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Correlated photons and collective excitations of a cyclic atomic ensemble
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We systematically study the interaction between two quantized optical fields and a cyclic atomic ensemble
driven by a classic optical field. This so-called atomic cyclic ensemble consists of three-level atoms with
A-type transitions due to the symmetry breaking, which can also be implemented in the superconducting
quantum circuit by Yu-xi Liu et al. [Phys. Rev. Lett. 95, 087001 (2005)]. We explore the dynamic mechanisms
to creating the quantum entanglements among photon states, and between photons and atomic collective
excitations by the coherent manipulation of the atom-photon system. It is shown that the quantum information
can be completely transferred from one quantized optical mode to another, and the quantum information
carried by the two quantized optical fields can be stored in the collective modes of this atomic ensemble by
adiabatically controlling the classic field Rabi frequencies.
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I. INTRODUCTION

The electric-dipole selection rule does not allow one- and
two-photon processes to coexist for given initial and final
states in quantum systems with a center of inversion symme-
try, where all states have well-defined parities [1]. Because
one-photon transitions, resulted from the electric-dipole in-
teraction between two nondegenerate states, require that
these states have opposite parities; but two-photon process
needs those states to have the same parity [1]. However, the
one- and two-photon processes can coexist in systems with
lack of inversion symmetry, e.g., in the semiconductor sys-
tems [2-5]. Then, the magnitude and direction of the photo-
current in these systems [2-5] can be controlled by using two
different optical paths.

Reference [6] showed that electric-dipole transition be-
tween any two states is allowed for chiral molecules and
their mirror images due to lack of inverse symmetry. It
means that the one- and two-photon processes can also co-
exist in these systems. Then, the same initial and final states
can be connected by two different paths, which result in an
interference effect for final state. The different relative phase
differences for pulses of the two optical pathways will result
in different interference fringes. This implies that final state
can be controlled by choosing applied pulse phases. Using an
example in Ref. [6], the coherent population transfer (CPT)
was studied in a three-level system with cyclic transitions,
induced by three classical fields. Different from the usual
A-type atoms [7], the CPT in these systems is controlled not
only by the amplitudes of the electric-dipole transition ele-
ments, but also by the phases of applied pulses.

Recently, the microwave control of the quantum states has
been investigated for superconducting quantum circuits [8],
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called “artificial atoms,” which possess discrete energy lev-
els. The optical selection rule of microwave-assisted transi-
tions is carefully analyzed for this artificial atom. It was
shown [8] that the electric-dipole like transition can appear
for any two different states when the symmetry of the poten-
tial of the artificial atom is broken by changing microwave
bias. Then, so-called A-type or cyclic transitions can be
formed for the lowest three levels. The populations of these
states can be selectively transferred by adiabatically control-
ling both the amplitudes and phases of the applied micro-
wave pulses.

The previous investigations, e.g., in Refs. [2-6,8], only
focus on a single three-level system with A-type or cyclic
transitions, induced by the three classical fields. In contrast
to the above examples [2-6,8], the electric-dipole interaction
cannot induce cyclic transitions among three energy levels
for a usual atom, due to its symmetry and well-defined pari-
ties of its eigenstates. To have cyclic or A-type transitions, a
coherent radio-frequency field is required to apply such that
it can induce a magnetic dipole (or an electric quadrupole)
transition [10-12] between two levels, e.g., two lower (or
higher) levels which are forbidden to the electric-dipole tran-
sition in the A (or V)-type atoms [7].

In this paper, we will investigate the collective effects of
photonic emissions and excitations of a cyclic three-level
system (such as atomic ensemble with symmetry broken, or
the chiral molecular gases [6], or manual “atomic” array with
symmetry broken [8,9]) where the quantum transitions is in-
duced by two quantized fields and a classical one. We will
focus on the photonic properties of emissions resulting from
such cyclic transitions, such as the two-mode photon en-
tanglement, the quantum state exchange and swapping be-
tween the two-mode optical field and the two collective
modes of atomic excitations.

In more details, by utilizing the collective operator ap-
proach and the hidden dynamic symmetry as recently discov-
ered [14] for the three-level A-type atomic ensemble coupled
to a classical control field and a quantum probe field, both

©2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.73.043805

LI et al

6)

FIG. 1. (Color online) Three-level cyclic atoms are resonantly
coupled to two quantized fields and a classical field via electric-
dipole interaction.

the adiabatic and dynamic properties for the system of the
photons and atomic ensemble are studied systematically. Dif-
ferent from the case of three-level A (or V, or E)-type atomic
ensemble, due to the interference between one- and two-
photon processes in the system of A-type atomic ensemble,
we find that the electromagnetically induced transparency
(EIT) phenomenon [15], appeared in A-type system, does
not exist here. Instead of dark-state polariton operators [ 14],
a general set of polariton operators is introduced to describe
the collective motions of the whole system when the excita-
tion to high energy levels is low. Some unique results are
obtained. For example, the entanglement between two quan-
tum optical fields is tunable via classical field, applied to the
A-type atomic ensemble.

