2s�, � = 
 − is � C .

�108�

This is a generalization of the well-known relations �57�

�
n=−�

n=+�

Jn�z�J−n�z� = J0�2z� �109�

and

J0
2�x� + 2 �

n=1

n=+�

Jn
2�x� = 1, x � R . �110�

�One has I0�2s=0�=1.�
The relation �108� implies

�c0�2 � 1, �cn�2 � 1/2 for n = 1,2, . . . . �111�

The parameters 
 and s obviously characterize properties
of the probability distribution associated with the wave func-
tion �86�: The parameter s corresponds to the parameter
a�0 in the Gaussian wave packet
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�G�x� = �2a

�

1/4

e−ax2
�112�

and determines the width of the distribution. The correlation
�72� and, therefore, 
 vanish for the wave function �112�
with A=Q and B= P.

In our case the parameter 
 here describes the corre-
lations �98�. A combination of 
 and s—namely, ���2=
2

+s2—determines the squeezing properties of the distribution
�see Eq. �97��. If 
 vanishes, then s alone characterizes the
distribution and its squeezing properties.

The real number l0= � l̃0 is the expectation value of the
operator L�0

with respect to the wave function �86�. It corre-
sponds to the classical orbital angular momentum p�.

The wave function �86� does not contain a parameter cor-
responding to a classical angle 	 which represents the angle
� of the classical phase space �13�. This can be taken care of
by the replacement

�0��� → �	,l̃��� = �0�� − 	� =
1

�I0�2s�
ei�l̃��−	�+� sin��−	��.

�113�

�We now drop the index 0 of the number l̃0.�
The expectation values of C, S, and L̃� with respect to the

wave function �113� may be reduced to the previous ones by
observing that for any periodic function f��+2��= f��� we
have

�
c

2�+c

d�f��� = �
0

2�

d�f��� . �114�

Thus, e.g., we obtain

�C�	,l̃ 	 ��	,l̃,C�	,l̃� = �
0

2� d�

2�
cos �e2s sin��−	�

= �
0

2� d�

2�
cos�� + 	�e2s sin �. �115�

Observing that cos��+	�=cos 	 cos �−sin 	 sin � we get,
from the relations �87�,

�C�	,l̃ = − sin 	
I1�2s�
I0�2s�

. �116�

In the same way we have

�S�	,l̃ = cos 	
I1�2s�
I0�2s�

, �117�

�C�
	,l̃

2
+ �S�

	,l̃

2
=

I1
2�2s�

I0
2�2s�

�L̃��	,l̃ = l̃ = n + �, � � �0,1� , �118�

�C2�	,l̃ = cos 2	
I1�2s�

2sI0�2s�
+ sin2 	 , �119�

�S2�	,l̃ = − cos 2	
I1�2s�

2sI0�2s�
+ cos2 	 , �120�

�L̃�
2�	,l̃ = l̃2 + ���2

I1�2s�
2sI0�2s�

, �121�

from which we get

��C�
	,l̃

2
= cos 2	

I1�2s�
2sI0�2s�

+ sin2 	�1 −
I1

2�2s�
I0

2�2s�

 , �122�

��S�
	,l̃

2
= − cos 2	

I1�2s�
2sI0�2s�

+ cos2 	�1 −
I1

2�2s�
I0

2�2s�

 ,

�123�

��L̃��
	,l̃

2
= ���2

I1�2s�
2sI0�2s�

. �124�

Furthermore, for the correlation function �72� we here
have

�S	,l̃�C,L̃���	,l̃ = 
 cos 	
I1�2s�

2sI0�2s�
, �125�

�S	,l̃�S,L̃���	,l̃ = 
 sin 	
I1�2s�

2sI0�2s�
, �126�

�S	,l̃�C,S��	,l̃ =
1

2
sin 2	� I1�2s�

2sI0�2s�
+

I1
2�2s�

I0
2�2s�

−
1

2

 .

�127�

For 	�0 the wave functions �113� no longer minimize the
uncertainty relation �70�: From Eqs. �122� and �124� we have

��C�
	,l̃

2 ��L̃��
	,l̃

2

= ���2
I1�2s�

2sI0�2s��cos 2	
I1�2s�

2sI0�2s�
+ sin2 	�1 −

I1
2�2s�

I0
2�2s�


�
= ���2cos2 	

I1
2�2s�

4s2I0
2�2s�

+ ���2 sin2 	
I1�2s�

2sI0�2s�

��1 −
I1

2�2s�
I0

2�2s�
−

I1�2s�
2sI0�2s�� , �128�

whereas Eqs. �125� and �117� give

��S	,l̃�C,L̃���	,l̃�2 +
1

4
��S�	,l̃�2 = ���2cos2 	

I1
2�2s�

4s2I0
2�2s�

.

�129�
The function

g�x� = 1 −
I1

2�x�
I0

2�x�
−

I1�x�
xI0�x�

= g�− x�, x = 2s , �130�

which appears in Eqs. �93� and �127� �here as 0.5−g�x��, and
Eq. �128�, varies between 0.5 and 0 if �s� varies between 0
and �. Numerical examples �58� are given in Table I.
Asymptotically we have, for large �x� �55�,
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g�x� �
1

2x2 + O�x−3� for �x� → � . �131�

The numerical examples show how one can influence the
different expectation values and mean-square deviations by a
suitable choice of the parameter s.

For the special value 	=� /2 we have sin��−� /2�
=−cos � and the wave function �113� becomes the minimal-
uncertainty wave function

1
�I0�2s�

ei�l̃��−�/2�−� cos �� �132�

for the product ��S�
	=�/2,l̃

2 ��L̃��
	=�/2,l̃

2
, if we replace C

=cos � in Eq. �76� by S=sin �: According to Eqs. �123�,
�124�, �126�, and �116� we have now

��S�
	=�/2,l̃

2 ��L̃��
	=�/2,l̃

2

= ��S	=�/2,l̃�S,L̃���	=�/2,l̃�2 +
1

4
��C�	=�/2,l̃�2

= ���2
I1

2�2s�
4s2I0

2�2s�
. �133�

As cos �=1−�2 /2+O��4� the functions �132� are locally
Gaussian ones for �2�1, and s�0, but, of course, not glo-
bally. In that local limit the second equation of Eqs. �69�
yields �L� ,��=−i� +O��2�.

Notice that the right-hand side �RHS� of Eq. �129� van-
ishes now, but the RHS of Eq. �128� does not.

