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Wavelength conversion via dynamic refractive index tuning of a cavity
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We demonstrate numerically that the wavelength conversion of light is possible by the simple dynamic
refractive index tuning of an optical cavity in a photonic crystal. We also clarify the mechanism and conser-
vation rule for this conversion process. In addition, we discuss the observability of this phenomenon in realistic
cavities. Our results indicate that this linear adiabatic wavelength conversion process can be observed for
various high-Q microcavities.

DOI: 10.1103/PhysRevA.73.051803 PACS number�s�: 42.65.Ky, 42.70.Qs, 42.79.Nv
The wavelength conversion of light is a very important
phenomenon that can be employed for various optical engi-
neering technologies; for example, information processing in
wavelength-demultiplexing communication. For converting
the wavelength, we generally utilize a nonlinear optical pro-
cess �e.g., ��2� process�, where higher-order polarization gen-
erates new frequency components �1�. This conversion re-
quires the use of highly nonlinear crystals, and the
conversion efficiency depends on the input light intensity,
phase-matching condition, and light traveling distance. Thus,
it is generally difficult to realize high efficiency for weak
light in a tiny sample.

Recently, several theoretical papers have indicated that
the wavelength properties of light can be modified by dy-
namic processes in photonic crystals �PCs�. Reed et al.
showed numerically that a light pulse reflected by a shock-
wave front traveling in a PC exhibits a large wavelength shift
and spectral compression �2�. The shift itself may appear
similar to the Doppler effect, but the physical mechanism is
different. Subsequently, Yanik et al. showed that if the re-
fractive index of a coupled-resonator waveguide imple-
mented in a PC is dynamically changed, light propagation
can be stopped or inverted �3,4�. One of the most important
aspects of their processes is that the spectral width of the
pulse is dynamically compressed. These results suggest that
we can dynamically control the wavelength properties of a
light pulse by dynamically controlling the dispersion charac-
teristics of the material or waveguide. However, there have
been no direct or detailed investigations of such wavelength
controllability. In this communication, we investigate a much
simpler system—a single cavity—so as to clarify how the
dynamic process can affect the wavelength properties of
light. We investigate the physical mechanism of this phe-
nomenon in comparison with conventional wavelength con-
version and discuss whether we can exploit such effects
practically to realize wavelength conversion in realistic
structures.

Here we consider a single cavity in a two-dimensional
�2D� hexagonal air-hole PC slab, which has been shown to
exhibit a large quality factor �Q� and ultrasmall mode vol-
ume �5,6�. First, we study numerically the dynamic effect
using a simple 2D model with the finite-difference time-
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domain �FDTD� method �7�. The model cavity is shown in
Fig. 1�a�, which has a resonant mode at �=1623 nm for H
polarization �H is perpendicular to the 2D plane�. After nu-
merically exciting this resonant mode, the refractive index of
the high-index material around the cavity �gray area in Fig.
1�a�� is tuned dynamically by �n /n=�= +5�10−3 from n1
at t= t1 to n2= �1+��n1 at t= t2 as a function of time as shown
in Fig. 1�c�. Such index tuning can be undertaken in various

FIG. 1. �Color online� Wavelength conversion in a four-point-
defect PC cavity. �a� Schematic of the cavity in a 2D hexagonal
air-hole PC slab. The lattice constant a=420 nm, the hole radius
r=0.275a, the end-hole radius re=0.125a, and nef f =2.78. The index
of the gray region is tuned. �b� Wavelength spectra with and without
the index tuning calculated by 2D FDTD. �c� Temporal variation of

the refractive index.
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ways. For example, we have recently demonstrated index
tuning in a similar Si PC cavity system as a result of the
optical nonlinear effect �8–10�.