Our paper is organized as follows. In Sec. II, the model is
described and the polariton operators are introduced in the
limit of the low excitation. In Sec. III, the entanglement be-
tween, e.g., the atomic ensemble and quantized fields, or two
different optical modes, is discussed. In Sec. IV, we analyze
the information transfer from the quantized fields to the
atomic ensemble by adiabatic passage, and study the storage
of photon information via atomic ensemble.

II. ATOMIC ENSEMBLE WITH CYCLIC TRANSITIONS
AND POLARITON EXCITATIONS

We consider an ensemble with N identical three-level “at-
oms” (such as atomic ensemble or the chiral molecular gases
[6] or manual “atomic” array with symmetry broken [8])
interacting with electromagnetic fields. Each atom has cyclic
or A-type transitions shown in Fig. 1, where a lower level |b)
is coupled to two higher levels |a) and |c) by quantized fields
through the electric-dipole interaction; and two higher states
are coupled by a classical field with a frequency v through
the electric-dipole interaction. The Hamiltonian of the inter-
acting system is given as (i=1)

N
H,.,=w,a'a+ wb’b+ wabz
Jj=1

+ gaz eKarig)) ba +gp > eKr J(r(’)b

J

+ Qo eiKv'rjUgQ +H.c. (1)
J

+ wcbz
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Here, 0' nl, with m,n=a,b,c but n# m, are the flip
operators between the levels lm); and |n); of the jth atom.
ol =|m);{m| (m=a,c) represent the population operators.
a (a*) and b (b") are the annihilation (creation) operators of
the two quantized light fields, with the angular frequencies
(wave vectors) w, (K,) and w, (K,), respectively. The pa-
rameters g, and g, denote the coupling constants associated
with two quantized fields, coupling to the atomic transitions
|a)—|b) and |c)— |b), respectively. Here, we assume that
coupling constants g, and g; of all atoms to the two quan-
tized fields are identical. w,, and w,, are the angular frequen-
cies of the atomic transitions |a)— |b) and |c)— |b), respec-
tively. ()’ is the Rabi frequency related to the atomic
transition |a) — |c), driven by the classic field with the angu-
lar frequency w, and the wave vector K,.

For the sake of simplicity, we assume that three light
fields are resonantly coupled to the relevant atomic transi-
tions, that is, w,,=w,, w,=w,, and w,.=w, Thus, in the
interaction picture, the Hamiltonian (1) can be simplified to

N
H=g“az elK” l.Ja-ab +gbb2 ele JO'(])+Q EGIKV rja' ()
Jj j =1

+H.c. (2)

Considering that any quantum state is allowed to have a
global constant difference of phase factor, one can redefine
new atomic states with the phase factors [13] as

|a'>j—e’K Tilay., |b’>j:|b)j, |c'>j:eiKb'r./|c>j. (3)

We further assume that the momenta K, K,,, and K, for the
three light fields satisfy the conversation condition

K,+K,-K,=0. 4)

Then, after the factors exp(iK,-r;), exp(iK,-r;, and
exp(iKv-rj) are absorbed into atomic states, the Hamiltonian
(2) can be rewritten as

H= gaaE +gbb20' +Q/ EU(’)+HC (5)
J J j

Here, we still use the notations |m) and oV’ to denote |m’)
and o'(], L (m'n'=a'".b",c").

Obv1ously, the above Hamiltonian describes the homoge-
neous couplings of the three light fields to atoms in the en-
semble. This homogeneity means that there exist various col-
lective excitations that can be characterized by the following

operators [14]

N
T = E 9 =2 (ol -od)

j=1

2 O'bc (6)

Therefore, by using the above collective operators, the
Hamiltonian (5) can be expressed as
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H=g,\NaA" + g, \NbC' + Q'T" + H.c. (7)

Equation (7) implies that there exists a dynamic symmetry in
the considered system. This symmetry is characterized by
Lie algebra generators A, C, T~ and their complex conjugates
AT, CT, T* (also T7), that satisfy the following commutation
relations:

[A,C"]=[A,C]=0,

[A,AT]=1, [C,CT]=1,
[T,C"]=0, [T*,C']=A",
[T,AT]=C, [T%AT]=0,
[T.T]=T (8)

in the large N and low excitation limit [14,16,17]. Where the
low excitation means that the most atoms are in the ground
state, only a few of them are excited into the higher states. In
this case, the average numbers (ATA) and (C'C) of the atoms
in the two excited states satisfy the condition (ATA)/N<1
and (C'C)/N<1. It means that two independent bosonic
modes (A and C) of the atomic collective excitation exist in
the ensemble.

