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Solution to the mean king’s problem with mutually unbiased bases for arbitrary levels
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The mean king’s problem with mutually unbiased bases is reconsidered for arbitrary d-level systems. Ha-
yashi et al. �Phys. Rev. A 71, 052331 �2005�� related the problem to the existence of a maximal set of d−1
mutually orthogonal Latin squares, in their restricted setting that allows only measurements of projection-
valued measures. However, we then cannot find a solution to the problem when, e.g., d=6 or d=10. In contrast
to their result, we show that the king’s problem always has a solution for arbitrary levels if we also allow
positive operator-valued measures. In constructing the solution, we use orthogonal arrays in combinatorial
design theory.
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I. INTRODUCTION

The mean king’s problem is a problem to retrodict the
outcome of a measurement of a basis randomly chosen from
a maximal set of mutually unbiased bases �MUBs� �1–3�. It
was first introduced in �4� for spin-1

2 systems, and later con-
sidered for systems with prime number levels �5� and prime
power levels �6–8�. The problem is often stated as a tale
�5,8�:

“Once upon a time, there lived a mean King who loved
cats. The King hated physicists since the day when he first
heard what had happened to Schrödinger’s cat. One day, a
terrible storm came on, and Alice, a physicist, got stranded
on the island that was ruled by the King. The King called
Alice to the royal laboratory and gave her a challenge: First,
Alice can prepare a d-level quantum system �a d-level atom�
in any state of her own liking and hand it over to the King.
The King will then secretly measure the atom with respect to
one of d+1 mutually unbiased bases and return it to Alice.
Alice is then allowed to perform one more measurement on
the atom. Afterwards, the King reveals his measurement ba-
sis and then Alice must immediately guess the correct output
of the King’s measurement, or she will die a cruel death.”

Here, the king’s measurement is assumed to be a standard
projective measurement of a basis ���m��m=0

d−1 of the atom sys-
tem, so that the measurement in the state ��� leads to the
output �index� m with probability �	�m ����2 and leaves the
system in the state ��m�. On the other hand, Alice is assumed
to be allowed any measurement not restricted to that of a
basis of the atom system.

The standard approach to the king’s problem is to make
use of entanglement �4–8�. Alice prepares two d-level quan-
tum systems Cd � Cd, one to be handed over to the king and
the other to be kept by Alice in secret, in a maximally en-
tangled state. After the king’s measurement of one of d+1
MUBs, Alice is then supposed in the literature to carry out a
measurement of projection-valued measure �PVM� on the
space Cd � Cd.
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Under the above assumptions, Hayashi et al. �7� showed
the equivalence of the existence of a solution to the king’s
problem and that of a maximal set of d−1 mutually orthogo-
nal Latin squares, or equivalently, d+1 mutually unbiased
striations �9�. Then, it turns out that we cannot find a solution
when, e.g., d=6 or d=10, in which cases d−1 mutually or-
thogonal Latin squares do not exist, even if there might be a
maximal set of d+1 MUBs; the existence of the latter is still
an open problem except for prime power levels. The purpose
of the present paper is to show that the king’s problem al-
ways has a solution for arbitrary levels if we relax the above
assumption to allow Alice to carry out any measurement of a
positive operator-valued measures �POVM� on the same
space Cd � Cd.

The notion of POVM measurement was introduced by
Helstrom �10� to generalize conventional PVM measure-
ments and to show that there is a class of optimization prob-
lems to which the optimum is achieved by a POVM mea-
surement but not by any PVM measurements. Nowadays,
POVM measurement is considered the most general descrip-
tion of measurement concerning the single measurement sta-
tistics, apart from the notion of instrument introduced by
Davies and Lewis �11� that describes also the state change
that determines the repeated or successive measurement sta-
tistics. By virtue of the Naimark theorem, every POVM mea-
surement can be realized by a PVM measurement of an ex-
tended system with the so-called ancilla; see Holevo �12� for
mathematical foundations of POVM measurements. This is
considered a static realization with a nonlocal measurement.
A dynamical realization with a local measurement is ob-
tained by the general realization theorem of completely posi-
tive instruments �13�, so that any measurements can be real-
ized as the unitary evolution of the composite system of the
measured system and the probe followed by a subsequent
PVM measurement of the probe. Then, the difference be-
tween POVM and PVM measurements arises only from the
difference of the interaction or the probe preparation, and in
some cases, a POVM measurement is more feasible than the
corresponding PVM measurement, in particular, for measur-
ing a continuous observable �13� or for the measurement
under conservation laws �14�.