Figure 1�b� shows calculated wavelength spectra of the
electromagnetic field in the cavity with and without index
tuning. The spectra were obtained by Fourier conversion of
the temporal field data for t� t2. We used two different tun-
ing times �t�=t2− t1� of 5 fs and 10 ps and obtained the same
spectra. We later consider the effect of the tuning rate. As
clearly seen in the two spectra, the wavelength of the light in
the cavity is converted from �1 to �2 after the dynamic tun-
ing. Note that there is no noticeable peak at the original
wavelength �1 after the tuning, which means that �100%
wavelength conversion occurs in this process. The relative
wavelength shift �� /� almost coincides with the relative
index shift �n /n. To be more accurate, we numerically con-
firmed that the final wavelength �2 is exactly the same as the
new resonance wavelength of the cavity with a refractive
index of n2. In other words, the wavelength of the light in the
cavity follows the resonance wavelength of the cavity with a
changed n �we refer to this as �res�n��. Consequently, we
found the following relation for this dynamic process:
�� /�=��res�n� /���n /n. The slight deviation between
�n /n and ��res�n� /� is due to the fact that we do not change
the refractive index of air in which there is slight light field.
In addition, this wavelength shift does not depend on the rate
of the dynamic change, which directly proves that this con-
version process is fundamentally different from the various
pulse spectrum distortion effects induced by the Kerr effect
or sideband generation by high-speed optical modulators.

Next, we investigate the energy conservation relation in
this conversion process. In conventional wavelength conver-
sion processes, the field energy U is conserved at the photon
level as ��0= ��1+ ��2, where �0 is the angular frequency
of the initial light, �1 and �2 are those of the converted light
in the case for the ��2� process �or �2 could be that of the
phonon in the case for acousto-optic effects�. In our case,
however, the energy conservation is fundamentally different
since no multiphoton process or interaction with other el-
ementary excitation is involved. In fact, U does not have to
be conserved because the variation of n must affect U
�whose dielectric part is expressed as n2 �E�2�. Figure 2�a�
shows the calculated U in the cavity as a function of time
during the conversion process. All the conditions are the
same as those in Fig. 1. We integrated the field energy den-
sity inside the cavity. Clearly, U is not conserved during the
conversion process even if we exclude the energy loss due to
the finite Q. Note that the net change in U is the same what-
ever the tuning rate. Figure 2�b� summarizes the estimated
�U and �� for various �n values. This plot clearly shows
that when n increases, � is converted to longer wavelength
and simultaneously U decreases. Although the fact that
U�n2 �E�2 might imply that the increase of n leads to the
increase in U in the case of conversion to longer wavelength,
the result in Fig. 2 is opposite. In addition, the increase
in � is exactly the same as the reduction of U, that is,
�� /�=−�U /U. To observe this more directly, we plot
��U�� in the same figure, which clearly shows that �U�� is

conserved during the whole process. We confirmed that in all
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cases, �U�� is the conserved quantity during the conversion
process. As is well known in classical mechanics, the quan-
tity J= � pdq=U /� ��U�� called the action integral is an
adiabatic invariant for classical oscillators when some of the
oscillator parameters are dynamically changed in an adia-
batic fashion �11�. In our case, U� corresponds to the adia-
batic invariant for electromagnetic oscillations in this sys-
tem. This explains the energy conservation rule for the
current conversion process. This conservation rule naturally
holds for a photon level as N��1�1=N��2�2 �N is the num-
ber of photons�. This is reasonable because the energy quanta
and Planck constant were originally defined as adiabatic in-
variant in quantum mechanics.