Since the complex coupling constants can be rewritten as
8a=82 explig,], gb=32 explig.], and Q'=Q explig,], where
gg and gg are positive real numbers, however () is a real
number. Then the phases ¢, and ¢, can be absorbed into
the operators A and C as follows: ATexp[ig,]—A",
C"explie,]— C'. In this case, the operator T* should be
changed as: T"— T expli(¢.— ¢,)]. Without loss of general-
ity, we now consider a simple case with gS\W: ggv’ﬁz gn-
Under these conditions, the Hamiltonian (7) can be repre-
sented as

H=gnaA" + gybCT + QT + Hee., 9)

where ¢=¢,+ ¢.—¢,. The transform from Eq. (7) to Eq. (9)
means that only the total phase of the three Rabi frequencies
(g4 gp» and ') is involved in the dynamical evolution.
The Hamiltonian (9) can be diagonalized by using polar-
iton operators D; (i=1,2,3,4) as
4
H=2,&DD;, (10)

i=1

here the polariton operators

sin 0 . cos 0 .
Dy=—=(azxbe?)+—=(Ce*xA), (11)
V2 V2
cos 0 , sinf, .
Dy ,=—=(axbe¥) - —=(Ce'? £ A), (12)
' V2 V2
describe the normal bosonic modes with frequencies
Q+vQ%*+ 4812\/
o=y = (13)
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Q— er+4g]2V
> .

In Egs. (11) and (12), the first indexes of the left hand side
correspond to the above symbols of the right hand side, and

(14)

83E—S4=

6= arctan %
Q+ \Qz+4gN

It is obvious e [0,7/2] for the positive real numbers g,
gy, and real number (). From Eq. (10), the eigenstates of the
system can be given as

(15)

(W) = [L,m,n, k) = ;D”D"'mDT”DWO)
Imnk sHE IR/ DyDyD3Dy \’W 152 3 4 s
(16)
with the ground state [0)=[0,0),,®|b). Here, [0,0),,

is the vacuum state of the two quantized optical fields,
[b)=®I1|b); is the ground state for all atoms with the defi-
nition C|b)=A|b)=0. The eigenvalue of the state | ¥, is

slmnkz(l_m)sl +(I’l—k)83. (17)

It should be pointed out that the polaritons D; obtained in
present cyclic ensemble are different from the dark state po-
laritons in the A-type ensemble [14]. The latter are the dark
state polaritons and commute with the interaction Hamil-
tonian, but the former ones do not commute with the inter-
action Hamiltonian, and also are not dark state polaritons.

III. GENERATION OF QUANTUM ENTANGLEMENTS
AND THE COHERENT OUTPUT

Now, we study how to generate the entangled states by
using solutions of the polaritons and their eigenstates. We
first calculate the dynamical evolution driven by the Hamil-
tonian (10) with the constants ), gy, and ¢=0. In this case,
the polariton operators in Egs. (11) and (12) are simplified to

sin @ cos 6
1a=—F=(axb)+ ——(C=xA), (18)
' V2 V2
cos 0 sin @
= laxbh) - =(CxA).  (19)
/ \12

The Heisenberg equations

describe the time evolution of the normal modes of the po-
laritons

D) =eD0) (j=1,2,3,4), (20)

where ¢;=¢;(1)=¢;t is a time-dependant phase. Since the
physical modes can be expressed by the normal modes as

1
a= ,—E[(D1 +Dy)sin 0+ (D3 +Dy)cos ],  (21)
v

1
b=[(Dy=Dy)sin 6+ (D;=Dyeos 6], (22)
N
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A= %[(D1 — D,)cos 8- (D5 - D,)sin 6], (23)

/

N

1
C= ’—3[(D1 + D,)cos 86— (D3 + D,)sin 6], (24)
\J

the time-dependent operators a(t), b(r), A(z), and C(z)
[also af(-7), bT(-1), AT(~f), and CT(~£)] can be obtained
by a straightforward replacement D;— D(0)exp[—i¢;(1)]
(D;f—>D;f(0)exp[—i¢j(t)]). The explicit expressions for these
operators are given in the Appendix.

In what follows in this section, we will investigate the
dynamical evolution of the above cyclic system and show
that the entanglement and the information exchange between
two optical modes can occur in the present cyclic system for
an initial direct-product Fock states of two optical modes.
We will also show that the atomic coherent excitation and
coherent output of photons can occur when the system is
initially in a direct-product coherent states of two optical
modes.

A. Generation of entanglement between two optical modes

If the system is initially in the two-mode photon number
state

1
| ’MO» = /_aTman|0>’

vm!n!

where [0)=0,0),,® [b)=10,0,0,0),,4c is the ground state
of the system. Then, according to Egs. (21) and (22), at time
t, the wave function can be expressed as

1

1)) = ==la"(-)]"[b"(-1)]'|0)
ymin!
= V#[Fz(r)a*(m + FA(Db'(0) + F4(0AT(0)
+ FL(OCHO)I"[Fa(1a' (0) + Fi(1)b'(0)
+ F3(0AT(0) + FA(1)CT(0)170), (25)

with the time-dependent coefficients Fg(t) (aB=a,b,A,C)
given in the Appendix.

