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The main goal of this paper is to provide a connection between the generalized robustness of entanglement
�Rg� and the geometric measure of entanglement �EGME�. First, we show that the generalized robustness is
always higher than or equal to the geometric measure. Then we find a tighter lower bound to Rg��� based only
on the purity of � and its maximal overlap to a separable state. As we will see it is also possible to express this
lower bound in terms of EGME.
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Since it was first noted �1,2� the issue of quantum corre-
lations has been largely studied and debated. However, it was
not until entanglement was recognized as a physical resource
that this theme got a solid status. From this point of view,
entanglement was shown to allow several tasks such as quan-
tum cryptography �3�, teleportation �4�, and quantum algo-
rithms �5�. On the other hand, entanglement has also given
us new insights for understanding important physical phe-
nomena including superconductivity �6�, super-radiance �7�,
quantum phase transitions �8–12�, and the appearance of
classicality �13�.

One of the greatest challenges concerning entanglement is
how to properly quantify this resource. Although this prob-
lem is well understood for bipartite pure states, in a more
complex scenario �multipartite systems or mixed states� a
complete theory on the quantification of entanglement is still
lacking.

Among the difficulties of dealing with multipartite en-
tanglement is the fact that systems composed by various
parts can exhibit many kinds of entanglement. This is be-
cause one may be interested in the entanglement according to
a specific partition of the whole system. So a state can
present some entanglement in relation to a given partition,
while it can be separable according to another one.

In the past few years many candidates of entanglement
quantifiers were proposed. Generically speaking, the ways of
quantifying entanglement can be divided into two classes:
quantifiers with a geometrical interpretation, and ones with
an operational meaning. In the first class we can cite the
relative entropy of entanglement �14,15�, the geometric mea-
sure of entanglement �16,17�, the negativity �18–20�, and the
robustness of entanglement �21–23�. The entanglement cost
�24,25�, the distillable entanglement �24,26�, and the singlet
fraction �27� are examples of operational measures.

The purpose of this paper is to point out a connection
between two well-discussed entanglement quantifiers, the
generalized robustness �Rg� �22,23�, and the geometric mea-
sure of entanglement �EGME� �16,17�. That these quantifiers
are related is not obvious a priori, for these functions rely on
distinct geometrical interpretations. While EGME measures
the minimum angle between an entangled state and a sepa-

rable one, Rg can be treated as a kind of “distance” between
an entangled state and the set of unentangled states. Further-
more, both quantifiers are able to deal with the various types
of entanglement that a multipartite system can present.

Let us first present the language we shall adopt to talk
about multipartite entanglement. Suppose a state � can be
written as a convex combination of states which are products
of k tensor factors. The state � is then said to be a k-separable
state. One should note that in a system of n parts,
n-separability is separability itself and that every state is
trivially 1-separable. The set of k-separable states will be
denoted by Sk. It is clear that Sn�Sn−1� ¯ �S1=D, where
D denotes the set of density operators.

We are now able to understand why Rg and EGME can
distinguish the types of entanglement a system contains. The
geometric measure is a pure-state entanglement quantifier
given by

EGME
k ��� = 1 − �k

2��� , �1�

where

�k
2 = max

��Sk

�������2. �2�

Thus EGME
k ��� measures the sine squared of the minimum

angle between ��� and a k-separable state �36�. It is known
that this quantity is an entanglement monotone �28�, i.e., it is
a nonincreasing function under local operations and classical
communication.

The relation between EGME
k and the notion of

k-entanglement witnesses �29� �observables with positive
mean value to all k-separable states, but negative to some
��Sk� �see Ref. �17�� has also been determined. This results
from the fact that one can always construct a k-entanglement
witnesses Wk for a pure state ��� of the type

Wk = �2 − ������ . �3�

As this operator must have a positive mean value for every
k-separable state, the relation

�2 � max
����Sk

	�����	2 = �k
2 �4�

must hold. Thus the optimal entanglement witness of the
form �3� is reached when �=�k

2, and we can write*Electronic address: dcs@fisica.ufmg.br
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Wopt
k = �k

2 − ������ . �5�

Here optimality is defined in the sense of getting the highest
value to ����Wk����.