It is now clear that this conversion process is fundamen-
tally different from the conventional wavelength conversion
described as a multiphoton process. The former is adiabatic
where the number of energy quanta is conserved, but the
latter is nonadiabatic where the number is not conserved. We
can understand this adiabatic wavelength conversion process
by analogy with the dynamical tuning of classical oscillators.
Let us think of a musical instrument such as a guitar, which
is a simple example of a classical oscillator. We pluck a
string to generate the note of A. If we then turn the tuning
peg before the vibration is dying out, we can raise the note
from A to a higher one. In this process, U /� is conserved.
We can change the tone by dynamically changing the reso-
nance frequency of the guitar. Note that the adiabatic process

FIG. 2. �Color online� Temporal variation of the integrated elec-
tromagnetic field energy in the cavity during the conversion process
shown in Fig. 1. �a� Field energy as a function of time for different
tuning times. �b� �U, ��, and ��U�� vs �n.
has been studied in various atom-photon interactions in
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quantum optics �for example, one can change the state of
atoms by coherent light using adiabatic following� �12�, but
the present situation is fundamentally different since the state
of light is adiabatically modified.

Since all the previous reports �Refs. �2–4�� and our results
in Figs. 1 and 2 assumed a perfect 2D photonic band gap
�PBG�, this phenomenon may be explained by the fact that
the field energy U stored in the cavity cannot escape at any
instance during the transition due to the existence of the
PBG, and thus is inevitably converted to the new resonant
mode at �2, which is the only allowed mode in the final state.
However, we will see that this explanation is too simple. We
next investigate more realistic three-dimensional �3D� cavi-
ties which have only partial PBGs to check whether the ex-
istence of perfect PBGs is essential or not. Indeed, this is an
important issue because in practice it is very difficult to re-
alize perfect PBGs. In terms of experimental observability,
the verification in realistic 3D cavities with partial PBGs is
crucial. We calculated a basically similar cavity shown in
Fig. 3�a� assuming a finite thickness by the full 3D FDTD
method. Due to leakage into the vertical direction, this cavity
has a finite Q of 230 000. Figure 3�b� shows calculated spec-
tra for this 3D cavity with and without the dynamic tuning at
�t=5 fs. Figure 3�c� shows U as a function of time. The

FIG. 3. �Color online� Dynamic tuning in a realistic partial PBG
cavity in a finite-thickness PC slab obtained by full 3D calculation.
�a� A schematic of the 3D five-point-defect cavity. a=420 nm,
n=3.46, r=0.275a, the end-hole radius re=0.125a, and the thick-
ness of the slab t=0.5a. �b� Wavelength conversion for the partial
PBG cavity shown in �a� at �t=5 fs. �c� Integrated field energy in
the cavity as a function of time.
result in Figs. 3�b� and 3�c� is similar to that in Figs. 1�b� and
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2�a�. This clearly shows that a perfect PBG is not necessary
for this phenomenon, and that the conversion is possible for
experimentally realizable cavities.

Next, we discuss the realizability of this phenomenon. As
the first criterion, adiabatic continuity between the initial and
final states should be ensured. This will be violated if the
tuning time is too short and some untargeted modes are ex-
cited. Thus a small high-Q cavity having a large mode sepa-
ration is generally preferable, or one can avoid the excitation
of other modes by symmetry conservation even for instant
tuning. For example, if we change n homogeneously within
the cavity, adiabatic continuity is maintained even for a very
short tuning time because of the momentum conservation.
Note that these two conditions are satisfied in the results
shown in Figs. 1–3 because the cavity size is small and we
assumed a homogeneous index variation. This is why these
results do not exhibit the tuning rate dependence even for an
extremely fast tuning. To check adiabaticity conditions di-