Equation (25) shows that the entanglement between the
optical modes and atomic collective modes can be generated
when the coefficients in Eq. (25) satisfy certain conditions.
However, in the following, we will only focus on how to
generate quantum entanglement between two optical modes.
When the coefficients of the atomic operators A and C of Eq.
(25) vanish in some instants or in the certain limit, i.e.,

Fi(t)=Fi1)=Fj() = F(1) =0, (26)

the state |¢(¢)) in Eq. (25) only contains the variables of
photons, namely

40) = ~——LF(0)a"(0) + Fi(Ob' O TF(0)a’(0)
Nm:n:

+ Fo(1)b"(0)17]0). (27)
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There are three cases in which the above photon state (27)
can be generated during the dynamical evolution satisfying
Eq. (26).

Case I: When the classical field is strongly coupled to the
atomic ensemble such that the coupling constants {) and gy
satisfy the condition }/gy— +9, then =0 and the polar-
iton operators in Egs. (11) and (12) can be simplified to

1 1
D1,2=?(C1A)7 D3’4=?((Zib). (28)
V2 V2

In such condition, the time-dependent state in Eq. (25) be-
comes into

1

[0y = ==la"(0)cos ¢5 — ib"(0)sin ¢5]"[~ ia"(0)sin ¢
vm!n!
+b7(0)cos ¢5]"(0). (29)

Equation (29) shows that the entanglement of optical modes
a and b is obtained if the condition ¢(r) # [l7/2 with the
integer [ is satisfied. When ¢;(f)=7/2 (mod ), the state
|(£)y=a™b™™|0)/ m!n! with a negligibly global factor. This
process means that the information between the modes a and
b is exchanged. When ¢,(t)=0 (mod ), the state |¢(z))
=|(0)y=a™b|0)/m!n!, which returns to the initial state.

Case II: When the coupling of the classical field to the
atomic ensemble is much stronger than that of the quantized
fields. That is, the Rabi frequencies satisfy the condition
QO/gy— -2, then #=7/2. In this case, the polariton opera-
tors can be simplified to

1 1
Di,=—=(axbh), D;,=——=(CxA). (30)
V2 V2

The state in Eq. (25) becomes into

(1)) = ———T[a'(0)cos ¢ — ib'(0)sin ¢ ][ ia*(O)sin ¢,
\vm!n!
+b7(0)cos ¢,1"0). (31)

Similar to the case I, the entanglement between optical
modes a and b can also be obtained. When ¢,(r)=0 (mod ),
the state |(1))=[/(0)); when ¢,(f)=m/2 (mod ), the state
|(£)y=a™b™™|0)/m!n!. Same as the case I, the above pro-
cesses mean that the state can return to the initial one, or the
quantum information between modes a and b can be ex-
changed in some instants.

Case III: Under the condition of ¢,(r)=5(t)+2ml with
the integer /, we can also obtain the similar results as the
above. Comparing with the cases I and II that are in the
special limit of the ratio |[{)/gy|, here we consider a general
case of /gy. At the instants r,=st, (s=0,1,2,...) with

to=2m/\VQ*+ 4g]2\,, the time-dependant phases satisfy

¢l(tx) = ¢3(ts) (mOd 277)7 (32)
then Eq. (25) is
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1 , .
ly1,) = Jﬁ[aT(O)COS ¢y = ib'(0)sin ¢]"[~ ia" (0)sin ¢b;
ym:n:

+b"(0)cos ¢,1"0), (33)

which is a two-mode photonic entangled state when ¢,
#1mw/2 with the integer [, where ¢,= P(1,)=,(t,)= ds(t,)
(mod 277).

Moreover, when the the special value of )/gy is taken in
case III, the modes a and b can be disentangled in some
certain instants. For examples, if Q%/gy=4p>/(¢>~p?) [p, q
are integers], then at time Ti") =qt,=2mqs/ \r’92+4g12\,
(s=0,1,2,...), one has |cos ¢1,3(T§q))|=1, and

(7)) = ””(O)bT"(O)|0) (34)
which is just the same state as the initial one. If 02/g% gy
=p?/(¢*>-p?) (p, q are integers), then at time 7'<)—qt
=2mgs/ Q2 +4g% (s=0,1,2,...), one has |sin ¢, 5(79)|=1,
and then we have

lw(%'”»— '"(o>bT"’(0>|0> (35)

which means the information carried by two optical modes
has been exchanged between modes a and b.