As above, it is natural to assume that Alice can carry out,
in principle, any POVM measurements on the same space

d d
C � C without considerable change of the resource allowed
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for her. In this formulation, we first derive a simple criterion
for the existence of a solution to the king’s problem in Sec.
II. Then in Sec. III, we give a construction of a solution
based on orthogonal arrays in combinatorial design theory
�15�, instead of mutually orthogonal Latin squares.

We note, however, that our result gives no information on
the existence of MUBs. It is well known that there can never
be more than d+1 MUBs �cf. �3��. There always exists a
maximal set of d+1 MUBs when d is a prime power �2,3�,
but a construction �or even the existence� of d+1 MUBs for
other values of d is a long-standing problem, even for the
smallest case d=6. For the rest of this paper, we just assume
that we have a set of k MUBs ��A ,a�K�a=0

d−1, A� �0,1 , . . . ,k
−1�, for the king’s Hilbert space Cd �where 2�k�d+1�,


	A,a�A�,a��K
2 = �A,A��a,a� + �1 − �A,A��
1

d
. �1�

Of course, what we have in mind is the case k=d+1, but the
problem itself makes sense even for smaller k �16�.

II. CRITERION FOR THE SOLUTION

We shall construct Alice’s POVM on Cd � Cd from a suit-

able orthonormal basis ��I��I=0
dd�−1 on a larger Hilbert space

Cd� � Cd �d��d�. Let V :Cd→Cd� be the natural isometric

embedding of the space Cd into the extended space Cd�. Then,

MI � �V � I�†�I�	I��V � I� ,

where I� �0,1 , . . . ,dd�−1�, defines a POVM on Cd � Cd.
�The exact value for d��N will be specified later.�

Following �4–8�, let Alice prepare the initial state in a
maximally entangled state,

��� �
1
�d



i=0

d−1

�i�A � �i�K � Cd� � Cd, �2�

with reference orthonormal bases ��i�A�i=0
d�−1 and ��i�K�i=0

d−1 for

Cd� and Cd, respectively. Using any member ��A ,a�K�a=0
d−1 of

the MUBs, �2� can be rewritten as

��� =
1
�d



a=0

d−1

�A,a�A � �A,a�K,

where �A ,a�A�
i=0
d−1	i �A ,a�K

* � i�A. If the king measured the
basis ��A ,a�K�a=0

d−1 and obtained the output a, then the post-
measurement state will be

��A,a� � �A,a�A � �A,a�K.

We observe 	�A,a ��A�,a��=�A,A��a,a�+ �1−�A,A�� /d.
Here we remark the following. Let ��exp�2�i /d�, and

for A� �0,1 , . . . ,k−1� and j� �0,1 , . . . ,d−1� let

��̂A,j� �
1
�d



a=0

d−1

�aj��A,a� .

Then ��̂ �= ��� and it is easy to see that
A,0
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	�̂A,j��̂A�,j�� = �A,A�� j,j� + �1 − �A,A��� j,0� j�,0. �3�

Let A be the one-dimensional subspace spanned by ���, and
for each A� �0,1 , . . . ,k−1� let AA be the orthogonal
complement of A in the linear span of ��A,0�,
��A,1� , . . . , ��A,d−1�, i.e., span���A,a��a=0

d−1=A � AA. Then, it

follows from �3� that AA is spanned by ��̂A,1�,
��̂A,2� , . . . , ��̂A,d−1�,and Alice’s space Cd� � Cd is decomposed
into the orthogonal direct sum

Cd� � Cd = A � A0 � . . . � Ak−1 � B , �4�

where

B � �span���A,a��A=0,a=0
k−1,d−1 ��. �5�

It seems that this structure is fundamental in the discussion
of MUBs �cf. �3��.