Instead of the coefficients �106� we now get, for the func-
tions �113�,

cm = �em,�,�	,l̃=n+�� =
e−i�m+��	

�I0�2s�
�

0

2� d�

2�
ei�−�m−n��+� sin ��

=
e−i�m+��	

�I0�2s�
Jm−n���, m � Z . �134�

The last result and relation �108� can be used to show that
the states �113� form a complete set:

�
0

2� d	

2�
�

n=−�

n=+�

�em1,�,�	,n+����	,n+�,em2,��

= �m1m2

1

I0�2s� �
n=−�

n=+�

Jm2−n
* ���Jm1−n���

= 1 �for m2 = m1�

= 0 �for m2 � m1� . �135�

The two different states �113� are not orthogonal:

��	2,l̃2
,�	1,l̃1

� =
ei�	2−	1��l̃1+l̃2�/2

I0�2s� ��
 sin�1

2
�	1 − 	2�� − s cos�1

2
�	1 − 	2��


�
 sin�1

2
�	1 − 	2�� + s cos�1

2
�	1 − 	2��
�

�l̃1−l̃2�/2

�Il̃1−l̃2�2�s2cos2�1

2
�	1 − 	2�� − 
2sin2�1

2
�	1 − 	2��
 . �136�

The matrix element �136� may be calculated as follows: First use the relations

sin�� − 	1� + sin�� − 	2� = 2 cos�1

2
�	1 − 	2��sin�� −

1

2
�	1 + 	2�� ,

sin�� − 	1� − sin�� − 	2� = 2 sin�1

2
�	1 − 	2��cos�� −

1

2
�	1 + 	2�� , �137�

TABLE I. Numerical values of functions appearing in several
formulas of III.

x I1�x� / I0�x� I1�x� / �xI0�x�� g�x�

0 0 0.5 0.5

0.1 0.0499 0.4994 0.4981

0.5 0.2425 0.4850 0.4562

1 0.4464 0.4464 0.3543

2 0.6977 0.3489 0.1644

5 0.8934 0.1787 2.32�10−2

10 0.9486 9.47�10−2 5.29�10−3

50 0.9900 1.95�10−2 1.99�10−4

100 0.9950 9.95�10−3 4.60�10−5
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for the integrand of

�
0

2� d�

2�
�

	2,l̃2

*
�	1,l̃1

.

The resulting integral can be evaluated by using integral
tables �59�.

Parts of the wave functions �113� have been discussed
previously: De Bièvre �60� and later Torresani �61� consid-
ered the functions

�	,
��� = ei
 sin��−	�, 
 � R , �138�

and the associated integral transforms

�̃�	,
� = �
−�/2

+�/2

d��	,
���� . �139�

Their approach was motivated by the problem that the Per-
elomov construction of coherent states for Lie groups �62�
does not work for the group E�2� because the irreducible
unitary representations �25� and �26� are not integrable in the
following sense: Let us put �=0 and combine the two for-
mulas into one �with �=1�:

�U��	,a,b������ = e−i��a cos �+b sin ����� − 	� . �140�

Then one can show that

�
E�2�

d	 dadb���,U��	,a,b����2 = � ,

���� � L2�S1,d�/2�� . �141�

Note that the function �138� is closely related to the transfor-
mation �140� if one puts a=0 and b=−
.

The “coherent” states �138� are unsatisfactory for the fol-
lowing reasons.

We have already described above that the parameter 

characterizes the distribution, not the expectation value of a
physical observable �one has ��	,
 ,L�	,
�=0�. In addition
there are problems with the completeness relation which here
requires that the function ���� in Eq. �139� has to obey—
among others—the condition

�
−�/2

�/2

d�
������2

cos �
� � , �142�

which means that ���� should vanish sufficiently enough at
�= ±� /2. The problem may be exhibited heuristically in the
following way: We have �see Eq. �134��

cm = �em,�	,
� = �
0

2� d�

2�
ei�
 sin��−	�−im�� = e−im	Jn�
� ,

�143�

from which it follows that

�
−�

+�

d
�
0

2� d	

2�
�em1

,�	,
���	,
,em2
�

= �m1m2�
−�

+�

d
Jm1

2 �
� = 2�m1m2�
0

+�

d
Jm1

2 �
� .

�144�

As �63�

Jn
2�
� =

1

�
�

0

�

d�J0�2
 sin ��cos�2n�� ,

�
0

�

d
e−

J0�2 sin �
� =
1

�
2 + 4 sin2 �
, �145�

we have

�
0

�

d
e−

Jn
2�
� =

1

�
�

0

�

d�
cos�2n��

�
2 + 4 sin2 �
. �146�

Taking the limit 
→0 we see that the integral �144� diverges.
Isham and Klauder �64� avoided the difficulties �141� by

introducing an additional averaging over the parameter
�—i.e., by averaging over different irreducible unitary rep-
resentations. Such averaging modifies, e.g., the integral
transform �139�. We have seen above that such a procedure is
not necessary if one allows for quasi-OAM.

Kowalski and Rembieliński mention the states �113� �with

=0� in the Introduction of their paper �65�, but discard
them, because they allow only for representations with �=0;

i.e., l̃ would have to be an integer.

IV. GENERATING COHERENT STATES ON THE CIRCLE
BY MEANS OF THE WEIL-ZAK TRANSFORM

There is an elegant way of generating coherent states on
the circle from those well-known ones of the harmonic os-
cillator. The method makes use of a transform discussed by
the mathematician Weil �43� and independently by the physi-
cist Zak �44�. In the present context it has been introduced
and employed by De Bièvre and González �66� and González
and del Olmo �67�. It leads automatically to the introduction
of fractional orbital angular momenta �. The basic idea may
be sketched as follows �68�.

Consider a function f����L2�R ,d��; then, one can define
a function f ������ on the unit circle by

f ������ = �
n�Z

e−i2��nf�� + 2�n�, � � �0,2��, � � �0,1� .

�147�

The function f ������ has the following properties:

f ����� + 2�� = ei2��f ������; �148�

with �̃=2��, one has
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�
0

2� d�̃

2�
�

0

2�

d��f �������2 = �
0

2�

d� �
n�Z

�f�� + 2�n��2

= �
−�

+�

d��f����2. �149�

The inverse of the transform �147� is given by

f�� + 2�n� = �
0

2� d�̃

2�
ein�̃f ������

= �
0

2� d�̃

2�
ein�̃ �

m�Z
e−im�̃f�� + 2�m� . �150�

The normalized coherent states on L2�R ,dx� associated
with the harmonic oscillator are �69�

u	�x� =
1

���0
2�1/4e−��	�2+	2�/2e−�x/�0�2/2+�2	x/�0, �0 =� �

m�
,

�151�

where the complex numbers 	= �q /�0+ i�0p / � � /�2 are ei-
genvalues of the annihilation operator

a =
1
�2

�Q/�0 + i�0P/ �� . �152�

For the following it is convenient to introduce dimensionless
quantities

� = x/�0, q̃ = q/�0, p̃ = �0p/ � , z = �2	 = q̃ + ip̃ .

�153�

We then have, on L2�R ,d��,

uz��� = ���−1/4e−��z�2+z2�/4e−�2/2+z�, �154�

where the factor holomorphic in z,

e−z2/4−z� = �
n=0

�
zn

2nk!
Hn��� , �155�

is a generating function for the orthogonal Hermite polyno-
mials Hn���.

For the ensuing discussions it is instructive to introduce a
dimensionless parameter 
�0 which has the value 
=1 for
the quantum theory and which characterizes the classical
limit �→0 as 
→0. This can be done—compare Eqs. �21�
and �151�—by replacing the wave function �154� by

uz
�
���� = �
��−1/4e−��z�2+z2�/�4
�e−�2/�2
�+z�/
, �156�

with the properties

�
R

d�uz
�
�*���,uz

�
���� = 1, �157�

�
R2

dq̃dp̃

2�

uz

�
�*��1�uz
�
���2� = ���1 − �2� . �158�

The relation �158� represents the completeness of the func-
tions �156� �here ���� stands for the usual � function�.

If we define the dimensionless operators

Q̃ = �, P̃ =
1

i
��, �159�

we have the expectation values

�Q̃�z,
 	 �
R

d�uz
�
�*���Q̃uz

�
���� = q̃, �P̃�z,
 = p̃/
 ,

�160�

so that

ã�
�uz
�
� = zuz

�
�, ã�
� = Q̃ + i
P̃ . �161�

Equations �160� and �161� and

���Q̃�z,
�2 =



2
, 
2���P̃�z,
�2 =




2
�162�

show that for the classical limit 
→0 of matrix elements the

product 
P̃ should be kept fixed, because p̃ as defined in Eq.
�153� represents the classical momentum and 
 stands for
Planck’s constant made dimensionless.