For the entangled states generated by the above three
cases, we can further calculate their entanglement degree in
order to make them more clearly. In fact, for each pure state,
the entanglement can be defined as the entropy of either of
the two subsystems [24-26]. For example, the expression of
entanglement for Eq. (29) is given as

E(|yd1))) = - Trp, log, p,(1)], (36)
where
pa(t) = Tr,, p(1) = Try[[(0) ) g(0)[] (37)

is the reduced density matrix of mode a. For simplicity, we
consider the case of m=n=1 in Eq. (29). In this case, we
have

pa(t) = Try[[f0))(y1)]]

=2 sin® 3 cos” ¢3(/0),,{0] +
+ (cos? ¢y — sin® ¢h;)?

and the entanglement is given as

E[|(t))]= - Tt[p, log, p,()]
= (cos” g3 — sin® ¢b3)* logy(cos” g3 — sin” ¢b3)
+4 sin® ¢y cos’ 5 logy(2 sin® ¢ cos? ¢s),

(39)

12)aa(21)

(38)

aa

here ¢s(1) = e5t=(Q— Q> +4g3)1/2.

Figure 2 shows the entanglement in Eq. (39) during
the time evolution. In fact, at time_t:(ki 1/4)mles (k
=0,1,2,...), w+02),,)/V2, and E(|g(1)))=1,
as shown in Fig. 2 with those A points. It means that |¢(t)) is
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FIG. 2. (Color online) The entanglement in the state Eq. (39) vs
the time ¢ [in units of 1/&5]. Points A show the maximally entangled
states for 2 X2 dimension. Points B show the maximally entangled
states for 3 X 3 dimension.

a maximally entangled state for two optical modes in the

ab
- At the time r={kmrzarcsin[\/(3+3)/6]}/e; or

t={kmxarcsin[\/(3—3)/6]}/e; (k=0,1,2,...), it has
[40)=(120)+102) £ i[11),) /N3 and  E(|1)))=log, 3,
which shows that |¢(#)) is a maximally entangled state in the
three dimensional space, constructed by the states [20),,
|02),, and |11),, of two optical modes (see the points B in
Fig. 2). These so-called maximally entangled states are very
useful in the field of quantum information, e.g., to implement
the quantum teleportation.

In this subsection, we have studied the entanglement and
the information exchange between two optical modes in the
present cyclic system for an initial direct-product Fock states
of optical modes. Such an entanglement or information ex-
change phenomenon cannot be occurred in a noncyclic three-
level system, e.g., V-type three-level system [16]. Physically,
the classical field, which is used to couple two higher levels,
assists to implement the entanglement (or information ex-
change) between these optical modes. This can be seen from
Eq. (9), in a noncyclic three-level V-type system obtained
from the A-type system with 1=0, two optical modes only
interact independently with two collective excitation modes
respectively. So it cannot realize the entanglement between
two optical modes.

B. Coherent output of collective excitations and photons

Here we study the dynamical evolution of the cyclic sys-
tem when the system is initially in the several kinds of co-
herent state as follows.

(i) If the system is initially in a direct product state of
coherent states for four modes a, b, A and C

|4(0)) = D,(a)Dy(B)D4()D(7)]0) = abAC>

where Dy(y)=exp[yQ'-H.c.] (Q=a,b,A,C) is the dis-
placement operator. Then the state evolves into

|(1)y =D, (a")Dy(B')D4(L')D(7')]0) (40)

with
o' (t) = aF(1) + BFA(r) + LFA (1) + FS (1),

B' (1) = aF(1) + BFa(1) + LFy(t) + nFy (1),
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(1) = aF4(t) + BFL (1) + LFA(0) + nFS(0),

7' (1) = aF (1) + BFA(t) + {F(t) + nF (D).

Here, the relation

UDy(yU' (1) = exp[yQ'(- 1) - H.c]
= exp{{F2(1)a"(0) + FZ(t)b"(0)
+ F(nAT(0) + F&(r)C"(0)] - H.c.}

has been used in Eq. (40). Equation (40) shows that any
initial direct-product coherent state is still a direct-product
coherent state during the time evolution. However, the inten-
sity of each mode varies with the time evolution.

(ii) If the atoms are initially in the ground states, but one
of the optical modes, e.g., mode a, is initially in a coherent
state

|440)) = D (a)|0) =

Then, at time ¢, the state is

lp(0)y =o' (1), 8'(1).8" (1), 7' (D)apac

a70’0’0>abAC‘ (41)

where

o' (1)= aFl0),  B(1)= aFy().

{'(t)=aFy(1), 7'(1)=aF1).

This means that a new coherent optical field of mode b and
two new coherent atomic collective excitations are gener-
ated.

(iii) If the atoms are initially in the ground states, and the
two optical modes are initially in their coherent states:

|¢(0)> =Da(a)Db(B)|0> = a’ﬂ’050>abAC’ (42)

then, the evolved state will be direct-product coherent state
of four modes

|i(1)) = D (" )Dy(B')D4(L)D ()] 0) (43)

with

a' (1) = aF%() + BF1),
B' (1) = aFy(1) + BFy(1),
(1) = aFS(t) + BF5(0),

7' (1) = aF (1) + BF1).

This means the initial optical modes can lead to the coherent
output of new modes of atomic collective excitation.