With the above setting, now Alice has to find the basis

��I��I=0
dd�−1 on Cd� � Cd and an estimation function s�I ,A�

� �0,1 , . . . ,d−1�, namely her guess for the king’s output a
based on her output I and the king’s choice A. For fixed A
and a, Alice’s �conditional� success probability is then given

by 
I=0
dd�−1�a,s�I,A� � 	I ��A,a��2. Thus, in order to save her life

with certainty we must have �7�

	I��A,a� = 0 whenever s�I,A� � a . �6�

Now, we associate the basis ��I��I=0
dd�−1 with a dd�	kd matrix

H defined by

H�I;A,a� � 	I��A,a� .

Then, obviously

H�I;A,a� = 0 whenever s�I,A� � a , �7�

and moreover it follows that

�H†H��A,a;A�,a�� = �A,A��a,a� + �1 − �A,A��
1

d
. �8�

Thus, we have shown that if we have an estimation func-

tion s�I ,A� and an orthonormal basis ��I��I=0
dd�−1 for Cd� � Cd

satisfying the survival condition �6�, then there is a matrix H
such that �7� and �8� hold. Now, we shall show the converse
statement that given an estimation function s�I ,A� and a ma-
trix H satisfying �7� and �8�, we can find an orthonormal

basis ��I��I=0
dd�−1 for Cd� � Cd satisfying �6�. To show this, sup-

pose that a function s�I ,A�� �0,1 , . . . ,d−1� and a dd�	kd
matrix H satisfy �7� and �8�. Let �
A,a�� denote the �A ,a�-th
column vector of H. Then, since 		
A,a �
A�,a���
= 	�A,a ��A�,a��, there is a unique unitary operator

U:span���A,a��A=0,a=0
k−1,d−1 → span��
A,a���A=0,a=0

k−1,d−1 ,

such that

U��A,a� = �
A,a�� . �9�

ˆ ˆ
Specifically, U is determined by U ��A,j���
A,j��, where
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�
̂A,j�� �
1
�d



a=0

d−1

�aj�
A,a�� .

Now, arbitrarily extend U to a unitary operator

Ũ:Cd� � Cd → Cdd�, �10�

and let

�I� � Ũ†�I�� ,

where ��I���I=0
dd�−1 denotes the standard basis for the column

space Cdd�. Then ��I��I=0
dd�−1 is an orthonormal basis for Cd�

� Cd and by �9� we have 	I ��A,a�= 		I �
A,a��=H�I ;A ,a� and
thus �6� holds.

To summarize, we have the following:
Theorem 1. Given an estimation function s�I ,A�

� �0,1 , . . . ,d−1�, there exists an orthonormal basis ��I��I=0
dd�−1

for Cd� � Cd satisfying �6� if and only if there is a dd�	kd
matrix H such that �7� and �8� hold.

III. ORTHOGONAL ARRAYS AND THE EXISTENCE
OF A SOLUTION

An orthogonal array of degree k, order d, and index n,
denoted OAn�k ,d�, is an nd2	k array with entries from
�0,1 , . . . ,d−1� such that every pair of symbols from
�0,1 , . . . ,d−1� occurs exactly n times as a 1	2 submatrix
in the nd2	2 matrix consisting of any pair of two distinct
columns chosen from the array �cf. �15��. It follows imme-
diately from the definition that every symbol occurs exactly
nd times in each column of an OAn�k ,d�. Thus, in other
words, an nd2	k array T with entries from �0,1 , . . . ,d−1� is
an OAn�k ,d� if and only if

1

nd


I=0

nd2−1

�a,T�I,A��a�,T�I,A�� = �A,A��a,a� + �1 − �A,A��
1

d
.

�11�

�Compare this equation with �1�.� We note that an OA1�k ,d�
is equivalent to a set of k−2 mutually orthogonal Latin
squares of side d. An OA1�4,3� is given in Table I. Hayashi
et al. �7� constructed an estimation function using a maximal
set of d−1 mutually orthogonal Latin squares. There always
exist d−1 mutually orthogonal Latin squares if d is a power
of a prime, but as mentioned in the Introduction, it is known
that this is not the case for some other values of d, such as
d=6 and d=10. On the other hand, we can always find an
orthogonal array for each k and d. In fact, the array obtained
by arranging all the k-tuples �in, e.g., the lexicographic or-
der� obviously defines an OAdk−2�k ,d�. In particular, it is
known �17� that there exists an OAn�7,6� for all n�2�18�.