In case one wants to discuss matrix elements of the �di-

mensionless� operator P̃, then 
 serves as a squeezing param-
eter �divide the second equation of Eqs. �162� by 
2�.

Applying the mapping �147� to the states �156� yields

uz
�
,�����

= �
��−1/4e−��z�2+z2�/�4
� �
n�Z

e−i2�n�e−�� + 2�n�2/�2
�+z��+2�n�/


= �
��−1/4e−���z�2−z2�/�4
�+�� − z�2/�2
��

��3�i��� − z + i
��/
,e−2�2/
� , �163�

where

�3��,q = ei� � 	 �3��� � = �
n�Z

qn2
e2ni� = 1 + �

n=1

�

qn2
cos 2n� ,

Im� � � 0, �3�− �,q� = �3��,q� , �164�

is the third of Jacobi’s � functions which is an entire �holo-
morphic� function of � �see the literature quoted in Appendix
C�.

In Eq. �163� we have  =2i� /
. For real q the function �3
is real valued for real and imaginary arguments �. It has its
zeros at the points �0= �m+1/2��+ �n+1/2�� , m ,n�Z. If
 is purely imaginary, there are no zeros on the real or imagi-
nary axis and �3 is positive there.

Using Jacobi’s famous identity

�3��� � = �− i �−1/2e�2/�i� ��3��/ � − 1/ � , �165�

we can express Eq. �163� as
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uz
�
,����� =

1
�2�

� 


�

1/4

e−��z�2−z2�/�4
�e�i��−z��−
�2/2�

��3��� − z + i
��/2,q = e−
/2� . �166�

As �3�� ,q� has the period � in � it follows immediately from
Eq. �166� that

uz
�
,���� + 2�� = ei2��uz

�
,����� . �167�

We now interpret the complex number z as

z = � + il̃, � = R mod 2�, l̃ � R , �168�

so that

�z�2 − z2 = − 2izl̃ = 2�l̃2 − i�l̃� . �169�

The scalar product

�em,�,uz
�
,��� =

1
�2�

� 


�

1/4

e−�l̃ − 
�m + ���2/�2
�ei��l̃/�2
�−�m+���

�170�

yields the completeness relation

�
−�

+� dl̃



�

0

2�

d��em1,�,uz
�
,����uz

�
,��,em2,��

=
1

2�

1
�
�

�
−�

+�

dl̃�
0

2�

d� ei�m2−m1��

�e−��l̃ − 
�m1 + ���2+�l̃ − 
�m2 + ���2�/�2
� = �m1m2
,

�171�

where

�
S1�R

d���, l̃� 	 �
S1

d�

2�
�

R

dl̃
�
�

e−�l̃ − c�2/
 = 1, c = const,

�172�

has been used.
For the function �166� we get the scalar product

�uz
�
,��,uz

�
,��� =
1

2�
� 


�

1/2

e−�l̃ − 
��2/
�3�i�l̃ − 
��,q = e−
�

�173�

=
1

2�
�3���l̃ − 
��/
,q = e−�2/
� . �174�

The equality �174� again is a consequence of the identity
�165�. Thus, we have the normalized coherent states

ûz
�
,����� = Cz

�
,��uz
�
,����� ,

Cz
�
,�� = � 2�

�3���l̃ − 
��/
,q = e−�2/
�

1/2

. �175�

Combined with Eq. �170� this gives the transition probability

p��m,�� ↔ z� = ��em,�, ûz
�
,����2

= � 


�

1/2 e−�l̃ − 
�m + ���2/


�3���l̃ − 
��/
,q = e−�2/
�
.

�176�

The numerator of Eq. �176� has its maximum for l̃=
�m
+�� with �3��m ,q�=�3�0,q� for the denominator.

Here and below the use of �3 with q=e−�2/
 instead of
q=e−
 has the following considerable advantage: Numeri-
cally one has

q = e−�2

 5.2 � 10−5. �177�

On the other hand, expanding �3�� ,q� in powers of q �see
Eq. �164�� gives

�3��,q� = 1 + 2q cos�2�� + O�q4� , �178�

so that �3 in Eq. �174� differs only very slightly from 1. For

→0 we even have q=e−�2/
→0. We shall use this argument
frequently in what follows. In that way one gets very reason-
able approximations for a number of expressions which
contain � functions. This was previously pointed out by
Kowalski, Rembieliński, and Papaloucas �70�.

The function �163� may be written as

uz
�
,����� = �
��−1/4e−��� − ��2+il̃��−2���/�2
�

��3�i��� − z + i
��/
,e−2�2/
� . �179�

It yields the probability density

pz
�
,����� =

2�

�
�
e−�� − ��2/
 ��3�i��� − z + i
��/
,e−2�2/
��2

�3���l̃ − 
��/
,e−�2/
�
.

�180�

Notice that

�
��−1/2e−�� − ��2/
 → ��� − �� for 
 → 0, �181�

so that in the classical limit we have �→� and the argument

of �3 in the numerator of Eq. �180� approaches ��l̃−
�� /
.
For the scalar product of two coherent states uz

�
,����� we
get

�uz1

�
,��,uz2

�
,��� =
1

2�
� 


�

1/2

e�−�l̃1 − 
��2/�2
�−�l̃2 − 
��2/�2
��

�ei���1−�2��−��1l̃1−�2l̃2�/�2
��

��3��z1
* − z2 + 2i
��/2,e−
� , �182�

which reduces to the expression �173� for z2=z1.

A. Coherent wave functions holomorphic in z

In the case of the conventional coherent states �154� or
�156� it can have advantages to deal with wave functions
which are holomorphic in the variable z and incorporate the
nonholomorphic factor e−�z�2/�2
� into the measure of the inte-
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gral �158�. In that way one obtains Bargmann-Segal Hilbert
spaces of holomorphic functions �71�.

Similarly one can split off a nonanalytic factor from the
function �166� and define

wz
�
,����� = ei���3��� − z + i
��/2,e−
/2� , �183�

as the in z holomorphic part, which, according to Eq. �165�,
can also be written as

wz
�
,����� = �2�




1/2

ei��e−�� − z + i
��2/�2
�

��3�i��� − z + i
��/
,e−2�2/
�

= �2�




1/2

e−��� − ��2−�l̃ − 
��2�/�2
�ei�l̃��−��/
+���

��3�i��� − z + i
��/
,e−2�2/
� . �184�

Similar to the Hn���-generating series �155� the function
�183� may be interpreted as a generating one for the basis
en,���� �with 
=1�:

wz
�
=1,����� = �

n�Z
e−n2/2���z�e−��nen,����, ��z� = e−iz.

�185�

We have the scalar product

�wz
�
,��,wz

�
,��� = �3�i�l̃ − 
��,e−
� �186�

=��




1/2

e�l̃ − 
��2/
�3���l̃ − 
��/
,e−�2/
�

	 �Nz
�
,���−2, Nz

�
,�� � 0, �187�

and therefore the normalized wave functions

ŵz
�
,�� = Nz

�
,��wz
�
,����� . �188�

The scalar product between two different states is given by

�wz1

�
,��,wz2

�
,��� = �3��z1
* − z2 + 2i
��/2,e−
�

= ��




1/2

e−�z2
* − z1 + 2i
��2/�4
�

��3�i��z1
* − z2 + 2i
��/�2
�,e−�2/
� .