(iv) If the two optical modes are initially in the vacuum
state, but the two atomic collective excitation modes are ini-
tially in the coherent states

|410)) = D4({)Dc(7)|0). (44)

Then, the state will evolve into a direct-product state of the
two optical modes and the atomic excitation modes

PHYSICAL REVIEW A 73, 043805 (2006)

|[4(1)) = D(a")Dy(B')D4(L')D(7)]0) (45)
with

a' (1) = LFA(D) + pFS(n),
B' (1) = LF (1) + F5 (1),
(1) = LF4(0) + mFS (o),

7 (1) = (FA1) + pF (1),

Equations (43) and (45) show that the coherent optical
modes or coherent atomic excitation modes will result in the
generation of the coherent atomic excitation modes or coher-
ent optical modes in the cyclic atomic ensemble system.

(v) We now consider that one of the optical modes,
e.g., the mode a, is initially in odd or even coherent
states N(|@),%|-a),) with the normalization constant

2 . . .
N= (2i2€‘2‘“‘ )""2. But another optical mode b is in the
vacuum state, and also the two atomic modes are in their
ground states. That is, the system is initially in the state

|¢(0)> =N(|a>a + |_ a>a) ® 0’0’0>bAC' (46)

At instant 7 when ¢,(7)=¢3(7)=¢(7) (mod 2), the state
will evolve to a so-called entangled coherent state of these
two optical modes [18-20]

|¢(T)> = |0>AC ® Nﬂa COs ¢’_ iasin ¢>ab
* |- acos ¢,iasin ¢),). (47)

When ¢(7) in Eq. (47) satisfies ¢(7)=m/4 (mod ), the state
will be in a maximally entangled state [27]. These states
have recently been proposed as an important tool in the theo-
ries and experiments relating to the quantum information
processing [21-23].

Especially, if ¢(7)=0 (mod ) at certain time 7, the in-
stantaneous state in Eq. (47) returns to the initial state in Eq.
(46). If ¢(7)=7/2 (mod 77) at certain time 7, the instanta-
neous state in Eq. (47) becomes into

(1) =Na), |- a),) ®

It means that a new coherent state for the mode b is gener-
ated. It also shows that the quantum information is trans-
ferred from mode a to mode b.

So far we have showed the atomic coherent excitation (or
coherent output of photons) when the optical fields (or
atomic collective excitations) are initially in the coherent
states. Moreover, if one of the optical modes is initially in an
odd (or even) coherent state but another one is in the vacuum
state, the system will evolve to an entangled state for two
optical modes with coherent states each. When a special con-
dition is satisfied, the information can be transferred from the
first optical mode to the second one, which has been de-
scribed in Egs. (46) and (48). These interesting results is due
to the classical optical field, which induces the atomic tran-
sition between two higher states. However these interesting
phenomena cannot be found in the noncyclic three-level

03030>aAC' (48)
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V-type atomic ensemble, where only the classical optical
field is removed as a comparison with the cyclic system.

IV. THE STATE STORAGE OF PHOTONS BASED
ON ADIABATIC MANIPULATION

In Sec. III, we have studied the dynamic properties of the
atomic ensemble with the cyclic transitions. Here, we con-
sider the adiabatic evolution of the cyclic atomic ensemble,
controlled by the time-dependent classical field. In this case,
the Rabi frequency () should become into the time-
dependent one, i.e., Q(z). Using the diagonalized Hamil-
tonian (9) and following the method of collective excitations
shown in Ref. [14], we will discuss how to transfer the in-
formation from the two quantized light fields to the atomic
ensemble by the adiabatic passage.

In the following, the value of ¢ is fixed, i.e., ¢=0, but
Q will be changed within the range (-, +%) according
to the constant gy. In general, the polariton operators D;
(i=1,2,3,4) consist of two photonic modes and two atomic
collective excitation modes. For simplicity, we consider two
simple cases for D;. One is Q/gy— +. In this limit,
60— 0, and the polariton operators are given in Egs. (28) with
the relative values g, =-g&,—(), g3=-g,—0. Another
is O/gy——=, then we have #— /2, and the polariton
operators become into Eq. (30) with the relative values
g1=-g,—0, e3=—-g,— .

The analysis on Eq. (15) shows that when () varies in the
range (-, +), @ will vary in the range (0,7/2). In the
above two limit cases, the polariton operators D, (or Dj 4)
consist of only the optical modes a,b (or only the atomic
collective excitation modes A, C). This implies that the infor-
mation can be transferred from two quantized light fields to
the atomic ensemble, and then can also be stored in the
atomic ensemble, as given in Ref. [14],

For example, initially, if we set Q(r)/gy— +%, and the
system is in a direct-product Fock state of two optical modes

a'f‘mbfn
|\II(O)> = |m’n>ab ® |b> = /_|0> (49)
\m!n!