In a different fashion, the robustness of entanglement of a
state � quantifies how robust the entanglement of � is under
the presence of noise. Thus the robustness of � in relation to
the state �, R�� 	��, is the minimum s such that the state

� =
� + s�

1 + s
�6�

is k-separable. We will be interested in an extension of the
relative robustness, namely the generalized robustness. This
entanglement quantifier is obtained by the minimization of
the relative robustness over all states � �22�. Recently, an
interesting operational interpretation to Rg

k was given in
terms of the percentual increase a state can provide to tele-
portation processes �30�. The generalized robustness can also
be viewed as a “distance” of � to the set Sk in the space of
states �see Fig. 1� �31�, and thus allow both a geometrical
and an operational interpretation. Moreover Rg

k was used to
investigate the shape of entangled states sets �31� and was
shown to exhibit a kind of polygamy of entanglement �32�.

As well as the geometric measure, Rg
k is intimately con-

nected to the notion of entanglement witnesses. In fact, Rg
k

can be expressed as

Rg
k��� = max
0,− min

Wk�M
Tr�Wk��� , �7�

where M is the set of operators M 	 I and Wk is a
k-entanglement witness �33�.

As the witness �5� obviously satisfies the condition Wk

	 I we can attest the following:

Rg
k��� � EGME

k ��� . �8�

Some points concerning the inequality �8� should be stressed
at this stage. First, it is a relation valid to all kinds of multi-
partite entanglement. Moreover, this relation will be strict
whenever the witness �5� is a k-entanglement witness, which
solves the minimization problem in �7�. Finally, one could
argue that relation �8� may be, in fact, a consequence of

standard results from matrix analysis relating different dis-
tance measures between operators �as commented, both Rg

k

and EGME
k are related to such distances�. However, it must be

clear that Rg
k��� is not simply the distance between � and its

closest state ��Sk, but one should keep in mind that this
distance is taken with relation to the state � as a reference
�37� �recall Fig. 1�. This makes the closest k-separable state
usually different for Rg

k and EGME
k .

In fact, it is possible to give a tighter relation between Rg
k

and EGME
k . Recall the Lemma 1 shown in Ref. �32�. We now

give a clearer proof of it, and interpret it as a lower bound to
Rg

k.
Lemma 1. For every state ��D,

Rg
k��� �

Tr��2�
max��Sk

Tr����
− 1. �9�

Proof. First of all let us show that max��Sk
Tr���� is equal

to the minimum value of � ��min� such that W=�I−� is a
k-entanglement witness. As Tr�W���0"��Sk,

Tr���I − ���� = � − Tr���� � 0. �10�

It is thus straightforward to see that �min=max��Sk
Tr����.

Note that

W� =
W

�min
= I −

�

�min

 I . �11�

So it is possible to see that Rg
k����−Tr�W���, from which

follows the required result. �

The lower bound to Rg
k expressed by �9� can be easily

interpreted: Tr �2 measures the purity of �, and Tr���� is the
Hilbert-Schmidt scalar product between � and �. It is ex-
pected that the more mixed � is, the lower the value of Tr �2

gets, and the state becomes less entangled. Similarly, the
larger max��Sk

Tr���� is, closer to the set Sk � gets, and the
system will show less entanglement.

But now we note that in the special case of pure states the
relations Tr��2�=1 and max��Sk

Tr����=�k
2��� hold and

therefore we have the general relation

Rg
k��� �

1

�k
2���

− 1 �12�

and we can see the relation we are looking for

Rg
k��� �

EGME
k

1 − EGME
k . �13�

It is interesting that two entanglement monotones with
different geometric interpretation are actually related, and
furthermore this relation allows an analytic lower bound to
the generalized robustness for all states whenever �k

2��� can
be analytically computed. This is the case, for example, of
completely symmetric states, Werner states, and the isotropic
states �17,34�.