�189�

As

�em,�,wz
�
,��� = fm,��z� = e−
�m2/2+m��e−imz = e−
m2/2+m�l̃−
��e−im�,

�190�

we have the completeness relation �see Eq. �172��

�
R

dl̃
�
�

e−�l̃ − 
��2/
�
S1

d�

2�
�em1,�,wz

�
,����wz
�
,��,em2,�� = �m1m2

.

�191�

The functions fm,��z� therefore form an orthonomal basis of a

Hilbert space H� of functions f̃�z� holomorphic in the strip
z�S1+ iR with the scalar product

� f̃1, f̃2�z 	 �
R

dl̃
�
�

e−�l̃ − 
��2/
�
S1

d�

2�
f̃1

*�z�, f̃2�z� , �192�

so that the functions f̃�z��H� may be expanded as

f̃�z� = �
n�Z

c̃nfn,��z�, c̃n = �fn,�, f̃�z. �193�

The relation �190� provides a unitary mapping between
the Hilbert space of functions f��� with the scalar product
�23� and the Hilbert space H�:

If

f��� = �
n�Z

bnen,����, bn = �en,�, f� , �194�

it follows that

�f ,wz
�
,��� = �

n�Z
bn

*fn,��z� = f̃�z� , �195�

from which one infers that

bn
* = �fn,�, f̃�z. �196�

Unitarity can be seen from

�f , f� = �
n�Z

�b�2 = � f̃ , f̃�z �197�

and the inverse mapping: If one has

f̃�z� = �
n�Z

c̃nfn,��z�, c̃n = �fn,�, f̃�z, �198�

then the inverse mapping is

f��� = �
n�Z

c̃n
*en,����

= �
R

dl̃
�
�

e−�l̃ − 
��2/
�
S1

d�

2�
f̃*�z� �

n�Z
fn,��z�en,����

= „ f̃ ,wz
�
,�����…z. �199�

If we replace the unnormalized wave functions �183� by
the normalized ones �188�, then the completeness relation
�191� takes the respective forms
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�
R

dl̃
�
�

e−�l̃ − 
��2/
�3�i�l̃ − 
��,e−
�

��
S1

d�

2�
�em1,�,ŵz

�
,����ŵz
�
,��,em2,��

= �
R

dl̃



�3���l̃ − 
��/
,e−�2/
�

��
S1

d�

2�
�em1,�,ŵz

�
,����ŵz
�
,��,em2,�� = �m1m2

.

�200�

Finally, the reproducing kernel K�z1 ,z2� is given by

K�z1,z2� = �
n�Z

fn,�
* �z1�fn,��z2� = �3��z1

* − z2 + 2i
��/2,e−
�

= �wz1

�
,��,wz2

�
,��� . �201�

It fulfills the usual properties

K�z2,z1� = K*�z1,z2� ,

�
S1�R

d���, l̃��
,��K�z1,z�K�z,z2� = K�z1,z2� ,

�
S1�R

d���, l̃��
,��K�z,z1�fm,��z� = fm,��z1� ,

d���, l̃��
,�� =
e−�l̃ − 
��2/
dl̃

�
�

d�

2�
. �202�

B. Expectation values

Next we have to calculate the expectation values and
mean-square fluctuations of the observables C=cos � , S

=sin �, and L= � L̃= �� / i��� with respect to the normalized
wave functions �175� or �188�. As the � dependence will
always be in the wave function, the index � of the operator

L̃� will be dropped. Several of the following expectation val-
ues have been discussed by Kowalski et al. �70� for the spe-
cial cases �=0, �=1/2, and 
=1. These authors require T
invariance �see the discussion in the final part of Sec. I
above�.

It is convenient to start with the form �183� of the wave
function, with its normalization factor �186�, and use the
identity �165� later.

Defining

U = e−i�, U† = ei�, �203�

we get

�U�z
�
,�� 	 �ŵz

�
,��,Uŵz
�
,��� = e−i�e−
/4�2�i�l̃ − 
��,e−
�

�3�i�l̃ − 
��,e−
�
,

�204�

where

�2��,q = ei� � 	 �2��� � = �
n�Z

q�n + 1/2�2
ei�2n+1��, Im� � � 0,

�2�− �,q� = �2��,q� . �205�

Instead of the identity �165� we now have the following one:

�2��� � = �− i �−1/2e�2/�i� ��4��/ �− 1/ � , �206�

with

�4��,q� = �
n�Z

�− 1�nqn2
e2ni� = 1 + 2�

n=1

�

�− 1�ncos 2n� .

�207�

Thus, Eq. �204� may also be written as

�U�z
�
,�� = e−i�e−
/4�4���l̃ − 
��/
,e−�2/
�

�3���l̃ − 
��/
,e−�2/
�
. �208�

In the same way we get

�U†�z
�
,�� = ei�e−
/4�4���l̃ − 
��/
,e−�2/
�

�3���l̃ − 
��/
,e−�2/
�
, �209�

so that

�C�z
�
,�� = cos �e−
/4�4���l̃ − 
��/
,e−�2/
�

�3���l̃ − 
��/
,e−�2/
�
, �210�

�S�z
�
,�� = sin �e−
/4�4���l̃ − 
��/
,e−�2/
�

�3���l̃ − 
��/
,e−�2/
�
. �211�

Combining

�4��,q� = 1 − 2q cos�2�� + O�q4� �212�

with Eqs. �178� and �177� we have the very good approxi-
mation

�4���l̃ − 
��/
,e−�2/
�

�3���l̃ − 
��/
,e−�2/
�

= 1 − 4e−�2/
cos�2��l̃ − 
��/
� + O�e−2�2/
� . �213�

Notice that O�e−2�2
�=10−9.

For the expectation value of the orbital angular momen-
tum operator we get

�L̃�z
�
,�� = � +

1

2

d�3�i�l̃ − 
��,e−
�/dl̃

�3�i�l̃ − 
��,e−
�
. �214�

Again using the identity �165� yields
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�L̃�z
�
,�� = l̃ + 
� +

�

2

�3����l̃ − 
��/
,e−�2/
�

�3���l̃ − 
��/
,e−�2/
�
, �215�

where �3��� ,q� means the derivative with respect to the full
argument �. As

�3����l̃ − 
��/
,e−�2/
�

�3���l̃ − 
��/
,e−�2/
�

= − 4e−�2/
 sin�2��l̃ − 
��/
� + O�e−2�2
� , �216�

the last term in Eq. �215� constitutes only a very small cor-
rection which vanishes in the classical limit 
→0.

It follows from Eq. �215� that in classical limits of matrix

elements now the product 
L̃ should be kept fixed. See the

corresponding remarks for P̃ after Eq. �162�.
From

�U2�z
�
,�� = e−
e−2i�, ��U†�2�z

�
,�� = e−
e2i�, �217�

we get

�C2�z
�
,�� =

1

2
+ e−
�cos2 � −

1

2

 , �218�

���C�z
�
,���2 =

1

2
+ e−
�cos2 � −

1

2



− e−
/2cos2 ���4���l̃ − 
��/
,e−�2/
�

�3���l̃ − 
��/
,e−�2/
�

2

.

�219�

�S2�z
�
,�� =

1

2
+ e−
�sin2 � −

1

2

 , �220�

���S�z
�
,���2 =

1

2
+ e−
�sin2 � −

1

2



− e−
/2 sin2 ���4���l̃ − 
��/
,e−�2/
�

�3���l̃ − 
��/
,e−�2/
�

2

.