Then, using expressions of the polariton operators in Eq.
(28), Eq. (49) can be rewritten as a superposition

[W(0)) = 2 fir (DY(DY™=H0), (50)
J.k

where

. i knek
RIC TSt
fm” - \’yzm+nm In! ’
o =m—!.
" jtm =)

In the process of the adiabatical evolution, the state at time ¢
will be

[W(0) = 2 U OIDIOVHIDYOT"70),  (51)
J.k

ik . . .
where U/, (1) is the relative dynamic phase
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0

U* (1) = (2 + 2k —m - n)exp|:— ift 83(t')dt’i| . (52)

When )(¢) is adiabatically changed to — in certain time
7, the state will be

(W (7)) = 2 fon U (DIDI DY HIDYD]™"7H0)
J.k

T el
Ik V2
AT(0) = CT(0) |-k
V2

Equation (53) shows that the quantum information carried by
optical modes (a and b) has been completely transferred to
the atomic collective excitation modes A and C. Since atoms
are local and robust, the above adiabatic process means that
the information of two quantized light fields has been stored
in an atomic ensemble.

Especially, for certain evolution path of (), if the rela-
tive dynamic phase U” ()=1 holds for any integer
m,n,j,k, that is

ff es(t)dt=2lm (54)

0

with an integer [, |W(7)) will have a simple form

[W(7)) = (= 1)"*(0)4|0)p|n)alm)c. (55)

That is, when adiabatically changing {)/gy: +% — —c°, under
the special case of U{,’fn(r) =1 for any j, k, m, and n, the state
transfer can be realized as follows:

[W(0)) = |mYy|n),|0}a|0)c — [W(7)
= (= 1)""10)g|0)p|nYalm)c- (56)

Such an adiabatic passage means ¢ ——C and b— —A, so the
initial state involved only for the optical modes will evolve
to the final state involved only for the atomic excitation
modes. This also means that the quantum information carried
by the optical fields has been transferred to and stored in the
atomic ensemble.

An inverse adiabatic passage, which makes Q(7)/gy
=—00— O (T)/gy=+, will result in information transfer
from the atomic ensemble to the two optical modes, i.e., C
——a and A — —b. And then, the initial atomic state |n)4|m)c
will evolve to the final state |W(T))=|m),|n),|0)4]|0)c by the
inverse adiabatic passage with the relative dynamic phase
Uk (T)=1.

It is worth stressing that if the initial state is |¥'(0))
=|0),|0),|m)s|n)c, after an adiabatically changing Q/gy:
+00— —oo, this state will become into the Fock state of the
two optical modes a and b (depicted according to the polari-
tons D;,), where we also assume that the dynamic phase
factor is 1 during the adiabatic evolution, that is

U,’,f,f(r) = 1 (for any integer m,n,j,k), (57)

which is equal to [Je,(f)dr=2lm with an integer /.

043805-7



LI et al

The inverse adiabatical passage ()/gy:—%— +% will re-
sult in the information carried by the optical fields to be
transferred to that by atomic ensemble.

So far, we have achieved the quantum information ex-
change between optical fields and atomic ensemble with ini-
tially in the Fock states. For general states, e.g.,

|\P(0)>= E umn|m>a|n>b|0>A|O>C (58)

m,n

or |W(0))=|a),|B)s|0)4]0)c, the information can also be
transferred in the similar way as done in Ref. [14].

In Sec. III, we mainly study the generation of entangle-
ment states between two optical modes, and the quantum
information transfer from one optical mode to another opti-
cal mode by virtue of the dynamical evolution. In this sec-
tion, we discuss the information transfer and storage from
the optical fields to the cyclic atomic ensemble through the
adiabatic passage. Moreover, the quantum information can
also be retrieved from the atomic collective excitation
modes. It is well known that photons are nonlocal and not
easy to be stored, but atoms are local and robust. The above
process provides a way to implement retrievable storage of
the optical information in an atomic ensemble.

V. CONCLUSION

We have investigated various protocols of quantum infor-
mation processing based on the photonic properties of the
emission and excitation of a A-type (or cyclic) “atomic” en-
semble, which coupled to two quantum optical fields and one
classical field. The classical field controls the coupling be-
tween two upper energy levels. By means of collective op-
erator approach, we studied the dynamical evolution and
adiabatic manipulation for such a unique system. Our results
show that the two-mode photon entanglement and quantum
information exchange between two optical modes can be re-
alized when the optical modes are initially in the direct-
product Fock states or coherent states.

It is remarked that, even without symmetry broken, a
three-level system can also form a cyclic one. The electric-
dipole interaction of the classic field coupled to the two
higher states in our model can be replaced by the magnetic-
dipole transition. However this magnetic-dipole interaction is
generally very weak compared with the electric-dipole inter-
action and disposed as perturbation. The significant phenom-
enon of cyclic three-level configuration only occurs in the
systems with symmetry broken as given in the present work.

We also need to point out that, it is the classical field that
result in various phenomena, found in this paper. Without
this classical field, it would be impossible to generate the
entangled states of the two optical modes. As a quantum
memory, the collective excitations of the A-type atomic en-
semble can store the quantum information carried by two
quantum optical modes through the adiabatical manipulation.
The corresponding adiabatical evolution is realized by
choosing certain classical Rabi frequency (7). We expect
that our proposal can be confirmed and implemented experi-
mentally in the near future.