We can furthermore see from �12� that

FIG. 1. Geometrical interpretation of Rg
k. The straight line rep-

resents the convex combination �+s� /1+s. We see that for a given
state � and a value of s this combination becomes k-separable.
Rg

k��� is defined as the minimum s, considering all possible states �.
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log2�1 + Rg
k� � − 2 log2�k. �14�

The left side of this expression is the logarithmic robustness
of entanglement �LRg

k�, another entanglement quantifier with
interesting features �33�. Curiously, this is exactly the same
lower bound expressed to the relative entropy of entangle-
ment �ER

k � in �34�. Numerical and analytical results �see, for
example, Fig. 2 and Table I� suggest that LRg

k �ER
k , in gen-

eral, but at the moment this is just a conjecture.
For bipartite pure states all the quantities considered so

far can be analytically computed. While the relative entropy
of entanglement equals the entropy of entanglement �given
by the von Neumann entropy of the reduced state� �15�, the
generalized robustness is given by

Rg
k��� = �


i

ci�2
− 1, �15�

being 
ci� the spectrum of Schmidt of ��� �22�. In this context
it can be noted that �k is given by the modulus of the highest
Schmidt coefficient of ��� �17�. To visualize and compare
these entanglement measures we calculate the relative en-
tropy of entanglement, the logarithmic generalized robust-
ness, and the lower bound expressed in �14� for the state

���p�� = �p�00� + �1 − p�11� . �16�

The plots are available in Fig. 2.
As the presented relations between Rg

k and EGME
k are also

valid to multipartite entanglement it would be useful to illus-
trate the results in this context as well. We choose to study
some completely symmetric states for this aim. These states

are referred to as Dicke states or, some times, as generalized
W states and appear naturally as eigenstates of various mod-
els such as the �-pairing model �6� and the Dicke model �7�.
Following Ref. �17� we will label these states according to
the number of 0’s, as follows:

�17�

where S is the total symmetrization operator. Wei and Gold-
bart showed an analytical expression to EGME

n ��S�n ,k��� ( i.e.,
the geometric measure of �S�n ,k�� with relation to the com-
pletely separable states) �17�. Additionally, it was shown that
the relative entropy of entanglement is exactly equal to the
lower bound given in Eq. �14� �34�. On the other hand we do
not have an analytical way of calculating Rg

n for the states
�17�. We thus computed it numerically using the robust
semidefinite programming approach presented in Refs.
�33,35�. The results are displayed in Table I.

In brief, we have shown some relations between the geo-
metric measure of entanglement and the generalized robust-
ness of entanglement. We reached a lower bound to Rg

k with
nice interpretations and wrote it in terms of EGME

k . These
relations also allowed us to compare two other entanglement
quantifiers, the logarithmic generalized robustness and the
relative entropy of entanglement. Examples were given to
illustrate the results.

Because many entanglement quantifiers exist it is impor-
tant to understand their relation and this, we believe, should
be a major goal in the theory of entanglement. We hope that
this discussion can help in this sense.

I would like to thank Dr. Marcelo Terra Cunha and Flavia
Tenuta for useful comments on this paper. I especially thank
Dr. Miguel G. Cruz for helpful criticisms and Fernando
Brandão for help with the numerical results. Financial sup-
port from CNPq is also acknowledged.

TABLE I. A comparison among multipartite entanglement of
some states �17�, given by different entanglement quantifiers. EGME

n

�geometric measure of entanglement, given in Ref. �17��, Rg
n �nu-

merical calculation�, LRg
n �logarithmic robustness of entanglement,

given by the left side of Eq. �14��, and ER
n �given by the left side of

Eq. �14��.

�S�2,1�� �S�3,2�� �S�4,3�� �S�4,2��

EGME
n 0.5 0.55 0.58 0.25

Rg
n 1 1.25 1.7 1.83

LRg
n 1 1.17 1.43 1.5

ER
n 1 1.17 1.24 0.41

FIG. 2. �Color online� Red crosses: logarithmic generalized ro-
bustness of entanglement. Blue diamonds: relative entropy of en-
tanglement. Black line: lower bound given in Eq. �14�.
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