�221�

It follows that

���C�z
�
,���2 + ���S�z

�
,���2

= 1 − e−
/2��4���l̃ − 
��/
,e−�2/
�

�3���l̃ − 
��/
,e−�2/
�

2

. �222�

In view of the relation �213� it makes good sense to ap-
proximate that ratio �4 /�3 by 1. In that approximation the
fluctuations �219� have their maximum for cos �=0: namely,
�1−e−
� /2.

We further have the following relations:


2�L̃2�z
�
,�� =




2
+ �l̃ + 
��2 + ��l̃ + 
��

�3�

�3
+

�2

4

�3�

�3
,

�223�


2���L̃�z
�
,���2 =




2
+

�2

4
��3�

�3
−

�3�
2

�3
2 
 , �224�

where the function �3 and its derivatives mean the same as
in Eq. �215�.

With the approximation �178� the relation �224� takes the
form


2���L̃�z
�
,���2 =




2
− 2�2e−�2/
cos�2��l̃ − 
��/
� + O�e−2�2/
� .

�225�

Finally we get, for the correlation function �72� with

A=C , B= L̃, and �= ŵz
�
,��,


�Sz
�
,���C,L̃��z

�
,�� =
�

2
e−
/4cos �

�4

�3
��4�

�4
−

�3�

�3



= 4�e−�2/
e−
/4cos � sin�2��l̃ − 
��/
�

+ O�e−2�2/
� . �226�

The states �183� are no minimal uncertainty states for the
operators C , S, and L. This can already be seen in the q0

approximation mentioned above: For the left-hand side of
the relation �70� we here get, with 
=1,

���C�z
�
,���2���L̃�z

�
,���2

=
1

2
�1

2
+ e−1�cos2 � − 1/2� − e−1/2cos2 �� , �227�

whereas the right-hand side is �the square of the correlation
�226� is negligible here�

1

4
e−1/2sin2 � . �228�

The difference between the two sides has its minimum for
cos �=0. In that case the inequality reads

�1 − e−1�/4 � e−1/2/4. �229�

We shall see below for which self-adjoint operators the
coherent states �183� are minimal uncertainty states.

For physical applications the dimensionless operator L̃

should be multiplied by � in the formulas above and l̃+�
replaced by �l+�� /�:

L̃ = L/ � , l̃ ± � = �l ± ��/ � , � 	 � � . �230�

Notice that the quasiorbital momentum �, a genuine quan-
tum quantity, appears in the formulas above generally in the
form 
�; i.e., it vanishes in the classical limit as it should.

As to the mathematics, the ratios of � functions appearing
above may be expressed by Jacobi’s elliptic functions. Ex-
amples will be given in Appendix C.
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V. HOLOMORPHIC COHERENT STATES
ON THE CIRCLE GENERATED

AS EIGENSTATES OF COMPOSITE
ANNIHILATION OPERATORS

Like the conventional Schrödinger-Glauber coherent
states the states �183� may also be generated as eigenstates of
certain “annihilation” or “ladder” operators. This was first
done “by hand” by Kowalski et al. �70� for the special cases
�=0 and �=1/2, because the authors imposed T invariance.

Following the work of Hall on coherent states �45�
Thiemann and Winkler �72,73� systematically constructed
coherent states for the groups U�1�=SO�2�=S1 �with �=0�
and SU�2� in connection with problems of the classical
limit for loop quantum gravity. Finally, Hall and Mitchell
�74� discussed the case of general Sn. �The method of Chap.
4 generalizes to n-dimensional tori Tn for n�1. Only for
n=1 do the two methods give the same results because
T1=S1.� The basic idea of Hall was to extend certain func-
tions of the configuration variable q̃ to holomorphic func-
tions of the complex variable z= q̃+ ip̃ �I here consider only
one-dimensional configuration spaces�. Let us see how this
works for the conventional coherent states �156�.

First let us change the normalization of the functions
�156� without changing their essential properties. The
slightly modified functions

vz
�
���� =

e−p̃2/�2
�

�
��1/4 e−�� − z�2/�2
� �231�

have the properties

�
R

d�vz
�
�*���vz

�
���� = 1, �232�

�
R2

dq̃dp̃

2�

vz

�
�*��1�vz
�
���2� = ���1 − �2� . �233�

The functions �231� can be generated in the following way.
The � function

�q̃��� = ��� − q̃� =
1

2�
�

−�

+�

dp̃eip̃��−q̃� �234�

may formally be considered as an “eigenfunction” of the

position operator Q̃=� with “eigenvalue” q̃:

Q̃�q̃��� = ��q̃��� = q̃�q̃��� . �235�

Applying the operator

CP = e−
P̃2/2, P̃ =
1

i
��, �236�

to the generalized function �234� yields

CP�q̃��� =
1

2�
�

−�

+�

dp̃e−
p̃2/2eip̃��−q̃� =
1

�2
�
e−�� − q̃�2/�2
�,

�237�

which is—up to a constant—just the limit Im�z�→0 of the
holomorphic factor

e−�� − z�2/�2
� �238�

of the coherent state �231�. Conversely, we only have to re-
place q̃ in Eq. �237� by z.

Using the relation

eABe−A = B + �A,B� +
1

2!
†A,�A,B�‡ + ¯ �239�

yields

CPQ̃CP
−1 = Q̃ + i
P̃ , �240�

which, according to Eq. �161�, is the annihilation operator
with eigenvalues z.

The method works for the coherent states �183� in the
following way.

Let f��� be a smooth test function with the property

f�� + 2�� = ei2��f��� . �241�

The � function for this type of test functions is

����� = ei��−��� �
n�Z

ein��−��, �242�

because

�
S1

d�

2�
��

*���f��� = �
n�Z

cnei�n+��� = f��� ,

cn = �
S1

d�

2�
e−i�n+���f��� . �243�

As ����� is a complex functional here, one has to take its
complex conjugate in Eq. �243� �75�. �There should again be
no confusion between the � functional �242� and the param-
eter � which characterizes the quasi-OAM.�

Applying the operator

CL = e−
L̃2/2, L̃ =
1

i
�� �244�

to the � functional �242� yields

CL����� = �
n�Z

e−
�n + ��2/2ei�n+����−��

= ei��−���−
�2/2�3��� − � + i
��,e−
/2� . �245�

Replacing the real variable � by the complex one z=�+ il̃
yields, up to a �-independent factor, the holomorphic part of
the function �166� or �183�, respectively. Thus, the operator
CL acts as a kind of “complexifier” �72,74�.

That complexifying procedure has another intriguing as-
pect �74�: The configuration space S1 may be parametrized
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by the two functions cos � and sin � which obey

cos2 � + sin2 � = 1. �246�

If we replace � by z=�+ il̃, we still have

cos2 z + sin2 z = 1, z = � + il̃, � � R mod 2�, l̃ � R .

�247�

Thus, we may characterize the phase space �13� by the com-
plex sphere SC

1 given by Eq. �247�.
Using the commutation relations

�L̃,U� = − U, �L̃,U†� = U†, U = e−i�, �248�

and the relation �239� yields

CLUCL
−1 = e
�L̃+1/2�U = B
,� 	 B . �249�

It follows that

Ben,���� = e
�n+�−1/2�en−1,���� ,

B†en,���� = e
�n+�+1/2�en+1,���� . �250�

That action of B implies that the functions �183� are eigen-
functions of the operator B:

Bwz
�
,�� = �wz

�
,��, � = e−iz, z = � + il̃ . �251�

This may be verified—using the relations �250�—either by
direct calculation or from the ansatz

B �
n�Z

cnen,� = � �
n�Z

cnen,�, �252�

which leads to the recursion formulas

cn+1 = �e−
�n+�+1/2�cn,

cn = �ne−
n2/2−n
�c0

=e−
n2/2e2ni�−z+i
��/2c0. �253�

Inserting these cn into Eq. �252�, with c0=1, yields wz
�
,��.