In this paper, we just consider an ideal case. Actually, in a
realistic system, two kinds of decoherence mechanisms may

PHYSICAL REVIEW A 73, 043805 (2006)

play a role. The first one comes from the multimode radia-
tion, which will result in the collective decay of atoms from
the excited states to the ground state. This kind of radiation
properties due to atomic decay in present system will be
investigated in a following paper. The second decoherence
effect is due to the inhomogeneous coupling of atoms to the
light fields. The influence of inhomogeneous coupling has
been studied in detail in a two-level-atom ensemble by Sun
et al. [28]. In the realistic experiments, the atoms can be
fixed and the coupling can be taken as the constant by a
special design to avoid the decoherence of inhomogeneous
coupling. Our assumption for homogeneous coupling is rea-
sonable in a short interaction time.
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APPENDIX: DERIVATION OF POLARITON OPERATORS

Here we rewrite the forms of D ;5 4 in Eqgs. (18) and (19)

sin 6 cos 6
D, = 1’_ (a+b)+—=(A+C), (A1)
V2 V2
sin 6 cos 0
D,= (a_b)_ ~ (A_C)’ (Az)
: \2 V2
cos 6 sin 6
Dy=—+(a+b)— —F—=(A+C), (A3)
V2 V2
cos 6 sin 6
= —m(a=b)+ —=(A-0O). (Ad)
V2 V2
According to Eq. (10), it has
&tDj:_i[Dj’H]:_iSJDJ (j=1,2,3,4),
and then
Dj(t)=¢e"D,(0) (j=1,2,3,4), (AS)

where ¢,(t)=¢g;t. Following Eqs. (A1)-(A4), we can obtain
the inverse transformation

1
a= '_3[(D1 + D,)sin 0+ (D5 + Dy)cos 6], (A6)
\J
1 .
b= ’_E[(Dl —D,)sin 0+ (D5 — Dy)cos 6], (A7)
v
1 .
A= _E[(Dl — D,)cos 68— (D5 — Dy)sin 6], (A8)
\
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1
C= TE[(DI + D,)cos 68— (D, + Ds)sin 6]. (A9)
\!
By means of Eq. (A5), we have
1 : .
a(r) = ,—E{[Dl(())e‘“”l +D,(0)e!®]sin 0
N

+[D5(0)e™®3 + D, (0)e'#3]cos 6}
= Fy(1)a(0) + F5(1)b(0) + F4()A(0) + F¢(1)C(0),
(A10)

b(t) = T—E{[DI(O)e—f‘fﬁl —D,(0)e*t]sin 6
N

+[D;3(0)e™%3 — D,(0)e'%3]cos 6}
= F2(1)a(0) + Fo(1)b(0) + F5()A(0) + F2(1)C(0),
(A11)

Al = L5«{[D1(0)e_"¢1 — D,(0)e'®t]cos 6
J

—[D5(0)e™%3 — D,(0)e'%3]sin 6}
= FA(0a(0) + FA()b(0) + FA(A(0) + FA1) C(0),
(A12)

C) = %{[01(0)€_i¢1 +D,(0)e*1]cos §—[D;(0)e™ %
N

+D,(0)e'%3]sin 6}
= F{(1)a(0) + F§ (1)b(0) + FS(0A(0) + FE(1) C(0),
(A13)

PHYSICAL REVIEW A 73, 043805 (2006)

where we have used ¢,(r)=—¢,(¢) and ¢;(t)=—ep4(r) and the
related coefficients are

FO(1) = F5(1) = cos ¢, sin® 6+ cos ¢ cos® 6,
HOE FZ(t) =—i(sin ¢, sin® @+ sin ¢ cos’ 6),
F4(1) = FA(1) = — i sin @ cos 6(sin ¢, — sin ¢5),
Fir) = FE(1) = sin @ cos B(cos ¢ — cos ),
Fﬁ(t) = F/,:‘(t) = (cos ¢, — cos ¢3)sin 6 cos 6,
Flé(t) = F,?(t) =—1isin fcos O(sin ¢, —sin ¢3),
Fﬁ(t) = Fg(t) = oS ¢ cos> B+ cos ¢ sin® 6,

F/é(t) = Fg(t) =—i(sin ¢, cos> O+ sin ¢ sin” 6).
It also has

a’(=1) = Fy(0)a'(0) + Fy(0)b'(0) + F4(A"(0) + F¢(r)CT(0),
b (= 1) = F2()a’(0) + F(1)b™(0) + F4(1)AT(0) + F2(1)CT(0),
AT(=1) = FA1)a"(0) + F(1)b7(0) + FA(NAT(0) + F2(1)C7(0),

C'(= 1) = FS(1)a™(0) + F§ (b7 (0) + FS()AT(0) + F&(r)CT(0).
(A14)
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