Now, we construct a solution to the king’s problem based

on orthogonal arrays. Set d�=nd and let �s�I ,A��I=0,A=0
nd2−1,k−1

2
form an OAn�k ,d�. We define an nd 	kd matrix H by
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H�I;A,a� �
1

�nd
�a,s�I,A�.

Then by �11� H satisfies �7� and �8�, and Theorem 1 shows
that there is a solution to the problem. In fact, the proof of
Theorem 1 yields a somewhat explicit formula for the corre-

sponding basis ��I��I=0
nd2−1 in this case. Let ���b��b=0

e−1 be an
orthonormal basis for B, where e�dim B=nd2−k�d−1�−1.
Then by �4� we have

�I� = 	��I���� + 

A=0

k−1



j=1

d−1

	�̂A,j�I���̂A,j� + 

b=0

e−1

	�b�I���b� .

Since ��̂A,0�= ���, 	� � I�=1/ �d�n� and



j=0

d−1

	�̂A,j�I���̂A,j� =
1

d�nd


j=0

d−1



a=0

d−1

��a−s�I,A��j��A,a�

=
1

�nd
��A,s�I,A�� ,

we find

�I� =
1
�n

�I�� + 

b=0

e−1

	�b�I���b� , �12�

where

�I�� �
1
�d



A=0

k−1

��A,s�I,A�� −
k − 1

d
��� .

�Compare this expression with Eq. �10� in �7�.�

IV. EXAMPLE

We illustrate the above construction of a solution to the
problem in the case of the �trivial� OAdk−2�k ,d�. Each I
� �0,1 , . . . ,dk−1� has a unique d-adic expansion,

I = 

A=0

k−1

IAdA, where IA � �0,1, . . . ,d − 1� .We

TABLE I. An OA1�4,3�. We may think of the first two columns
as representing the row and column indices of 3	3 matrices, re-
spectively. Then the third and fourth columns correspond to two
mutually orthogonal Latin squares of side 3.

0 0 0 0

0 1 1 1

0 2 2 2

1 0 1 2

1 1 2 0

1 2 0 1

2 0 2 1

2 1 0 2

2 2 1 0
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define the array �s�I ,A��I=0,A=0
dk−1,k−1 by s�I ,A�� IA.

In order to carry out the construction �12� of the basis

��I��I=0
dk−1 explicitly, we must specify Ũ ��b� for an orthonor-

mal basis ���b��b=0
e−1 for B in �5� �where e=dk−k�d−1�−1�.

The space B depends on the particular set of MUBs. When

k=d+1 for instance, B is spanned by ��i�A � �j�K�i=d,j=0
dd−1,d−1.

For each J� �0,1 , . . . ,dk−1� let

�
̂J�� �
1

�dk 

I=0

dk−1

�
A=0
k−1 IAJA�I�� .

Then ��
̂J���J=0
dk−1 forms an orthonormal basis for the column

space Cdk
. Note that �
̂ jdA��= �
̂A,j�� for j� �0,1 , . . . ,d−1�.

Let � : �0,1 , . . . ,e−1�→ �J : ��A :JA�0� � �2� be any bijec-

tion and define the extension Ũ :Cdk−1
� Cd→Cdk

of U in �10�
by setting Ũ��b���
̂��b��� for b� �0,1 , . . . ,e−1�. Then we
find
�13� M. Ozawa, J. Math. Phys. 25, 79 �1984�; M. Ozawa, in
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�I� =
1

�dk−2
�I�� +

1
�dk 


b=0

e−1

�−
A=0
k−1 IA��b�A��b� .

V. CONCLUDING REMARKS

In contrast to the results in �7�, we showed that for any d
we can always find a solution to the king’s problem by per-
forming a suitable POVM measurement, instead of a PVM
measurement. We note that our method in this paper also
indicates how Alice constructs that POVM: She just prepares
a d��=nd� level ancilla to maximally entangle the d-level
atom, and carries out the PVM measurement with respect to
��I��I=0

dd�−1 constructed in the previous sections based on or-
thogonal arrays.
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