The operators B, B†, and L̃ have an interesting algebraic
structure of their own �70�: It follows from the relations
�250� and �248� that

B†B = e−2
BB† = e−2
e
�2L̃+1�, �254�

B†Ben,� = e
�2�n+��−1�en,�, �255�

�B,B†� = 2� sinh 
�e2
L̃, �256�

�L̃,B� = − B, �L̃,B†� = B†. �257�

Recall that these operators act in a Hilbert space
L2�S1 ,d� /2� ,�� the elements of which have the property
�35�.

If we define the self-adjoint operators

K = B + B†, J = i�B† − B� , �258�

we have

�K,J� = 4i�sinh 
�e2
L̃. �259�

Writing

��� = ŵz
�
,�� �260�

for the normalized coherent states �188�, we have the expec-
tation values, etc.:

�K�� 	 ���K��� = � + �* = 2 cos �el̃, �261�

�J�� = i��* − �� = − 2 sin �el̃, �262�

tan � = −
�J��

�K��

, �263�

l̃ = ln���K��
2 + �J��

2�/4�1/2, �264�

��K��
2 = �e2
 − 1��*� = �e2
 − 1�e2l̃, �265�

��J��
2 = �e2
 − 1��*� = �e2
 − 1�e2l̃, �266�

�S��K,J��� = 0, S��K,J� = �KJ + JK�/2 − �K���J��,

�267�

��K,J��� = 2i�e2
 − 1��*� = 2i�e2
 − 1�e2l̃. �268�

From Eqs. �265�–�268� it follows that

��K��
2��J��

2 =
1

4
���K,J����2. �269�

This shows that the coherent states �260� are minimal-
uncertainty states for the self-adjoint operators �258�.

Defining

A
,� = �1 + e−2
�−1/2B
,�, A
,�
† = �1 + e−2
�−1/2B
,�

† ,

�270�

N
,� = L̃ +
1

2

ln�2 sinh 
� , �271�

the commutation relation �256� takes the form

A
,� A
,�
† − q A
,�

† A
,� = q−N
,�, q = e−2
. �272�

This is one possible form of a so-called “q-deformed oscil-
lator algebra” �76–79�. However, as

�en,� ,N
,� en,�� = n + � +
1

2

ln�2 sinh 
�, n � Z ,

�273�

the operator N
,� is neither bounded from below nor are its
eigenvalues in general integers. Numerically one has, for

=1,
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1

2
ln�2 sinh�1�� = 0.427. �274�

By an appropriate choice of � one can make the expectation
value �273� an integer.

Aspects of the representation theory of the algebra �272�
in the context of the Euclidean group E�2� have been dis-
cussed by Woronowicz �80� and Rideau �81�.

VI. TIME EVOLUTION OF THE COHERENT STATES

Let us have a brief look at the time evolution of the
states �113� and �183� under the action of the Hamiltonian
�see Sec. I�

H� = 

��

2
L�̃

2, L̃� = − i��. �275�

The corresponding unitary time evolution operator is

U��t� = e−i�H�/��t = e−i
�L�
˜ 2/2��t. �276�

It is of general interest to determine the kernel �“propaga-
tor”� Kt

�����−�� which solves the initial-value problem

i � �t��t,�� = H���t,��, ��t = 0,�� = ���� , �277�

namely,

��t,�� = �
S1

d�

2�
Kt

����� − ������ ,

lim
t→0

Kt
����� − �� = ��� − �� , �278�

where ���−�� is given by Eq. �242�.
Inserting the ansatz

Kt
������ = �

n�Z
kn�t�en,���� �279�

into the Schrödinger equation �277� yields

kn�t� = e−i
�n + ��2�t/2, �280�

so that

Kt
����� − �� = �

n�Z
e−i
�n + ��2��t−i��/2ei�n+����−��

= e−i
�2�t/2ei��−����3��� − � − 
��t�/2,

q = e−i
��t−i��/2� . �281�

In order to ensure convergence of the series �281� one has to
give the time t a small negative imaginary part −i�, ��0,
which is to be taken to 0 at the end of the calculation �278�.
The situation is completely analogous to the case of the ker-
nel for a free particle in space where one has to proceed in
the same way �i.e., t→ t− i�� when Fourier transforming
�82�. The kernel �281� obviously has the required property
�278� for t− i�→0.

Again using the identity �165� one gets the following al-
ternative form for the kernel �281�:

Kt
����� − �� =

�2�e−i
�2�t/2

�i
��t − i���1/2e−�� − � − 
��t�2/�2i
�t�ei��−���

� �3���� − � − 
���t − i���/�
��t − i���,

q = e2i�2/�
��t−i���� . �282�

For 
=1 and �=0 the expression simplifies considerably and
takes a form similar to the kernel of a free particle in one
space dimension �82�:

Kt�x − y� = �4�it�−1/2ei�x − y�2/�4t�. �283�

�Up to now I have assumed t�0. If t�0, the formulas above
change accordingly.�

For 
=1 and �=0 the kernel �282� is very closely related
to the corresponding kernel of the heat equation on the circle
�83�.

If the function � from Eq. �277� has the expansion

���� = �
m�Z

cm���em,����, cm��� = �em,�,�� , �284�

then the time evolution �278� takes the form

��t,�� = e−i
�2�t/2ei�� �
m�Z

e−i
��t−i��m2/2eim��−
���t−i���cm��� .

�285�

In the case of the states �113� the coefficients cm are given by
Eq. �134�, so that we have

�	,n+��t,�� = e−i
�2�t/2ei��−	��

� �
m�Z

e−i
��t−i��m2/2eim��−	−
���t−i���

�Jm−n���/�I0�2s� . �286�

The time evolution of the states �183� can be obtained
more directly: Applying U�t� from Eq. �276� to them yields

U�t�wz
�
,����� = e−i
�2�t/2ei���3��� − z − 
��t + i
��/2,

q = e−
�1+i�t�/2� . �287�

Another possibility is to apply U�t� to the state �245� which
amounts to the replacement


 → 
�1 + i�t� , �288�

because

U�t�CL = e−
�1+i�t�L̃2/2. �289�

The result �287� means that U�t� generates a time-dependent
phase for the function �183�, replaces the angle � in the ar-
gument of �3 by the time-dependent �+ �
���t one, and
gives the real parameter q a time-dependent phase:

q0 = e−
/2 → q�t� = e−
�1+i�t�/2 = q0e−i
�t/2,

i.e.,  0 =

i

2�
→  �t� =  0�1 + i�t� . �290�

Notice that for �=0 only the parameter q remains time de-
pendent.
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The above expressions show that a nonvanishing � leads
to nontrivial complications of the time evolution for the
states �113� and �183�.

The propagator �281� was first analyzed by Schulman �5�
and for the special cases 
=1, �=0, and �=0.5 the time
evolution of the states �183� was discussed by Kowalski and
Rembieliński �84�.
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APPENDIX A: THE “FAULT” OF THE ANGLE

The present appendix summarizes the arguments why the
angle � itself is not a good global observable on the phase
space �13�, neither classically nor quantum theoretically, and
why it should be replaced by the functions cos � and sin �.