FIG. 4. �Color online� Effect of spatial homogeneity and mode
separation on adiabaticity criterion. �a� A schematic of the ten-
point-defect cavity. The index of the gray area is tuned. Only the
right half of the cavity area is tuned. �b� Wavelength spectra with
and without index tuning in the case of spatially inhomogeneous
tuning for a ten-point-defect cavity �2D calculation� at �t=5 fs.
Other geometrical parameters are the same as those in Fig. 1�a�. �c�
The same as �b� at �t=10 ps.
rectly, we investigated a relatively long cavity having smaller
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mode separation assuming asymmetric index tuning �the
tuned area is the right half of the cavity� as in Fig. 4�a�. For
�t=5 fs, three different modes are excited �Fig. 4�b��, indi-
cating that the process is no longer adiabatic. However if we
employ a much slower tuning rate ��t=10 ps� as shown in
Fig. 4�c�, the adiabatic conversion recovers. Furthermore, if
we tune the index homogeneously, adiabatic conversion oc-
curs in both cases ��t=5 fs and 10 ps�. In the case of the
short cavity shown in Fig. 1�a�, we confirmed that the exci-
tation of other modes is negligible �less than 10−5� even with
asymmetric index tuning and �t=5 fs. In terms of the cavity
size and mode separation, the PC cavity shown in Fig. 1�a� is
similar to most of PC microcavities investigated recently
�5,13–15�. Thus, adiabaticity should be maintained for most
of wavelength-scale PC cavities under most experimental
conditions.

To discuss the experimental observability more practi-
cally, we need to consider the way we change n. This leads to
the second criterion for the observability and also the avail-
able ��. The second criterion is that the photon lifetime �	ph�
must be longer than the index tuning time. This is the most
critical issue and apparently high-Q cavities and slow-light
waveguides are suitable. In addition �third criterion�, the
wavelength shift should be larger than the wavelength width
of the cavity resonance which is also determined by 	ph. The
typical 	ph in high-Q PC cavities is 0.1–1 ns �corresponding
to �� /��10−5–10−6�. These conditions can be met by vari-
ous methods. One way is to use the carrier-plasma effect that
we recently used for all-optical switching in Si PC cavities
�9,10�. For this, we illuminate the cavity from the top with a
light pulse whose wavelength is within the absorption band
of Si. Alternatively, we can excite the cavity’s other low-Q
resonant mode via a coupled waveguide so as to induce two-
photon absorption inside the cavity �9,10�. For both cases,
the generated carriers cause �n due to the plasma effect. We
experimentally observed �n�10−3 with 10 mW illumination
without degrading Q. Besides, we can make use of Kerr
051803
effect or even thermo-optic nonlinearity induced by the rapid
thermalizing process of hot carriers. The available �� /� is
determined by the largest �n /n, which is approximately
10−4, 10−3, and 5�10−2 for Kerr, plasma, and thermo-optic
effects, respectively. The way is not limited to optical. We
can use electro-optic tuning �e.g., quantum-confined Stark
effect enables �n /n�10−3�. All the effects are faster �psec or
less� than 	ph and large enough for the criterions for existing
cavities. Moreover, we can directly alter �res �instead of n�
by deforming the cavity mechanically or using piezoelectric
effect, which may become practical for extremely high-Q
cavities.

Finally, we summarize the features of this conversion pro-
cess in comparison with other conversion processes: �i� it is a
linear process, �ii� it does not depend on the initial light
intensity, �iii� the shift does not depend on the tuning rate,
�iv� it can occur in any materials if the resonance can be
dynamically varied, �v� no need for phase matching, and �vi�
the conversion efficiency is close to 100% �we define the
efficiency as the ratio of the number of photons converted� if
the leakage is negligible. These features will enable efficient
wavelength conversion of even single photons stored in ultr-
asmall cavities, which may be important for quantum com-
munication since all the information including entanglement
is preserved. One drawback is the fact that �� is limited by
the available �n and is much smaller than conventional
wavelength conversion.

The analogy with the tuning of a guitar shows that the
phenomenon we investigated here is purely classical, but no
one has explicitly discussed the use of this tuning of light for
wavelength conversion as far as we know. The reason for this
is that such classical tuning of electromagnetic oscillation is
normally impossible due to the generally short 	ph in small
structures. However, recent advances in ultrahigh-Q mi-
croresonators �14,15� and ultraslow-light waveguides �16,17�
are making such classical tuning of light possible. We be-
lieve that the wavelength conversion investigated here will

be an important optical process in such ultra-long 	ph media.
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