Let me start with a well-known classical example, which
illustrates the main point.

Consider an infinitely thin arbitrarily long straight con-
ducting wire extending along the z axis of a rectangular co-
ordinate system and having the charge density � per unit of
length. In the punctured �x ,y� plane orthogonal to the wire
we have the electric field

E� �x�� =
�

2�
0

x�

x2 + y2 , x� = �x,y�, div E� = 0,

curl E� = 0, on R2 − �0� . �A1�

The field �A1� may be derived from a potential �e:

E� = grad �e�r�, �e�r� =
�

2�
0
ln� r

r0

 ,

r = �x2 + y2, r0 � R2 − �0� , �A2�

where �e�r� is a well-defined smooth function on the punc-
tured plane R2− �0� with the following global property.

If C1→2 is any smooth path in the punctured �x ,y� plane
from a point P1 to a point P2, then the potential difference

�e�P2� − �e�P1� = �
C1→2

d�e = �
C1→2

�x�e�x��dx + �y�e�x��dy

�A3�

is uniquely defined even if the path C1→2 circles the charged
wire several times.

Next, consider another infinitely thin arbitrarily long
straight wire along the z axis through which a constant elec-
tric current I flows in the positive z direction. The current
generates a magnetic field in the punctured �x ,y� plane of the
form

B� �x�� =
�0I

2�

1

x2 + y2 �− y,x�, div B� = 0,

curl B� = 0, on R2 − �0� . �A4�

If we introduce polar coordinates

x = r cos �, y = r sin � , �A5�

then we have

B� �x�� · �dx,dy� =
�0I

2�
d� on R2 − �0� . �A6�

This suggests to introduce a scalar magnetic potential �85� by

B� = grad �m,

d�m =
�0I

2�
d�, � � R mod 2� . �A7�

Here, however, we encounter a problem: It follows from

curl B� �x�� = �0I��x��e�z �A8�

that

�
r=a

B� �x���dx,dy� = 2�aB� = �0I, B� =
�0I

2�a
, �A9�

where B��−sin � , cos �� is the unique magnetic field tangen-
tial to the circle of radius a at x� =a�cos � , sin ��. If we now
again consider a smooth path C1→2 from a point P1 to a point
P2, both in R2− �0�, then the value of the integral

�
C1→2

B� �x�� · �dx,dy� = �
C1→2

d�m =
�0I

2�
�

C1→2

d�

�A10�

is no longer uniquely defined. The integral over the angle �
gives the correct physical magnetic field B� only if we re-
strict � to the interval �0,2��. If the path C1→2 circles the
current twice, we would get for B� twice its physical value
and so on. The point is that—contrary to �e from above—the
“potential” �m�x�� is not a globally well-defined function on
R2− �0�, because the angle � is not one: When � reaches the
value 2� it has to “jump back” to 0; i.e. it has a discontinu-
ity. In textbooks �see, e.g., Ref. �85�� for electrodynamics
this behavior is compared to the above electrostatic case with
an additional infinitely thin electric dipole sheet which
causes a corresponding discontinuity for �e if one passes the
sheet. This, however, is a physical effect whereas the discon-
tinuity of �m is due to a complication as to its mathematical
properties:

Mathematically speaking, the �exterior� differential one-
form
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�x�� =
1

x2 + y2 �− ydx + xdy� = “�d��” on R2 − �0�

�A11�

is a closed form but not an exact one; i.e., we have

d
 = 0, �A12�

but 
 cannot be represented as 
�x��=df�x��, where f�x�� is a
smooth function globally well defined on R2− �0�.

The one-form �A11� is the standard example in textbooks
�see, e.g., �86,87�� for a closed differential form which is not
an exact one. The difference signals that the manifold on
which the closed differential form is defined have a non-
trivial global topological structure. In our case it is the punc-
tured plane R2–�0� which is not simply connected and there-
fore globally nontrivial.

In Sec. II, I stressed under number �v� �around Eq. �62��
that for the group-theoretical quantization procedure to suc-
ceed one needs globally well-defined Hamiltonian functions
on the phase space. This is not the case for the angle � �see
also Appendix B�, but it is so for the two periodical functions
cos � and sin � which are smooth and the knowledge of
which allows us to determine the associated �� �0,2��
uniquely.

The difficulties with the angle � on the classical level
persist in the quantum theory: As to the details of the follow-
ing mathematical sketches see the excellent discussions by
Robinson �88� and Reed and Simon �89�.

On any open interval ��1 ,�2�� �0,2�� we have

��,L̃� = i for � � ��1,�2� � �0,2�� ,

� � R mod 2�, L̃ =
1

i
��. �A13�

Here � appears as a multiplication operator on
L2��0,2�� ,d� /2�� with the scalar product �23�. The differ-

ential operator L̃ in general may act on absolutely continuous
functions f��� on that space—i.e., on functions which allow
for a representation

f��� = �
0

�

d�g��� + const. �A14�

If one—formally—assumes the commutator �A13� to hold in
general, one immediately encounters a contradiction:

�em,��,L̃�en� = �em,�L̃en� − �L̃em,�en�

= �n − m��em,�en� = i�mn, �A15�

which gives 0= i for m=n!.
The background of this difficulty is that � is not differen-

tiable at the boundaries of �0,2��, so that L̃ is not applicable
to �f��� there. One might try to avoid this difficulty by
restricting oneself to functions h��� with the boundary prop-
erties

h�0� = 0 = h�2�� . �A16�

But now L̃ is merely symmetric �i.e., �h2 , L̃h1�= �L̃h2 ,h1�� on
this set �domain� of functions, not self-adjoint; i.e., it has no
satisfactory spectral decomposition �see the references men-
tioned above�. This can already be inferred from the fact that
the functions en��� from Eq. �29� do not obey the boundary

condition �A16�. But this symmetric L̃ has a one-parametric
set of self-adjoint extensions to the space of functions ����
which obey the boundary condition �35�. The parameter �

there also characterizes the self-adjoint extensions L̃� of L̃ we
encountered in Sec. I in a different context.

There have been many attempts to find cures for the dif-
ficulties indicated by the relation �A15�: One is to allow—
reluctantly—for � functions at the boundaries �90–94�. This
in general will destroy self-adjointness in the usual under-
standing of Hilbert space operators. Another is to use only
finite-dimensional vector spaces of dimension d, calculate
the physical quantities like expectation values, etc., and let d
go to infinity at the very end �95�. This procedure has its

problems, too: e.g., assume that the operators � and L̃ with
the commutator �A13� may be represented by finite-
dimensional matrices in a d-dimensional vector space. Then
taking the trace of both sides of the commutator relation
�A13� yields the contradiction 0= id �because
tr�AB�=tr�BA��. So one has to take care of this new problem
by modifying the commutator. In addition, in finite-
dimensional vector spaces there is no difference between
symmetrical �Hermitian� and self-adjoint operators, a differ-
ence which is important in infinite-dimensional Hilbert
spaces, because one would like to have a decent spectral
decomposition. Thus, there appear to be problems with the
limit d→� �96,97�. Finally, there seems to be no chance to
derive the existence of quasi-OAM � by starting from finite-
dimensional vector spaces.

Other authors �98–100� discussed related problems asso-
ciated with uncertainty relations for wave functions on the
circle.

All these problems can be avoided by using the functions
cos � and sin � as basic observables—instead of � itself—
with their algebraic structure �14� which constitutes the Lie
algebra of the Euclidean group E�2� and all its covering
groups.

APPENDIX B: GROUP-THEORETICAL QUANTIZATION
OF THE PHASE SPACE S1ÃR

The basic ingredients for quantizing the phase space �13�
in terms of irreducible unitary representations of the Euclid-
ean group E�2� have already been discussed in the Introduc-
tion and in Sec. II. As to general introductions to the concept
of group-theoretical quantization see the excellent article by
Isham �4� and the similarly excellent book by Guillemin and
Sternberg �46�.

The Euclidean group E�2� and its covering groups with
their irreducible unitary representations plays a prominent
role in Isham’s discussions as an example for the new quan-
tum effects induced by nontrivial topologies like that of the
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configuration space S1: namely, the existence of nonvanish-
ing � effects. The Lie algebra e�2� of the Euclidean group
E�2� is also discussed by Guillemin and Sternberg in a dif-
ferent context �101�. An appealing introduction into the irre-
ducible representations of the group E�2� itself can be found
in Chap. IV of Sugiura’s book �102�, including Plancherel’s
theorem �“Fourier” transform� for that group. Sugiura also
gives a nice introduction to the concept of “induced repre-
sentations” which provides the appropriate method to con-
struct the irreducible unitary representations of E�2�.

The analog of the Groenewold–Van Hove obstruction for
the conventional quantization procedure is discussed in case
of the present phase space S1�R and its quantization in
terms of the canonical group E�2� in Ref. �103�.

Let me briefly recall the main structure of the group E�2�:
It is convenient to use complex coordinates z=x+ iy on the
plane R2. The Euclidean scalar product of two vectors z1 and
z2 may be written as

�z2,z1� 	 x2x1 + y2y1 = Re�z2
* · z1� . �B1�

The Euclidean group E�2� consists of all linear transforma-
tions of the plane which leave the square of the distance,

�z2 − z1,z2 − z1� = �x2 − x1�2 + �y2 − y1�2, �B2�

invariant. If we confine ourselves to those transformations
which are continuously connected to the identity transforma-
tion �i.e., we exclude reflections z→z*�, we have

translations T2�t�: z → z + t, t = a + ib, a,b � R ,

�B3�

rotations R�	�: z → ei	z, 	 � R mod 2� . �B4�

If we define

g�	,t� = �ei	 t

0 1

 , �B5�

we can combine the two transformations �B3� and �B4� into

g�	,t��z

1

 = �ei	z + t

1

 . �B6�

The group multiplication law is

g�	2,t2� � g�	1,t1� = g�	1 + 	2mod 2�,t2 + ei	2t1�

= g�	3mod 2�,t3� . �B7�

When applying the group element g�	 , t� to a point s
= �� , p�� of the phase space �13� we write the group param-
eters 	 and t as indices. According to Eq. �63� the action of
the group E�2� on the phase space �13� is given by �47�

g	,t�s� = ���,p��� = ��� + 	�mod 2�,p� + a sin�� + 	�

− b cos�� + 	�� . �B8�

The transformation is obviously symplectic; i.e., we have

d�� Ù dp�� = d� Ù dp�. �B9�

It is also transitive; i.e., given any two points s1 and s2 there
is always a transformation �B8� which transforms s1 into s2:

The choice 	=�2−�1 transforms �1 into �2. The remaining
requirement

p�,2 − p�,1 = a sin �2 − b cos �2 �B10�

can be fulfilled by an appropriate choice of a and b.
The action is almost effective; i.e., it follows from

g	,t�s� = s " s �B11�

that

	 = 2�n, n � Z, t = 0. �B12�

This represents the center Z of the universal covering group

SO�2�˜=R of the rotation group SO�2�. A special solution of
the condition �B11� is

	 = 	 � R mod 2�q, q � N , �B13�

which represents the center Zq of the q-fold covering group
of SO�2�. It may be explicitly implemented by replacing the
angle 	 in Eq. �B7� by !=	 /q ,!�R mod 2�. The group
law for the universal covering law can be given by the rela-
tion �B7� by omitting the condition mod 2� completely.

The other conditions for the group E�2� to be the canoni-
cal �quantizing� group for the phase space �13� have been
discussed in Sec. II.

Let us denote by T1�a� and T1�b� the one-dimensional
translation subgroups in the x and y directions, respectively.
Then it follows from Eq. �B8� that the subgroup T1�a� leaves
the points of the two lines �=0 and �=� unchanged
�“stable”� �if 	=0, b=0� and that the subgroup T1�b� does
the same with the lines �=� /2 and �=3� /2. Thus, we may
describe the phase space �13� as one of the homogeneous
spaces

S�,p�
� E�2��	,t�/T1�a� � E�2��	,t�/T1�b� . �B14�

The Euclidean group E�2� also plays a role in several
papers on Moyal �-product �“deformation”� quantization of
the phase space �13� �104–109�.

The occurrence of inequivalent irreducible unitary repre-
sentations �25� characterized by the parameter � has its cor-
respondence in inequivalent representations of the Weyl al-

gebra generated by U=exp�i	�� and V=exp�i!L̃� �110�.

APPENDIX C: SOME PROPERTIES
OF � FUNCTIONS

In Secs. �4� and �5� above on the coherent states of the
circle Jacobi’s � functions play a prominent role. I shall
briefly mention some suitable textbooks where one can find
their appropriate properties and shall add a few relations
here. One inconvenience as to the literature is that different
authors use different conventions for the arguments of the �
functions. Take

�3
�a���,q = ei� � = �

n�Z
qn2

e2ina�. �C1�

Some authors have a=1, others a=�. I have used the con-
vention a=1 of the very useful book by Whittaker and Wat-
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son �111�. The same convention has the “classical” introduc-
tory book by Bellman �112� and the more recent appealing
textbook by Lawden �113�. Erdélyi et al. �114� have a=�, so
has Mumford’s influential modern textbook �115�. Useful are
also the formulas in Ref. �116� which has a=1. Most of the
formulas concerning the � functions needed in the text above
have been given there. As the ratios of � functions are re-
lated to Jacobi’s elliptic functions, one may express their
ratios in Eqs. �208�, �215�, �224�, and �226� in terms of el-
liptic functions sn�u ,k� , cn�u ,k�, and dn�u ,k� �for their defi-
nition see Refs. �111,113��:

�4��,q�
�3��,q�

=
�k�

dn�u,k�
, u =

2K

�
�, k =

�2
2�� = 0,q�

�3
2�� = 0,q�

,

k� =
�4

2�� = 0,q�
�3

2�� = 0,q�
,

2K

�
= �3

2�� = 0,q� . �C2�

Furthermore,

�3���,q�
�3��,q�

=
�4���,q�
�4��,q�

−
2K

�
k2cn�u,k�sn�u,k�

dn�u,k�
, �C3�

where

�4���,q�
�4��,q�

=
2K�k�

�
Z�u�, Z�u� = �E�u,k� − uE�k�/K�k�� ,

E�u,k� = �
0

u

dv dn2�v,k� ,

E�k� = E�u = K,k� = �
0

�/2

d��1 − k2sin2 ��1/2,

K�k� = �
0

�/2

d��1 − k2sin2 ��−1/2. �C4�

Z�u� is Jacobi’s zeta function. Finally,

�3�

�3
−

�3�
2

�3
2 =

d2ln �3��,q�
d�2 =

4K2�k�
�2 � k�2

dn2�u,k�
− E�k�/K�k�� ,

k�2 + k2 = 1. �C5�
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